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An Equivalent Linear Model for Marked and Filtered
Doubly Stochastic Poisson Processes with Application
to MMSE Linear Estimation for Synchronous
m-ary Optical Data Signals

W. A. GARDNER, MEMBER, IEEE

Abstract—An equivalent linear model for minimum mean-squared
error (MMSE) linear estimation of marked and filtered doubly sto-
chastic Poisson processes is presented. The equivalence is employed to
determine the structure of the MMSE noncausal steady-state linear
receiver for synchronous m-ary optical data signals.

I. EQUIVALENT LINEAR MODEL

Consider the process Y(r) composed of the sum of a
marked and filtered doubly stochastic Poisson process [1]
and a statistically independent zero-mean process V(#),

Y(r) = zm: g(t, 1u;y) + V(1), Vit =tg, (1)

i=1

where {r;};> are the random occurence times of doubly
stochastic Poisson counting process /N(#) which starts at ¢t = ¢
and has stochastic rate process A(z), and the random marks
{u;}1= are statistically independent of each other and of
{7;}1, and are identically distributed sets of random
variables, and where g(-,-,) is a deterministic function.l
Denote the minimum mean-squared error (MMSE) linear
causal estimate of the stochastic rate process A(#), given ob-
servations { Y(7); tog <7 <t}, by ND)/Y fort > tq.

Consider also the (hypothetical) process Z(¢) defined by

OE / ) E{g(r,ru)IN(T) dT + V(1) + W(2), Vit =1,
to

(2)

where u has the same distribution as u;, and W(¢) is a zero-
mean nonstationary process that is statistically independent
of the remainder of Z(¢) and has autocorrelation function

kw(t,7) =/ E{\N0)}E{g(t,0,u)g(t,0,u)} do, (3)

to

and A(#), V(¢), and g are the same as in (1). Denote the
MMSE linear causal estimate of A(t), given observations
{Z(1);to <T<t}by N1)/Z for t > tg.

Theorem: The MMSE linear causal filters for ?\(t)/Z and
M1)/Y are identical, and their impulse response function k
is given by the solution to the linear integral equation

t
/ h(t,0)kz(0,7) do = ky z(¢,7), VLT Dt TSt (4)
to
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Proof: It is well known that the optimum filter hy for
)\(t)/Z is the solution to (4) (cf., [4, sect. 9.6]). Similarly, it is
well known that the optimum filter hy for ?\(t)/Y is the
solution to the linear integral equation

t
/ h(t,O)ky(o,'r) d0=k>\y(t,7'), VI,TB-Z'O <7<t (5)
to

Hence, we need only prove that ky = kz and k\y = kaz.
Straightforward evaluation from (2) yields

kz(t,7) = / / E{g(t,0,u)}E{g(t,v,u)}k\(0,y) do dYy

+ky(7) +hy(T) V>t (6)
kaz(t,7) = / ) E{g(1,0,u)}ky(0,1) do VLT =t (7)
to
Also,
Ky (t,7) 2 E{(Y()Y(1)} = E{[E{Y() Y(1)/{\} ;‘3}] k. (8)

From [1, eqgs. (4.11) and (4.16)] we obtain

ky(f,T) =

/m No)E{g(t,0,u)g(t,0,u)} do

/ / NONE{g(t,0,u)}E{g(r,v,u)} do dy
to

+ kV(t,T)l. )
Performing the expectation yields ky = k5. Continuing,
kny (6,7) £ E{NOY(1)}
= E{QNOIE{Y(D/{\},~ 1} (10)
Employing [1, eq. (4.11)] yields
Kyt =F / NON)E{g(r,0,u)} do! . (11)
to
Performing the expectation yields kxy =k z.
Remark 1: If we let V=0 and we let g be defined by
gt ru) =5t —1), (12)

the results of this theorem reduce to the well-known result for
unmarked and unfiltered processes [1, sect. 6.5.1]. See also
[2] for a similar result for the special case where A(z) is a
synchronous PAM signal.

Remark 2: The equivalence of this theorem is valid for pre-
diction and noncausal smoothing as well as causal filtering.
For a general estimation problem with arbitrary forward and
reverse memory, (4) becomes

/ h(f,U)kz(O',T) d0=k)\z(t,7) V1€ Ttr V't>t0, (13)
T

t
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where the interval T is determined by the desired memory of
the filter A.

Remark 3: The equivalence of this theorem is valid for zero
error-mean minimum error-variance [i.e., minimum variance,
linear, unbiased (MVLU)] estimation as well as MMSE estima-
tion, by replacing (13) with?

[ K, 0)kz(0,7) —mz(0)mz(1)] do

Tt

= [knz(t,7) —my(O)mz(7)] VTE T, Vi=tg; (14)

the MVLU estimate is then given by

N@)/y = /
T

r'(t, ") Y(7)
t

‘my(T)] dr + m;\(t)

vt>to. (15)

II. APPLICATION TO OPTICAL DIGITAL
DATA COMMUNICATION

A. Equivalent Model

If we let g in (1) be defined by (with abuse of notation)

g(t,mu;) =ug(t — 71;), (16)
then (1) is an appropriate model for the output of an optical
detector with random photon arrival times {7;} and corres-
ponding random avalanche gains {u;}, and with dispersion
function g(+), and additive thermal noise V(¢) (see [5] and
refs. [3] and [4] therein). A(¢) is the average rate of arrival of
photons, which is assumed modulated by a stochastic infor-
mation bearing signal. Specifically, let A(¢) be a synchronous
me-ary digital data signal

\¢) = E p(t —to —nT.a,) + Mo Vi to, an
n=1

where the constant Aq is the rate of background optical radia-
tion from the channel, and is not part of the information bear-
ing signal. We assume that the data sequence {a,};= that
modulates the translates of the pulse p(¢, *), is a stationary-of-
order-2 sequence of discrete random variables with m allow-

‘able values {a;};™. Denote the probability that a, = a4 by

P, and the joint probability that @, = o4 and a,, = . by

qr(n — m). Denote the mean and mean-squared values of u;
by u# and uZ. Then the equivalent linear “‘baseband” model for
the output of the optical detector is, from (2),

Z(r) = E/m g(t —1)N(7) dT + X(2) Vit = tg, (18)

to

where X is the sum of ¥V and W, and therefore has autocor-
relation function

kx(l‘ T) kv(l'"T)‘l'kw(t T) vt,7'>t0, (19)

?1In (14) and (15) mgz, my, my denote mean functions for Z, A, Y,
respectively.
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kw(t,7) = u2/ m(0)g(t — 0)g(tr —0) do
to

Vt,T > to- (20)
We have assumed that the thermal noise is wide-sense station-
ary (WSS) for t = tq. Since m,(¢) is periodic with period T,
for t 2 tg, then ky(z,7) is jointly periodic in ¢ and 7, for
t 2 tg and 7 2> 1g. Hence, the effective additive noise X(z)
is wide-sense cyclostationary (WSCS) with period T for t = tg.
Furthermore, the cross correlation (7) is

vt,T=tg.  (21)

kxz(l‘,T) = 5/ g(t _U)k)\(O',T) do
to

We are interested only in steady-state estimation (i.e.,
t > tg), and the steady-state receiver is affected by the
behavior of quantities in (17)-(21) only for ¢t > tg and 7> tg.
As a result, the only difference between the steady-state prob-
lem here and the steady-state estimation problem for the
additive noise channel, which was solved in [3], is that here
the effective additive noise is WSCS rather than WSS, and here
the signal has a constant additive term Ag. The constant does
not affect the method of solution of the integral equation
(13) for the receiver; however, the nonstationarity of the noise
requires a slight modification of the solution technique pre-
sented in [3, appendix]. The results are presented in the
following subsection.

B. Receiver Structure

1) Estimation of Posterior Probabilities of Data Digits: Let
the probability that @, = ag, given observations ¥ & {Y(7);
to < 7 < oo} be denoted by Pr [a, = a4/Y]. This posterior
probability can be interpreted as the image of Y under the
functional Pr [@, = a4/(+)]. This functional maps the sample
waveform Y into the humber Pr [a, = a4/Y]. Now, the en-
semble of all such images together with the probability dis-
tribution for this ensemble, which derives from the probability
distribution for Y, is a random variable; i.e., Pr [a, = ag/Y]
is a random posterior probability. It can be shown (cf., [3],
[6]) that the MMSE linear noncausal steady-state estimate
of this random posterior probability, given observations Y, is

oo

Pr[a, =a,/Y] =/

—oco

hq(nT —T)Y(7) dr Vn>1 (22)

m o
ha@ 2 D0 D Corgdug (e —iT), (23)
q’=1 j=—o0
where U, is the solution to the linear integral equation
/ kx (2, Mg (—T) dT = Po(t,0), Vt E(—=00).  (24)
The kernel kx(t,7) is defined by (19), with ¢q = —eo and
ke (t,7) = / mo(0)g(t — 0)g(1 — 0) do,
Vi,TE€(—%2) (25)
—_— x m
mo(0) 2 u? Z E Pap(0—iT,aq) + Ao |,
j=—o q=1
Vo E(=2,%). (26)

The function po(z,a4) is defined by

po(t,@) é/ gt —Tpo(r,a) d7 27

po(t,0) £ ulp(t,a) + Ao (1)] (28)
o, VItI<T/2,

M) & o [rI<T/ (29)
0, Yt |>T1/2.

Mq(2) is the impulse response function of a generalized
matched filter. It is matched to the modified form Fo(t,0q)
of the gth signal p(t,a,) in additive WSCS noise X(¢). The
coefficients Cg,,'(n) are given by the (gq')th element of the
m X m matrix

1/2T
C(n) = T/ T(f) exp (j2anTY) df, (30)
—1/2T
where the matrix T(f) is given by
T(f) 2 1 IQHL) + N1 71Q(f). (31)

The (gq')th elements of the matrices Q(f) and L(f) are de-
fined by .

Oqq' (N2 Z Pgq' (n) exp (—72mnTf)

n=-—oo

(32)

L=
qu/(f)é; D GU—i/T)Po(f —i/T,aq)My (f —i/T),

(33)

where G, Py, and M, are the Fourier transforms of g, pg, and
g, respectively. In (31), I'is the m X m identity matrix.

The transfer function of the filter for Pr [a, = /Y]
[Fourier transform of ,4(-)] is from (23) and (30)

m

Hy()= 3

qg =1

Tq'q(IMq (). (34)

The sequence of coefficients {qu'(n); —oo < n < oo} have
the interpretation of being the tap weights of a tapped-delay
line with unit delay T (or the discrete pulse response function
of a nonrecursive sampled data filter).3 Thus, the m posterior
estimates {Pr [a, = aq/Y]} are the outputs, at time nT,
of a parallel bank of m generalized matched filters, with trans-
fer functions {M,(f)}, followed by an m X m multiport
tapped-delay line with matrix of transfer functions 7(f). This
result directly parallels that obtained in [3]; see [3, fig. 2].
The only difference between hg here in (23) and hy in [3,
egs. (18) and (19)] is that the additive noise X(¢) here is WSCS
rather than WSS (when m,(¢) is constant, X(z) is WSS), and
that the modified signal po(t,a), defined by (28), enters
here in place of the unmodified signal p(t,a,). The modifi-
cation is simply the addition of a rectangular pulse Aq(2),
defined by (29). Ag(#) is caused by the background optical
radiation from the channel.

®The coefficients Cpq(n) in this paper play the same role as the
coefficients Cpq(=n) in [3].
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There are two special cases worthy of mention for which an
explicit solution to (24) for the generalized matched filter can
be obtained:

a) If the photoelectron dispersion function g is suffici-
ently narrow compared with the inverse bandwidth of the data
pulses {p(z, aq)} so that, under the integralsin (18)-(21), it
can be replaced with a Dirac delta function with area 4 = the
area of g (this is equivalent to assuming perfect observation of
the occurrence times {7;} when the additive thermal noise is
negligible), and if the additive thermal noise ¥(¢) is white with
intensity N, then

p(—t,ag) + No(—1)
No + u242my(—t)

Mg () = (35)

b) If the mean-rate function m,(¢) is a constant m,, then

_ UG (NIP(fag) + Ao*(1)]
Ky(f) +u24%my | G(f) 2’

My(f) (36)

where Ky (f) is the power spectral density for the additive
thermal noise V(¢), and Ag(f) is the Fourier transform of the
rectangular pulse Ag(z).

2) Estimation of Data Digits and Signal Waveform: As dis-
cussed in [6] and [3] the MMSE linear noncausal steady-
state estimates of the data digits {@,} and the signal wave-
form A(z) are easily obtained from the posterior probability
estimates:

m
G /Y = Pria, =ag/Y]eg, Vn>1, (37)
qg=1
- Ll — o~
ADIY=) > Prla, =ag/Y1po(t —nT.ay),
q=1 n=ng
Vt>to+noT, no>> 1. (38)

The estimate of the signal component of A(z), s(z) & \(#) —
Mo, is simply

T@/Y =N/Y —No. (39)
Again, this result directly parallels that obtained in [3]. The
posterior probability estimates are employed by an averaging
device that computes an average alphabet letter for @,,/Y or an
average train of m-ary pulses fors(z)/Y.

If one employs the criterion of MVLU rather than MMSE,
then the preceding results in this section are all valid if Ag is
replaced by 0 everywhere except in (39), and Y(7) is replaced
by Y(r) — my(7) in (22) and N(#)/Y is replaced by A(#)/Y +
ma(¢) in (39), and Py4'(i — j) is replaced by Poq'(i — j) —
P,P,' in (32). Then, the rectangular pulse Ao(t) that occurs
in additive combination with the signal pulses {p(t,aq )} in the
receiver structure will vanish. In this case, the receiver more
closely parallels the receiver derived in [3] for additive noise
channels.

It can be shown that the steady-state MMSE resulting from
linear noncausal estimation of the data digits {a,, } is, for n >1,

1/2T
MMSE = T/
—1/2T

o' [QOL(F) + 1710 df. (40)

It can also be showu that the steady-state minimum-error
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variance resulting from MVLU noncausal estimation of {a,}
is also given by (40), provided that P,,'(i — j) is replaced by
Pyq'(i — j) — PgPgy in the defining equation for Q. Formula
(40) is also valid for additive noise channels, if the definitions
of Q and L given in [3] are employed.

3) Detection of Data Digits: If it is desired to employ the
linear receiver to make a hard decision as to which of the m
letters {ay} the nth digit a, took on, then two alternatives
arise:

a) Linearly Constrained Estimation Theovrist’s Decision:
Decide @, = a4 iff 12,/Y — oy |<|a,/Y —ap|forp=1,2,
=+, m; i.e., pick the closest allowable value to the estimated
value.

b) Linearly Constrained Hypothesis Tester’s Decision:
Decide a, = a4 iff Pr [a, = «,/Y] = Pr [a, = a,/Y] for
p =1, 2, -, m; ie., pick the most pseudoprobable value,
given observations Y.

It has been shown for one-shot detection for an additive
noise channel [6] that a) yields lower probability of error
than b) for PAM, where p(t,a4) = ayp(2). In fact, b) is useless
for PAM with m > 2. However, b) yields lower probability of
error than a) for PSK. In fact, a) is useless for PSK with
m > 2. A more general analysis of these two decision rules will
be presented in a future paper.

I1I. CONCLUSIONS

The theorem on equivalent linear models presented in Sec-
tion I enables engineers who are familiar with MMSE linear
filtering for additive noise channels to transfer their knowledge
and intuition directly to problems of MMSE linear filtering
for optical channels with outputs that are modeled as marked
and filtered doubly stochastic Poisson processes with additive
noise. As an example of this, the theorem is employed in
Section II to derive the structure and MSE of the MMSE linear
noncausal steady-state receiver for synchronous m-ary optical
signals. The parallels between this receiver and that derived
in [3] for additive noise channels are pointed out.

The practical value of the solution for the optimum receiver
presented in Section II is twofold.

1) Knowledge of the matched-filter-tapped-delay-line struc-
ture of the optimum linear receiver provides a basis for the
design of practical (including adaptive) optical receivers.

2) Knowledge of the minimum attainable (with a linear
receiver) mean-squared error enables comparison with the
mean-squared error of previously considered linear optical
receivers, and enables analysis of the effects on mean-squared
error of photon pulse dispersion, random avalanche gain, and
thermal noise in the optical detector, and of intersymbol inter-
ference due to optical signal pulse dispersion in the channel.
In some cases, useful bounds on probability of error can be
obtained from mean-squared error.
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