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Structurally Constrained Receivers for Signal
Detection and Estimation

WILLIAM A. GARDNER, MEMBER, IEEE

Abstrect—A general approach to the problem of designing struc-
turally constrained receivers for signal detection and estimation is pro-
posed. The approach is based on the constrained Bayesian methodology
wherein risk-minimizing inference (or decision) rules are modified
{constrained) by replacement of true posterior probabilities with esti-
mated posterior probabilities. The estimators are structurally con-
strained minimum-mean-squared-error (MMSE) estimators for random
posterior probabilities. This methodology is, in essence, an extension
and generalization of the well-known linear MMSE estimation method-
ology. The approach is employed to design linearly constrained coher-
ent receivers for signals in additive and multiplicative noise, and quadra-
tically constrained noncoherent receivers for signals in additive noise.
An analysis of these receivers shows that they are very similar to those
that are optimum for additive Gaussian noise. The methodology pro-
vides a unified theory of receiver design based on the constrained
MMSE criterion. This unification yields new insight into this old
approach, clarifying both strengths and weaknesses of the approach.

I. INTRODUCTION

A. Purpose

PTIMUM receivers often must be approximated by more

practical structures before they can be implemented.
This has led to the popular design alterndtive of imposing
structural constraints before optimization. Structural con-
straints are ‘also often imposed to facilitate mathematical opti-
mization. For example, the time-correlation receiver, shown in
Fig. 1, for detecting the presence of a signal in corrupted
observations, {Y(f); teT}, is a widely used structure. One can
optimize this receiver by solving for the correlator function
¢(+) and threshold level y that minimize the probability of
detection error. Aside from intuitive appeal, this structure is
attractive since it is, in fact, optimum when { Y(£)}is composed
of a deterministic signal plus Gaussian noise.! In this case, the
optimum ¢(-) and 7y are easily determined [1]. However,
when {Y(#)} is not appropriately modeled as signal plus
Gaussian noise, then solving for the optimum ¢(*) and 7 can
be very difficult. Furthermore, the optimization requires
specification of the probability density function (pdf) for the
random variable », under the two hypotheses of signal present
and signal absent, for a]l candidate functions ¢(+). Often this
probabilistic modeling information is not available in practice.
Thus alternative criteria of optimality are frequently used to
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! More generally, this structure is optimum for a class of noise
processes withi spherical symmetry [19].
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Fig. 1. Correlation receiver.

circumvent this probablistic modeling complication. A popular
example of such an alternative is the maximum signal-to-noise
ratio (SNR) criterion. This requires specification only of
correlation functions, and interestingly leads to an optimum
correlator function ¢i(+) that is the same as that which mini-
mizes probability of error for additive Gaussian noise [1].

A serious drawback of the maximum SNR structured
approach is that it does not appear to generalize to multiple-
signal detection (multiple-alternative hypothesis testing).
This leads us to the following important point: out of the vast
amount of work on structurally constrained receivers during
the last two decades, a general approach or methodology,
that is not significantly more complicated in application than
the maximum SNR approach, seems not to have emerged. As
discussed in the preceding example, the direct approach of
attempting to optimize by seeking the particular receiver, in
a structurally coristrained class, that minimizes a Bayes risk is
unsuccessful in general: the mathematical optimizdtion can be
as difficult, if ot more so, than the unconstrained problem,
and the required specification of a probabilitistic model can be
just as prohibitive as it is for the unconstrained problem.

With the preceding as motivation, we propose a general
approach to the problem of desigping structurally constrained
receivers fOr signal detection and estimation. The methodology
that we propose overcomes, to a large degree, both the previ-
ously mentioned drawbacks of the direct approach. The price
paid for the simplicity of this new approach is suboptimal
receiver performance. That is, the receivers derived with this
methodology do not, in general, minimize risk subject to
structural constraints. However, the methodology is not en-
tirely ad hoc. Rather, it is based on an obvious combination
of a simple ad hoc procedure and a genuine structurally con-
strained risk-minimizing procedure. Furthermore, as demon-
strated herein, the methodology yields receivers that are
optimum for some classes of problems. The proposed meth-
odology is, in essence, an extension and generalization of
the linear minimum-mean-squared-error (MMSE) estimation
methodology. '

B. Constrained Bayesian Methodology

The methodology that we propose for designing structur-
ally constrained receivers for signal detection is very straight-
forward. It derives from the fact that all Bayes-risk minimizing
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signal detectors (hypothesis testers) are most simply described
in terms of the posterior probabilities of the hypotheses being
tested. If {H;};M are M mutually exclusive and exhaustive
hypotheses, and Cj; is the cost of deciding H; is true when in
fact H; is true, then the Bayes-risk incurred in deciding H; is
true, given observations { Y(¢)}, hereafter denoted by Y, is

Ri=3 CoPlyY] M
=1

where P[H;/Y] is the posterior probability of H; (the proba-
bility of Hj, given observations Y). Hence, any risk-minimizing
detection rule can be implemented very simply, once the
posteriors have been computed from the observations Y. For
example, if Cy; = 1 — §;;, where 8;; is the Kronecker delta,
then the risk is the probability of detection error and the opti-
mum rule simply announces the hypothesis with the largest
posterior. Clearly, the structural complexity of any minimum-
risk receiver can be attributed to the computation of the
posteriors from the observations; i.e., the implementation of
the functionals {P[H;/-]};¥ that map Y into posterior
probabilities. Thus, an obvious way to impose a structural
constraint on the design of a receiver is to constrain the struc-
ture of these functionals. Specifically, the designer might
attempt to solve for the specific functional within a prescribed
class of functionals that minimizes some appropriate distance
between the resultant estimated posterior, denoted by ﬁ[Hi/ Y1,
and the true posterior.

The specific prescription of a class of functionals and a
distance measure determine the success or failure of any such
approach. The success of such an approach should be measured
by the tractability of the ensuing optimization problem, and
the performance of the resultant receivers. The prescription
that we propose guarantees tractability, but not performance.
However, preliminary studies reported herein indicate that the
performance of receivers designed with the proposed method-
ology is comparable to the performance of receivers designed
with well-known techniques provided that both approaches
employ comparable amounts of information about the prob-
abilistic model.

The proposed methodology, to be called the constrained
Bayesian methodology, is based on the prescription of mean-
squared difference as a distance measure, and linear spaces as
constraint classes. As a result, optimization requires nothing
more than specification of correlations and conditional means
of prescribed functionals of the observables, and solution of
linear equations.

Summarizing, the structurally constrained receivers that we
propose employ linear-space-constrained, minimum-mean-
squared-error (L-MMSE) estimates of posterior probabilities
as true probabilities. Thus, the probability estimates are
obtained through a structurally constrained risk-minimizing
procedure, and they are then used in an ad hoc procedure
(as if they were true probabilities).

The fundamental properties of L-MMSE estimators for
posterior probabilities are summarized in Appendix A. As
stated there, the L-MMSE estimate of the posterior P[H;/Y]
is identical to the L-MMSE estimate, denoted by 5(H,)/Y,
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of the random indicator 6(;):

() A 1, if H; is true
) = 0, ifH,isfalse

@

)

Thus, if we interpret the vector of random indicators 8{(H;)}; ¥
as a vector of signal parameters, then the structurally con-
strained receiver that announces (as true) the hypothesis with
the largest estimated posterior is identical to the receiver that
announces (as detected) the signal with parameter value that
is closest (in Euclidean norm) to the estimated parameter
value {§(H;)/Y} ™. Hence, the proposed methodology (for
the special case C;; = 1 — §;;) can be interpreted as a forma-
lism for an estimation theorist’s approach to signal detection.

As stated in Appendix A, the L-MMSE estimate of a dis-
crete random signal or signal parameter x with range {X;},¥
is identical to the mean of the L-MMSE estimated posterior
distribution

PlH/Y] =5@H)/Y.

Xy = f: XP(x/Y]. “)
i=1

Thus the alternative estimation theorist’s approach, by which
the signal (from the set {X;}; ™) that is closest to the estimated
signal X/Y is announced as the detected signal (cf. [2]), is
intimately related to the preceding approach, the difference
being that the former employs the mode of the estimated
posterior distribution whereas the latter employs the mean.
Observe that the constrained Bayesian methodology, which
is based on optimum approximations to posterior probabilities
P[H;/Y] (or, equivalently, optimum approximations to the
ratio of densities of observables f, /u,(Y)/f, (¥)), is substan-
tially different from the more conventional approaches based
on nonoptimum series approximations to densities of observ-

ables fy /(¥) and £, (Y) (cf. [18]).

C. History

The basic ingredient of the proposed methodology—the
L-MMSE estimator for posterior probabilities—is not new. This
estimator has appeared in a number of works in the field of
pattern recognition since as early as 1962 [3]-[7]. The
primary role of this estimator has been that of justification
for the use of various empirical procedures related to linear
least squares approximations to discriminants for pattern
classification [8]. Similarly, the fact that posterior probabil-
ities can be characterized as unconstrained MMSE estimates
of random indicators is not new. This fact has been used by a
number of investigators for obtaining various characterizations
of posterior probabilities (and pdf’s), and for establishing links
between detection and estimation problems (cf. [9], [10]).
However, there has been—to my knowledge—no published
work on analytical characterization of the L-MMSE estimator
for posterior probabilities, and on analytical evaluation of the
obvious methodology based on this estimator.

The results toward this end that are presented in this paper
were motivated by the discovery (reported in [11]) of
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the simple but revealing characterization (4) of the L-MMSE
estimator for a discrete random parameter x in terms of the
L-MMSE estimators for the posterior probabilities of x. This
characterization shows that the L-MMSE estimators for the
posterior probabilities of x are more basic than the L-MMSE
estimator for x, and it immediately suggests the constrained
Bayesian methodology as a natural extension and generaliza-
tion of the well-known methodology for L-MMSE estimation
of random parameters.

Preliminary results and speculations were presented in [12].
Results that complement those presented herein are currently
in preparation for publication [17].

D. Scope
Functionals that are constrained to be in linear spaces are

by no means limited to linear functionals. In this paper we

consider both linear functionals and quadratic functionals.
The linearly constrained receivers employ posterior estimates
of the form

PlH,/Y] = o' + / $1 /(DY (1) dr, (%)
T

whereas the posterior estimates employed by the quadratically
constrained receiver include the additional term

f L b2 eI T () dt dr. ' ©)
T

In (5) and (6), Y() is the centered observation®

() AY() —EL®}, @)

and 7 is the observation interval.

Another class of structurally constrained receivers within
the realm of the constrained Bayesian methodology is that
class of receivers that employs posterior estimates of the form

PlH{Y] =¢¢' + [ ¢ (OGIY(D] dt, ®)
T

where G(-) is a prescribed memoryless nonlinear transforma-
tion such as a limiter or clipper. An analysis of these receivers
will be reported in a future paper.

The optimal ¢gf, ¢;(*), and ¢5i(+, *) are those that mini-
mize the mean-squared error

E{(P[Hy/y] —PlH/¥1)?}. )]

These can be determined from the necessary and sufficient
orthogonality condition (from the Hilbert space orthogonal
projection theorem [13]):

E{(PIH/y] —P[H;/»))z} =0, (19

where L is the Hilbert space of finite mean square random vari-

vz€EL,

2We employ lower case letters to denote random variables, and
capitals to denote samples of random variables.
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ables generated by the images of the observables y under all
functionals in the constraint space. Condition (10) can be
reexpressed as

E{P[H,/y)z} = PIH)E{z/H;},  vz€L, 1y
where {P[H;] } are the prior probabilities of the hypotheses.

Substitution of the forms (5) and (6) into (11) yields the
following necessary and sufficient linear equations.

1) Linear receiver:

=P[H;}
/Mz(t,f»li(T) dr = P[H,]Ml /H,(t): vteT, (12)
T
where
My () & EG()/H} 13)
My(t,7) 2 E{7(O)¥()}. (14)
2) Quadratic receiver:

o + [ ¢1‘(T)M1(T) ar+ / / 62'(1.9)M3(r,5) d7 ds = P[H;]
(15)

$o'M; (id+ f O, {(TIYM(u,7) dr

+ f / P (1,8)Mg(u,7,5) dr ds = P[H;) M m @), VuET
TIT

(16)
¢oiM2(Ll,V) + ] ¢1 '(T)Ma(u.”,T) dr
R /T
+ / / 62" (7,9)M 4 (u,v,7.5) dr ds = P[H;} M gy (u.v),
TIT
vuver?T
(17)
where for examplé
My(ur,7,5) & EFy @ (ny)} (18)
My g () & E{7)y(v)/H;}- (19)

From (12)-(14) it is clear that the linearly constrained
receiver cannot be expected to perform acceptably in those
situations where the conditional means {M; (¢)/H;};¥ do not
convey a sufficient amount of information about the underly-
ing distributions. For example, in the problem of detection of
a zero mean random signal in additive zero mean random noise,
M, ()/H; = 0 for both hypotheses. Thus, the linearly con-
strained Bayesian detector would not perform acceptably.
However, it is known that a linear estimator-correlator re-
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ceiver [14] does indeed have the potential for acceptable
performance for this detection problem (and is in fact opti-
mum for Gaussian distributions). But this receiver is actually
quadratic—not linear—since the correlation statistic is a quad-
ratic functional of the observations. Furthermore, this receiver
requires specification of conditional correlations {My(t,7)/H;}.
Hence, it would be more appropriate to conipare the linear
estimator-correlator detector with the quadratically con-
strained Bayesian detector which also requires specification
of {M,(t,7)/H;} as evidenced by (15)-(17).

The evaluation of the L-constrained Bayesian methodology
for random signal detection will be reported in-a future paper.
In the present paper, we consider only sure signal detection
(coherent and noncoherent). In Section II we present our
results on the analysis and evaluation of linearly constrained
coherent receivers for signal detection, and in Section III we
do the same for quadratically constrained noncoherent re-
ceivers for detection. In Section IV we briefly analyze linearly
constrained receivers for signal parameter estimation.

I1. LINEARLY CONSTRAINED RECEIVERS
FOR SIGNAL DETECTION

A. General Case

The linearly constrained receiver computes the M posterior
estimates

Bl =pit) + [ 0/0Far, =12,
T
(20)
and announces as true the hypothesis with the largest such

estimated posterior. The function ¢,/(*) that determines the
jth-estimate is the solution to the linear integral equation

/ ky (e, /() dr = P[H}E(Y(t)/H;}, vwreT, (21)
T

where k,(2,7) is the covariance for y, denoted by My(z,7) in
(14). We can express the solution to (21) in terms of the
inverse kernel3 k,, 1, defined by

/T ky,"1(t,0)ky (0,7)do=6(t—7), VI, TE T, (22)
thereby obtaining

$23()= PIE) fT k=15, 0B (Y} do. @3
Substituting this solution into (20) yields

PlH;/Y] = PIH;] [1 + T{(Y)], (24)

>The tacit assumption that k,, ™ exists is not essential to the meth-
odology since the Hilbert space orthogonal projection theorem guaran-
tees the existence of a unique solution to the MMSE estimation pro-
blem. Thus, even if ky-1 does not exist, the right member of (21) must
be in the range space of ky and an inverse to k., can always be defined
on its range space.
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where the statistic T} is defined by

T(Y) & / / ky (1, 0)E{3(0)/H;}¥ () do dr. 25)
TT

Now, we can express this statistic in several different ways,
each 'vielding a different physical interpretation. Two parti-
cularly interesting interpretations are the following.

Interpretation 1) Let h(z,7) be a factor of the inverse kernel
k,271 e, )

[ h(t,0(r,0)do =k, X(t,7), wt,7ET, (26)
T

and denote the whitened process obtained by filtering y with &
by z:

(Ha / h(t,T)y(7)dr. @n
T
Thus,
k(t,7) =6 —1). (28)
Also, let
§/() L E{EO)/H} (29)

be a measure of the signal on which Z(z)/H; depends. Then

T(Y) = /T [ fT n(2,7)Y(7) dr] St (2) dr.

Thus, the estimation rule whitens the centered observations
and then correlates with the measure of the signal (in the
whitened observations) as shown in Fig. 2.

Interpretation 2) Assume y(r) consists of the sum of a
colored component ¥(¢) and an independent white component
w(?), with power spectral density No. Then k,~1 can be
expressed as :

(30)

1
ky7i(er)=— [8(z —7)—g(1,7)] 31
Ny
where
gt a / ky~1(2,0),(0,7) do. (32)
T
Furthermore, the quantity 7(¢)/¥, defined by
I_7(t)/ Y& g(t,0¥(r)dr, (33)

T

is the linear MMSE estimate of the colored component of ¥,
given observations Y. Let
Si#(2) 21 NE{F(O)IH;} (34)

be a measure of the signal on which [¥(t) — V(t)/T1/H;
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Fig. 2. Realization of statistic T; (30).

Yoy
Fig. 3. Realization of statistic T; (35).

depends. Then
T = / SEOITG) — P () T a. (35)
T

Thus the estimation rule subtracts out the linear MMSE
estimate of the colored component of the centered observa-
tions, and then correlates with the measure of the signal,
as shown in Fig. 3. The similarities between these receivers
and those that are optimum for sure signals in additive Gaussian
noise [1] are remarkable. The similarities are even stronger for
the specific case of sure signals in additive (not necessarily
Gaussian) noise discussed in the following text.

B. Sure Signals in Additive and Multiplicative Noise

Consider observations Y of the form
Y(®) = Z(DS(t) + MD), vteT (36)

under hypothesis H;. N(r) is a sample of a zero-mean random
noise process with autocovariance k,(#,7), and Z(2) is a sample
of a random process with nonzero mean denoted by m,(¢)
and autocovariance denoted by k,(z,7). {S;(©)},M is inter-
preted as the exhaustive set of samples (with prior probabil-
ities P; = P[H;]) of a random signal process s(¢) with mean and
autocovariance denoted by, respectively,

M
my() = ; PSAD 37)
. .
k()= Y RyS{DSi), (38)
iJj=1
where
Ry 2 Pdy —PP;. (39)

In (39), 5; is the Kronecker delta. The three processes n(f),
2(1), and s(f) are assumed statistically independent. The covar-
iance and conditional means that determine the posterior
estimates are easily shown to be

ky (1,1) = m (Om, (T (1,7) + Ky (1,7) (40)
E(Y(@)/H;} = mo()IS{2) —my(1)] G2
where k,,' is defined by

IEEE TRANSACTIONS ON COMMUNICATIONS, JUNE 1976

ke (7) 2 k(D[ (1,7) + my(Omy(D] + ka(e7). (42)

Hence the additive and multiplicative noise problem is equi-
valent (for this methodology) to an additive (only) noise
problem with zero-mean noise n' having covariance k,'(t,7),
and with signals S;'(£) = m,()S;(r). In view of this equiva-
lence, we proceed in terms of the additive (only) noise model,
and we omit the primes for notational convenience. We then
have

ky ()= 3 RyS{DSH(r) + kalt,7) (43)
ij=1
and
1 M
E{7(0O/H;} =3 X RS- (44)
i=1

Substituting (43) and (44) into (22) and (23) yields the solu-
tion

M
&yi(r) = E W;:b:(1), : 45)

=1
where 8;(-) is the solution to the Fredholm equation
[ kp(t,7)8(t) dr = S(D), vtET, (46)
T

and where the matrix W of elements {W;} is given by the
formula

W=R{I+VR]}. é47)

The elements of the matrix ¥V in (47) are defined by

.Vu- Y / 0,(r)S(r) dr, (48)
T

and 1 is the identity matrix.
The linear receiver is, therefore, a correlation (or matched-

filter) receiver as shown in Fig. 4. The correlators are the same

as those employed in the optimum-for-Gaussian-noise receiver
[1]. That is, both the linearly constrained receiver and the
optimum-for-Gaussian-noise receiver reduce the continuous-
parameter sample {Y(?)} to the same M correlation statistics

{T.j}]_M s

(Y) 2 / Y(r)9i(r) dr. 4 49)
T

The only differences between the receivers are the values of
elements in the linear weighting network W and the biasing
vector b used to obtain the final statistics

M

PlHy/Y] = ), Witd¥) +b; (50)

i=1

where
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LINEAR
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NETWORK

P[5/
I 8(t) | | by
l ™ l | 7 [y
® ®
(1) by

Fig. 4. Linearly constrained coherent receiver for signals in additive
and multiplicative noise (50).

b2p—WVp=WR1p,

and p is the vector of priors {2}, M.

1) Orthogonal signals: Now consider the special case where
the noise is white* and the signals are mutually orthogonal
(e.g., PPM or FSK) with energies {£;}. Then, the solution
(45) takes the simpler form

1

M
¢ i) =— > Uisir) 5D
NO i=1
U/ Lof6;—6) 52
@ 2PJ(1 + EPy/No)
M
B2/ 3 o 53)
k=1

The similarities between this linearly constrained receiver
and the optimum-for-Gaussian receiver are very strong. The
linearly constrained receiver decides H; is true if and only if
the following jth estimated posterior is largest:

M

~ 1
P[H;[Y] v Z[U;f[S,-(r)Y(T)dr —PiEi]+Pi-
o i1 T
(54)

The optimum-for-Gaussian receiver decides H; is true if and
only if the following jth statistic is largest [1]:

1
G(Y) é;}— [ f S{T)Y(r)dr —E,-/z] +1n (7). (55)
0 T

Or equivalently, the linearly constrained receiver performs
M — 1 tests of the form

M , nogﬂk
3 Lpe®r/ () —EP] 2 No(Pr ~P), (56)
=1

not Hj

and the optimum-for-Gaussian receiver performs M — 1 tests
of the form

*The assumption that the noise is white does not preclude non-
Gaussian noise. For example, the noise could be the sum of Gaussian
noise and Poisson impulse noise (with finite rate parameter).
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M . , noﬁH k
Z ij(i) [’ —Ef2] Z No[ln(P,)—In (Pj)]
i=1 not H i
7
where {7;'} are the correlation statistics
e [ seroa. 58)
T
The coefficient matrices in (56) and (57) are defined by
Ly () 2(U—UF) (59
1, i=j
0, otherwise.

The similarity of these two testing rules, (56) and (57), is
evidenced by the properties

M M .
Y L®=) G =0 (61)
=1 =1
-1<Lp,(O<1, Vijk
—-1<G;,(MH<1,  Vijk. (62)

In fact, if all energies {£;},;™ are equal and all priors {P;}; ¥
are equal, then the receivers are identical! Also, if all priors
are equal, the receivers are identical under threshold condi-
tions (£;/Ng < 1).
Furthermore, if we consider binary signal detection (M = 2),
then (56) and (57) reduce to the following.
a) Linearly constrained rule:

[11'(Y) —E1/2] —[72'(Y) —E3/2]

2 2 [P~ (UP)) 2.
H2 .

(63)

b) Optimum-for-Gaussian rule:
[r1'(Y) = £1/2] — [r5/(Y) —E,/2]

S 5
2 I (P ~In(1P)] A7
2

(64)

Thus, we see that these two binary receivers differ only in

the sensitivity of their thtesholds v to the priors. Both thres-
holds exhibit odd symmetry about P; = P, = 1, and approach
+oo(—oo) as Py (Py) approaches 0, as would be expected. How-

ever, the linearly constrained receiver is more sensitive to the

-priors (as would be expected) since | v, 1< |yg | for all

Py and P, (with equality if and only if P; = Py).

In an effort to determine the relative merits -of increased
threshold sensitivity, we have evaluated probability-of-error
for these two receivers for the three cases where the noise
statistic )




584 IEEE TRANSACTIONS ON COMMUNICATIONS, JUNE 1976
o7 o
1 T ‘——-PEL(O.S) = PEB(O.S)
—PE, (0.5) = PEL(0.5) [
PEL(O.J) = PEF(O.S)
1 - PEL(0.3) s PE(0.3) 1 ?
] PE, (0.1) [ RO
o — . o
R L O g —- PEG(0.1)
3 i -~ -PEL(0.1) @ I
£ ] S ]
o 1 - [
2aT  ] s
g2 g8 _ 1
s SF4 n o271
. S [ N g ! :.
Se Eo 1
g g 1
g 2 1[
34 8
T
1 I
I
$ AR 83 HeHHAHH AR AR +
-30 ~-15 1] 15 30 45 -30 <15 o 15 45
SIGHAL-TO-NDISE RATIO, pyp SIGNAL-TO-NOISE RATIO, pyq
(a) (b)
O -
£ a———PE, (0.5) = PEL(0.5)
: --- = PE (0.3) = PEG(0.3)
1 ——PE (0.1)
o]
t}l-__- et -PEG(O.I)
@ 1
3 {
e L
& —~ I
&1
R
w oo |
°82
ee |
;é 1
g2 of
a o 4+
"1
1
[=]
a‘a R AR
-30 -15 0 1S 30 4s

SIGNAL-TO-NOISE RATIO, P4p

©

Fig. 5. Probability of error for linearly constrained binary detector
(PEL(P1)) and for optimum-for-Gaussian-noise binary detector
(PEg(P1)). (a) For Gaussian noise distribution (66). (b) For Lap-
lacian noise distribution (67). (c) For fourth-order Butterworth noise
distribution (68).

Na [ [S1.(0) — Sy()IN() dt
T

(65)

is a sample from: 1) the Gaussian distribution with density

function

FuN) = (0,/20) 2 exp [~(V/0,)2/2];
2) the Laplacian distribution

jia(j\f) = ((’n*~/7§i)__]' €Xp (__ IN I‘J/Eiy(’rz);

or 3) the fourth-order Butterworth distribution

F2@V) = &/Zn0,)[1 + W/0,)4] L.

(66)

(67)

(68)

In all three cases, the difference in probability-of-error for
these two receivers is negligible for all values of SNR, and all
values of priors that are within an order of magnitude of each

other, as shown in Fig. 5. The SNR pqp is defined as follows:

(69)

Pan 210 log; ¢ (0,2/0,2)
where

0,2 BNG/ I T

g2 .A_I—I—TI f [E{s2(H)} —(E {s()D?] dr
T

1 &
=T &5 B =P,

(70)

7n
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Similarly, in an effort to determine the relative perform-
ance of the linearly constrained receiver for M-ary signaling,
we have evaluated the approximate probability of error for
the two receivers (56) and (57) for the case where the noise
statistics

N2 / SOMD dt,  i=12, (72)
T

are independent samples from the Laplacian distribution
(as might occur, for example, with PPM in white impulse
noise). The probability of error was approximated in the con-
ventional way using the union bound, which is known to be
tight for high SNR’s (e.g., pgg = 10). Since the two receivers
are identical when all priors are equal and all energies are
equal, we selected linear distributions of probability and
energy ranging over one order of magnitude.

The resultant approximate probability of error is shown
in Fig. 6 for the four cases M = 29, g = 1,2, 3, 4. It can be
seen that neither receiver is superior for all alphabet sizes and
all levels of SNR. Overall, the performances of the two re-
ceivers are comparable. Note that to facilitate comparison of
these results with standard results for Gaussian noise [1],
we modified our definition of SNR by replacing the signal
variance (71) with the mean squared signal (in Fig. 6 only).

2) Linearly dependent signals: In contrast to the uniformly
good performance of the linearly constrained receiver for
orthogonal signals, the performance for linearly dependent
signals such as ASK and PSK depends critically on whether the
mode or the mean of the estimated posterior distribution is
employed. As discussed in Section I-B, the iypothesis tester’s
rule which employs the mode

not Hf
PluyY] 2 Play/v]
not Hj

(73)

can be interpreted as an estimation theorist’s rule by reex-
pressing (73) as

not H;

I H) Y™ — {8, 11 2 1) {8@EH ) YHY — {80y 1™ Il
not H}

(74)

where ||+]| denotes norm in Euclidian M-space, and §(H,)/Y
is the L-MMSE estimate of the random indicator 8(#,,), and
satisfies

8(Hy)Y =P[H,/Y]. (75)
On the other hand, the following alterative estimation theo-
1ist’s rule employs the mean

not H;
\X/Y =X | 2 1Ry =X ], (76)
not Hj

where X; is the signal parameter value (e.g., amplitude or
phase) that corresponds to the hypothesis H;, and X/Y is the
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Fig. 6. Union bound on probability of error for linearly constrained
M-ary detector (PEBr(M)) and for optimum-for-Gaussian-noise
M-ary detector (PEBg(M)), for Laplacian noise distribution (67).

L-MMSE estimate of the random signal parameter (see Appen-
dix A)

27y = X P, )
=1

where A
P[H,[Y] =P[X{/Y].

The performance of these two linearly constrained receivers
depends critically on the specific signaling scheme when the
signals are linearly dependent. This is amply illustrated by the
following iwo examples. A general comparative analysis will
be reported in a future paper [17]. In these examples let
Xnode denote the mode of the estimated posterior distri-
bution {P[X;/Y]}1¥, and let X, ean denote the closest of the
values {X;};4# to the mean )?/Y of the estimated posterior
distribution.
a) ASK: If S;(2) = X;S(2), it can shown that

X~/Y= meo/(No + Osz) + T(naxz/(NO + szE), (78)

where the statistic 7(Y) is defined by

(N2 / S(HY(?) dt. (79)
T
It follows that, with probability approaching one,
~ X, 0s as V, 0o~ 0
Xmean = (30)
My, as Ng = o,

where X, denotes the correct value of x. Hence, rule (76)
performs appropriately. On the other hand, rule (73) does not
perform appropriately (for M > 2) since it can be shown that
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for7(Y')>0
for 7(¥")<0,

~ max {X '}1M s
mode —) . . M (81)
min {X;}; M,
where the statistic 7(Y’) is defined by (79) with Y replaced
by 1
Y'(0)2Y(@) ~80)Y (82)
where S(£)/Y is the zero error-mean, minimum error-variance
linear estimate of the random M-ary signal s(f), given obser-
vations Y{(¢). Hence rule (73) always announces either max
{X;}1M or min{X;}, M as the correct value of x.
b) PSK: If S(t) = cos(wgt + X;), where wq|T| /27
is an integer and the mean m, is zero, then it can be shown
that

~ in (Xg)—N,
Xmode = mode ——lXi—-tan"l Sin (o) =N,y
cos (Xg) + N,
(83)
where NV, and N, are defined by
2
N, &— [ cos (weN(t) dt
ITI Jr
2
N, a2 [ sin (o HNGD) dt. (84)
Tl Jp

It follows that X, ode = Xp with probability approaching one
as Ny approaches zero. Furthermore, X, 46 is identical to
the maximum likelihood estimate of X, assuming X is an
unknown (nonrandom) parameter and n(¢) is Gaussian, Hence,
rule (73) performs appropriately. On the other hand, rule
(76) does not perform appropriately (for M > 2) since it can
be shown that

X/Y = KT (4N, + T)—1[sin (Xo) —N,], (85)
where K is defined by
KéE f’: X; sin (X)). (86)
M =5

It follows that, as Ny approaches zero, the probability of
announcing the wrong value of x approaches 1 or 1 — 2/M,
depending on the value of M(M > 2), assuming that {X;},¥
are uniformly distributed on [, 7] .

C. Sure Rate-Signals of Filtered Poisson Processes in
Additive and Multiplicative Noise

Consider observations Y of the form

Nj(t)

Y(5) = Z ZG(—T)+V(®, vte([0,7] 87)
=1

under hypothesis H;, where G(f) is a deterministic filter-
pulse, and {7}}is a sample of the random occurence times of
the Poisson counting process n;(r) with sure rate-signal Sy(t),
and {Z;}are samples of identically distributed independent
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multiplicative random noise variables, and ¥(r) is a sample of
an uncorrelated zero-mean additive random noise process.
This is a useful model for digital data signals transmitted over
fiber optic channels. It can be shown that for linear MMSE
estimation, this model is equivalent to a sure signal in additive,
uncorrelated, zero-mean noise model [16] . Thus, much of the
analysis in Section II-B carries over to this class of signal
detection problems. The equivalent model is

Y'() =5+ N, vt € [0,7] (88)
under hypothesis H;, where
T
S',-'(t) Lm, [ Si(T)G(t — 1) dT, (89)
0
and the noise has autocovariance
kn'(t:T) = ku(t’T) + (022 + mzz) .
M T
. E P,/ S,'(U)G(I—O‘)G(T"'U) do. (90)
=1 Jo

As shown in Section II-B the linear receiver is a correlation
(or matched-filter) receiver. For more details, see [16].

II1. QUADRATICALLY CONSTRAINED RECEIVERS
FOR SIGNAL DETECTION

Since quadratic estimates include linear estimates as a
special case (viz., $o7(+, +) =0), then quadratically constrained
estimates of posteriors must be at least as accurate as linearly
constrained estimates. However, it does not follow that quad-
ratically constrained receivers (as defined in Section I) must
perform at least as well as linearly constrained receivers. In
fact, it can be shown that, for deterministic signals in additive
noise, the relative performance depends on the priors and
signal energies. On the other hand there are certain types of
signal detection problems for which quadratically constrained
receivers always outperform linearly constrained receivers.
One such type of signal detection problem that is of consid-
erable practical importance is the noncoherent signal detection
problem for which the observations are of the form
vtET 91)
under hypothesis H;. N(¢) is a sample of a zero-mean random
noise process, W;(f) is a deterministic signal envelope, and
¥ is a sample of a random phase variable. As would be ex-
pected, the linearly constrained receiver performs poorly. In
fact if Y is uniformly distributed on [0, 27], then the linearly
constrained estimates of the posteriors are just the priors. In
contrast to this, the quadratically constrained receiver per-
forms quite well for some noise distributions; as demonstrated
in this section, for a certain class of noise distributions, it
closely resembles the optimum noncoherent receiver for
Gaussian noise.

The quadratically constrained noncoherent receiver com-
putes the M posterior estimates

Y(#) = W{1) cos (wot + V) + N(1),
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PH;[Y] = 6o’ +L 6 /(DY () dt

+L/T ¢S NY(OY (N dtdr, =12, M
o2

-and announces as true the hypothesis with the largest esti-
mated posterior. The optimal ¢o’, ¢17(+), and ¢o/(*, *) are the
solutions to the three linear integral equations (15)-(17).
Nothing very definitive can be said about the form of the func-
tions ¢1/(*) and ¢5/(+, +) without some restrictive assumptions
about the distributions of the random phase and the noise
process. However, if these distributions are such that the
functions ¢o/(+, *) are the kemels of symmetrical, nonnegative
definite linear operators on L2(T), and they factor as

oI (1,1 = / %(0.1) v;(o,7) do, VLT ET, 93)
T

then the nonlinearity and the memory in the receiver can be
separated since the nonlinear term in (92) then factors as

e 2
/ f &I, NY(OY () dt dr = f [ / 7i(t,0)¥(0) do] dt.
TIT | T

9

This nonlinear term in the estimate can be implemented by the
cascade connection of a linear time-varying filter with impulse-
response function v;(+, +), a memoryless square-law device,
and an integrator, in that order.

In many cases of practical interest the following assump-
tions are valid.

Assumption 1) The random phase variable  is uniformly
distributed on [0, 27].

Assumption 2) The distributions of the random noise
process n(t) exhibit even symmetry so that all joint moments
of odd order vanish.

With these two assumptions, it follows that the function
¢17(¢) is identically zero. Hence there is no linear term in the
estimate. The simplified equations for ¢/ and ¢oi(+, *) are

M
¢’ = P[H}] —Z Pl f / &5 (1, M5 (2,7)/H; dt dr
i=1 TT
3)

M
/ / Ma(u,y,1,8)057(7,8) dr ds = E RiMy(uyv)/H;,
T T =1

vu,vET, (96)

where
R;; 2P[H;] (85 — ¢07). 97

Furthermore, with Assumptions 1) and 2), the moments
in these equations can be expressed as

My(e,)/H; = 5 WOW)(T) cos [wolt —1)] + K y(t,7) (98)
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My(u0,7,8) = ks [ (u,0,7,8) + Ky (11,0 o (7,5)
+ Koy (U, TV, (0,8) + Kpy (U8)kn o (7.0)
+ ksg(vyf)kng(u-s) + k32(v,s)k,,2(u,7')

+ hg 5 Vny ) + Kng@rms).  (99)

In these expressions, &y, and k,,, are the second and fourth
joint mpments for the noise process n(f), and k,, and kg,
are given by the formulas

1M
k(1) = 5 D PIH]W{BWi(r) cos [wo(t —n)], (100)
=1

iy 0,1.5) = SO P W@ WOWAIWAS)
i=1

. {% cos [wo(u —v)] cos [wo( —s5)]
+ 2 cos [wo(u —7)] cos [wo(v —3)]

—% sin [wo(u —7)] sin [we(v —$)]}. (101)

Without further assumptions about the form of k,,,
nothing more definitive can be said about the form of the
solution ¢o/. However, if we make the following assumption,
then we can obtain an explicit solution to (96) for ¢5.

Assumption 3) The fourth joint mioment of the noise pro-
cess is identical in form to the fourth joint moment of a
Gaussian process, i.e.,

Ky (0,7,8) = Ky o (U )k, (7,5)

+ knz(u»f)kn z(v’s) + kn 2(u1s)kn2(v’1)'
(102)

This assumption does not preclude non-Gaussian noise. A dis-
crete-time example is given in Appendix B. (See also [15,
addendum B, section 3].) With this assumption, it can be
shown that the solution to (96) has the form

M
o i(t,7) = E {aik'iosi(t)eck M+d ikjoc,-(t)ack(T)

k=1

+ cikj osi(t)eck (T) + ock (t)esi(‘r)] }! (1 03)

where 0,; and 8., are the solutions to the Fredholm equations:
/ kn o (£,7)0,(7) dr = Wi(1) sin (wg?), VtET
T

] kng(t,7)8. (1) dT = Wi(2) cos (wo?), vi€ET. (104)
T

The coefficients are determined by 3M?2 simultaneous linear
equations. :

Thus, with Assumption 3), the quadratically constained
receiver is a generalized quadrature receiver as shown in Fig. 7.
The correlators employed by this receiver are the same as
those employed by the optimum-for-Gaussian-noise receiver
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Fig. 7. Quadratically constrained noncoherent receiver for signals in

additive noise.

[1]. That is, both receivers reduce the continuous-parameter
sample {Y(2)} to the same 2M correlation statistics {75, 7¢, }; ¥
defined by

)2 [ Y8, 0ar

(N2 / Y00 (2 dt. (105)
T

The quadratically constrained receiver then forms its final
M statistics as a quadratic combination of these statistics;
viz.,,

P [H;/ Y] =¢¢ +

+ zciijs;(Y)Tck('Y)] .

M
;1 (a7, (V7o (V) + bfre (Y1, (V)
(106)

The fact that the quadratically constrained receiver is not
a generalized quadrature receiver without Assumption 3) is
more appropriate than at first might appear. Specifically,
it can be shown that for the problem of noncoherent
detection of the presence of a single signal, the maximum
SNR quadratic receiver does not reduce to the familiar quad-
rature receiver, that is optimum for Gaussian noise, without
Assumption 3).
Now consider the special case where the noise is white
and the 2 in-phase and quadrature signals,

{W(®) cos (wot)}, M and {Wy(2) sin (wot)}, M,

are all mutually orthogonal on 7. Also assume that the ith
in-phase and quadrature signals have the same energy, denoted
by 3E;. With these assumptions, which are often valid in
practice, the quadratic combination of (106) reduces to

BLEL/Y) =6+ 30 Udlr, 2(0) + 7, 2(1) ~ BNl , (107)
i=1

where

Ui £40;[85 — 6] (108)
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'M'>
By L0y / D e (109)
k=1
EN2 E 16 ]t
AN it Pl SN 10
% [(No) ¥ No P[Hi]] (110)
v A PHIE (111)

No

These statistics are very similar to those employed by the
optimum-for-Gaussian receiver under the same assumptions
of white noise and orthogonal signals; viz.,

GJ(Y) LS P[H;] exp {—E;/4N,}

‘10 {A..;‘; [Tsfz(y) + Tc,z(Y)] 1/2 , (1 12)

where Ip(+) is the modified Bessel function of the first kind
and zeroth order [1]. In fact, if all energies {E;}; ¥ are equal
and all priors {P[H;]} are equal, then the two receivers are
identical! Also, if all priors are equal, the receivers are identical
under threshold conditions (E;/No < 1).

Furthermore, if we consider the special problem of detec-
ting the presence-of a single signal that is equally likely to be
present or absent (i.e., M = 2, Wy(¥) = 0, P[H;] = 1/2), then
the two receivers reduce to the following.

Quadratically constrained receiver:

H
20+ r 212 2 Ny [—E-+1( : )2 ]mém-

Hy No 8\ WMo
- (113)
Optimum-for-Gaussian receiver:
. .
[72(V) + 1. 2(N]1/2 Z Nolo™? [exp (E/4No)] L76.
Hg
(114)

It can be shown that yg <7vg,and that yg = vg for E/Ny <
1. Thus, the quadratically constrained threshold receiver is
identical to the optimum threshold receiver for Gaussian noise.

IV. LINEARLY CONSTRAINED RECEIVERS FOR
SIGNAL PARAMETER ESTIMATION

The approach to designing structurally constrained receivers
for signal detection that is introduced in Section I extends in
an obvious way to problems of signal parameter estimation.
A minimum-risk estimate of a random parameter x, given
observations Y, is that value of the variable V' which mini-
mizes the risk function

R = f CW.X) s X/Y) dX, a1s)

where C(V, X) is the cost of estimating the value of x to be
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¥, when the true value is X, and where f,.,y(+/Y) is the poste:
rior pdf for x. Commonly employed cost functions lead to the
following estimation rules.

Minimum-mean-squared-error (MMSE):

Xumse = mean {f,,, (X/7)}. (116)
x

Maximum a posterior probability (MAP):

Xyap = m;de {fery X/} 117

Maximum likelihood® (ML ):
Xur =mode {f, ,,(X/¥)/1.(X)}

= mode {£, (Y/X)}. (118)

Paralleling the approach introduced in Section I, an obvious
way to impose a structural constraint on the design of a receiver
is to constrain the structure of the functionals {fy /, (X/*)}x.
That is, the L-constrained parameter estimator that we pro-
pose employs L-MMSE estimates of posterior densities in
place of the true densities in the estimation rules (116)-(118).
For example, the linearly constrained MMSE estimate of the
posterior pdf is, paralleling (24) and (25),

Fery X/ = £+ SX. V)], (119)

Sx, 4 ){ /7" ky"1(r,0)E{3(0)/X}Y (1) do dr. (120)

Furthermore, Interpretations 1) and 2) in Section II with
H; replaced by X apply here to the statistics S(X, Y). .

The linearly constrained ML estimate, denoted by Xr-mrL»
reduces to

Xy aqr =mode {S(X, 1)}, 21
X
and the L-MMSE estimate defined by
(122)

Xy-mmse 2mean {7, (X/1)}
x

is identical to the conventional MMSE linear estimate of x,
denoted by X/Y (see Appendix A).

In the following, we briefly analyze and compare the newly
Broposed estimator X L-mr and the well-known estimator
X1.mmsg for the specific class of problems where the obser-
vations consist of a signal in additive noise:

Y =U@EX)+ M),  vte[0T], (123)
where U(*, X) is a deterministic function of its first argument,
indexed by X, and where W(¢) is a sample of a white (not

5The maximum likelihood (ML) estimate is not a true minimum-
risk estimate unless the prior density f, is uniform.
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necessarily Gaussian) noise process with power spectral density
Ny. By employing the parallel of (35) for this class of prob-
lemns, the expression for the statistic S(X, Y) reduces to

S(X,Y) = j i [Y(@) = U@ Y] (UEX) —my (D)) a2, (124)

0

where m,(f) is the mean signal, and J(r)/Y is the zero error-
mean, minifhum error-variance estimate of U(¢, x), given obser-
vations Y. The mode of S(+/Y) is identical to the mode of the
simplified statistics S'(+/Y) obtained from S(+/Y) by elimin-
ating 7, (¢). If we denote the error in estimating U(z, X) by
N(),

NORT®Y — Ut Xy), (125)

where X, is the true value of X, then S can be expressed as

T T
S, Y)= /0 Ut X)W() dt — [0 UM dt.  (126)

One might intuitively expect the first time correlation (first
term in right member) to be independent of X, and the second
time correlation to be minimum near X = Xq. Hence the mode
of S’ would appear to be an appropriate estimator. .

In fact, it turns out that for some problems Xi,.py, is 2
more appropriate estimator than Xy amsg, wWhereas the
opposite is true for other problems. This is illustrated by the
following two examples.

Example 1} Amplitude parameter: If U(,X) = XU(Y),
then it can be shown that

Xy umse =mNo/[No + 0,2E] + 7(¥)0, 2/ [Ny + 0,2E],
az2n

where m, and 0,2 are the mean and variance of x, respec-
tively, and where

T
(V)& / Y(HU(2) at (128)
()
T
E& / U2(r) dt. (129)
0

1t follows that for Ny > 0, 2E,

Xy mmsE =y, (130)
and for Ny < 0,.2E,

Xpmmse = Xo 2true value of X, (131)

‘On the other hand, X vy does not exist since S'(X,Y) is

linear in X. Thus, the conventional estimate X L-MMSE is
clearly the more appropriate of the two.

Example 2) Phase-parameter: If U(t,X) = cos(weot + X),
where g is an integer multiple of 27/T and X is uniformly
distributed on [—m, 7], then it can be shown that
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T

Xy mmse =—INo + T/4]_1/ Y(#)sin (wo 1) dt
0

SRR

= [Np + T/4] 1 [ sin (Xo)vws] (132)

where

T
W, & / W(t) sin (wyt) dt. (133)

0

It can also be shown that

" Y'(2) sin (wo?) dt
XL'-ML = -tan-l OT . (134)

/ Y'(£) cos (wot)dt

[+]

where '
Y'()A2Y(e)—T@)y. (135)

Furthermore, it can be shown that

oY = t+ X,
@)/ T+ 4N, |C°S (wo o)
2 [
+ p [W, cos (wet) + W, sin (wyt)) ] , (136)
where

w, & / ) W(E) cos (wqt) dt. (137)
(/]

Substituting (135) and (136) into (134) yields

sin (Xo) —2W,/T
cos (Xo) + 2W,/T |~

1t follows from (132) and (138) that

Xy =tan—1 [ (138)

Xi-mmsE =2 sin (Xo) (139)
XL =Xo (140)

for NogT' < 1. Furthermore, X L-mr is identical to the true
maximum likelihood estimate when w(r) is Gaussian [1].
Thus, the newly proposed estimate Xomp is clearly superior
to the conventional estimate X1, mmsE-

V.SUMMARY AND CONCLUSIONS

We have introduced the constrained Bayesian methodology
for the design of structurally constrained receivers for signal
detection and estimation. We have illustrated the use of
the methodology by designing linearly constrained receivers
for coherent reception of deterministic signals in additive and
multiplicative noise, and for signal parameter estimation in
additive noise, and by designing quadratically constrained
receivers for noncoherent reception of deterministic signals
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in additive noise. These receivers turn out to be remarkably
similar to receivers that are optimum for additive Gaussian
noise, under certain restrictive assumptions. This is not sur-
prising since the methodology is, in essence, an extension
and generalization of the linear MMSE estimation method-
ology that has a simple and well known relationship to Gaus-
sian models. )

For signal detection in non-Gaussian additive noise environ-
ments where the noise pdf’s exhibit heavy tails, highly non-
linear receivers that employ, for example, clipping or limiting
nonlinearities are known to be superior to linear or mildly
nonlinear (e.g., quadratic) receivers. As mentioned in Section
I-D, the methodology is currently being evaluated for such
applications. Also, as discussed in Section 1-D, the method-
ology is currently being evaluated for application to random
signal detection.

It is hoped that the preliminary results presented herein
on the evaluation of the proposed methodology will stimulate
further investigation of its utility. However, on the basis of
the results obtained so far, we can conclude that the method-
ology at least provides a unified theory of receiver design
based on the constrained MMSE criterion. This unification
yields new insight into this old approach, clarifying both
strengths and weaknesses of the approach. This is further
evidenced by the results presented in [17] ,regarding a general
comparative analysis of the conventional decision rule X can
and the newly proposed rule X, ., defined in Section II-B2.

APPENDIX A

L-MMSE ESTIMATORS FOR POSTERIOR PROBABILITIES

Let y be a set of random variables with samples denoted by
Y, and let W and X be related events. Let Q be the certain
event and ¢ -the null event. Let L be any Hilbert space
generated by mean square images of functionals of the ran-
dom variables y. Let § be the indicator function for the event
X;

if X occurs

s ol (AD)

0, if X does not occur.

It can be shown by using the Hilbert space orthogonal
projection theorem [13], that the L-MMSE estimate of §(X),
denoted by 5(X)/Y, is identical to the L-MMSE estimate of
the posterior (conditional) probability P[X/Y], denoted by
P[X/Y];i.., the two mean-squared errors

(A2)
(A3)

E{[6(X/y) —2]2}
E{[PiX/y] —2]12}
are simultaneously minimized over all z in L by the estimator

z=8(X/y)=Plx/y]. (A4)

This estimator is the orthogonal projection ‘of §(X/y) (and of
P[X/y]) onto L. The linearity of orthogonal projection opera-
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tors leads directly to the following fundamental properties
of unbiased L-MMSE estimators for posterior probabilities:

1> E{P[X/y]1}=>0 (A35)

Blo/Y] =1,P[@/Y] =0 (A6)

Bxuwy] =Px/Y] + Plw/Y] —Flx N w/Y] A7)
UW; =Q {E_F[X U wy/Y) =PBlx/Y]}. (A8)

Similarly, it can be shown that if x is a discrete random
variable with range {X;}, then the L-MMSE estimate of X de-
noted by X/Y is identical to the mean of the L-MMSE esti-
mated posterior distribution

Xy =3 XPlx/7). (A9)

The analogs of (AS)-(A9) for unbiased L-MMSE estimators
for posterior probability distribution functions (denoted by

F, sy (/") for continuous random variables can also easily be
validated:

1>E{F,,,(X/»)}>0 (A10)
Eo /) =1, Fy y(—o/Y)=0 (A11)
Frwiy XYy =F, )y (X]Y) (A12)
- d -

f&/y(X/Y)fEFx/y(X/Y) (A13)
gry={" xi,@myax (A1)

where fy,,(X/y) is the LMMSE estimator for the posterior
Pdffxly(X/y)~

APPENDIX B

GAUSSIAN-LIKE NOISE

Let {n;})=. be a sequence of independent identically dis-
tributed random variables with finite fourth moment and odd
moments all of which are zero. Then {n,} is a discrete-time
strict sense white noise process, and has joint second and
fourth moments

rf,p.a) = [P [818pq +8:pb1q + 818;p]
+ [t = 3{(n2)] 2] [8,8;84] - (B1)

Thus, if nd = 3[(#2)]2, then r, is identical in form to the
fourth joint moment of white Gaussian noise, although n
certainly need not be Gaussian. Now, if n is passed through
any stable linear filter, with unit-pulse-response function Ay,
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then the second and fourth joint moments of the colored
output process {m;}=.. are easily shown to be

(32)

T G 20) = ko GV (0,0) + K (.0)Km (@)

provided that 7% = 3[(n2)]2. Thus r,, is identical in form to
the fourth joint moment of colored Gaussian noise with auto-
covariance k,,, although m certainly need not be Gaussian.
For example, if {n;} is not Gaussian and there exists a finite
number X that bounds the memory of the filter

Vij>|i—j|>K, (B4)

then {m;} cannot be Gaussian. _
An example of a non-Gaussian density for which n* =
3[(2))2 is

FaV) = [8/3+/6n0] [1 + (WN30)?] 2 (B5)

where 62 2 n2,
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Convolutional Code Performance in the
Rician Fading Channel

JAMES W.MODESTINO, MEMBER, 1IEEE, AND SHOU Y. MUI, STUDENT MEMBER, IEEE

Abstract—The performance of shorxt constraint length convolutional
codes in conjunction with binary phase-shift keyed (BPSK) modulation
and Viterbi maximum likelihood decoding on the classical Rician fad-
ing channel is examined in detail. Primary intérest is in the bit error
probability performance as a function of £,/Ny parameterized by the
fading channel parameters. Fairly general upper bounds on bit error
probability performance in the presence of fading are obtained and
compared with simulation results in the two extremes of zero channel
memory and infinite channel memory. The efficacy of simple block
interleaving in combating the memory of the channel is thoroughly
explored. Results include the effects of fading on tracking loop per-
formance and the subsequent impact on overall coded system perform-
ance. The approach is analytical where possible; otherwise resort is
made to digital computer simulation.

I. INTRODUCTION

HE use of convolutional codes in comjunction with
coherent binary phase-shift-keyed (BPSK) modulation has
proven to be an effective and efficient means of obtaining
error control on the classical additive white Gaussian noise
(AWGN) channel. Recent work by Heller and Jacobs [1]
has discussed the performance of short constraint length
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convolutional codes in conjunction with coherent BPSK mod-
ulation and Viterbi maximum likelihood decoding on the
AWGN channel. Previous work by Jacobs [2] has treated the .
performance of longer constraint length codes together with
sequential decoding. In an increasing number of important
applications, however, the AWGN channel provides an entirely
inappropriate model of the propagation environment. We will
be particularily concerned with those situations where the
received signal component is known to undergo fading as the
result of an appropriately defined channel scattering mecha-
nism. Examples include HF and tropospheric scatter links {3],
the aeronautical channel [4], and the planetary entry channel
[51, [6].In such cases the channel can be adequately modeled
by assuming the received signal is a linear combination of a
specular and a diffuse scatter component received in the pre-
sence of AWGN. Assuming further that the diffuse scatter
component can be represented as the product of a complex
zero-mean Gaussian process and the original transmitted signal
component, we have the classical Rician fading channel.

It is of some interest then to provide a complete charac-
terization of the performance of short constraint length con-
volutional codes in conjunction with BPSK modulation and
Viterbi decoding on the Rician fading channel. The remainder
of this paper is devoted to this purpose. Primary interest is
in the bit error probability performance as a function of
Ey[/No parameterized by the fading channel parameters.
Fairly general upper bounds on bit error probability per-
formance in the presence of fading are obtained and compared



