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Characterization of Cyclostationary Random
Signal Processes

WILLIAM A. GARDNER, MEMBER, IEEE, AND LEWIS E. FRANKS, SENIOR MEMBER, IEEE

Abstract—Many communication and control systems employ signal
formats that invelve some form of periodic processing operation. Signals
produced by samplers, scanners, multiplexors, and meodulators are
familiar examples. Often these signals are appropriately modeled by
random processes that are cyclostationary (CS), i.e., processes with
statistical parameters, such as mean and autocorrelation, that fluctuate
periodically with time. In this paper we examirne two methods for repre-
senting nonstationary processes that reveal the special properties
possessed by CS processes. These representations are ‘e harmonic
series representation (HSR) and the tramslation series representation
(TSR). We show that the HSR is particularly appropriate for character-
izing the structural properties of CS processes and that the TSR provides
natural models for many types of communication signal formats. The
advantages gained by modeling signals as CS processes rather than
stationary processes is illustrated by consideration of the optimum
filtering problem. We present general solutions for filters that minimize
mean-square error for continuous-waveform estimation, and we discuss
several specific examples for the particular case of additive noise. These
examples demonstrate improvement in performance over that of filter
designs based on stationary models for the signal processes.

I. INTRODUCTION AND BACKGROUND

ANDOM SIGNAL processes that have been sub-
jected to some form of repetitive operation such as
sampling, scanning, or multiplexing will usually exhibit
statistical parameters that vary periodically with time. In
many cases, the repetitive operation is introduced inten-
tionally to put the signal in a format that is easily manip-
ulated and preserves the time-position integrity of the events
that the signal is representing. Familiar examples are radar
antenna scanning patterns, raster formats for scanning
video fields, synchronous multiplexing schemes, and syn-
chronizing and framing techniques employed in data trans-
mission [1]. In fact, in all forms of data transmission, it
seems that some form of periodicity is imposed on the signal
format. In contrast to these examples, there are many where
the periodicity is not imposed but occurs naturally [2]-[9].
These ““cyclostationary” (CS) random processes occur in a
wide variety of systems including biological, social, eco-
nomic, and mechanical as well as electrical systems. They
are encountered in studies concerned with physics, meteor-
ology, astronomy, and various other physical and natural
sciences.
A continuous-time second-order random process {x(z);
te(—o0,00)} is defined to be CS in the wide sense with
period T (which we shall hereafter abbreviate as CS(T)),
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if and only if its mean and autocorrelation exhibit the
periodicity [1]

my(t) A E{x(t)} = m,(t + T),
k. (t,s) A E{x(t)x*(s)} = k(¢ + T,s + T),

for all ¢ € (— 00,0)

for all 7, s e (—00,00). (1-1)

Bennett [10] introduced the term “cyclostationary” to
denote this class of processes in his treatment of synchro-
nously timed pulse sequences used in digital data transmis-
sion. Other investigators [5]-[12] have used terms such as
“periodically stationary,” “‘periodically correlated,” and
“periodic nonstationary” to denote this same class.

A practical example of a CS signal process is the pulse-
amplitude-modulated (PAM) signal

0

x(t) = )

n=—o

a,p(t — nT) (1-2)
where ¢ is a deterministic I?(— co,00) function. The mean
and autocorrelation for this signal are easily shown to
satisfy (1-1) if the random amplitude sequence {a,} is wide-
sense stationary (WSS) [1]. In many applications, the pulse
amplitudes are obtained by uniformly time-sampling a
WSS process. Other forms of synchronous pulse-modulated
signals—including frequency- and phase-shift keyed signals
(FSK) and (PSK), respectively, and pulse-width and pulse-
position modulated signals (PWM) and (PPM), respectively
—are also CS when modeled as

)= 3 (- nT, a)

n=—aw

(1-3)

provided that the modulating sequence {a,} is stationary
of order two. In fact, even asynchronous pulse sequences
that result from including random epoch jitter in the pre-
ceding model, by replacing nT with nT + §,, are CS (T) if
the jitter sequence {d,} is jointly (with {a,}) stationary of
order two.

Another example is the totally asynchronous pulse se-
quence that results from replacing the deterministic epochs
{nT} in (1-2) with the random epochs {¢,}, which form an
ordered sequence distributed according to the nonhomo-
geneous Poisson counting process. This model has been
used for telegraph and facsimile signals and noise in elec-
tronic devices [1]. If the counting rate parameter fluctuates
periodically, then the process is CS. There are numerous
other signal formats used in communication and control
that result in CS processes. These include amplitude-
modulated signals (AM), analog and digital phase- and
frequency-modulated signals (PM) and (FM), respectively,
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time- and frequency-division multiplexed signals (TDM)
and (FDM), respectively, and video signals.

Systems analysts have, for the most part, treated these
CS signals as though they were stationary. This is done
simply by averaging the statistical parameters over one
cycle

1 T/2
= — f m(t) dt
T -T/2

. 1/2
R = L f

(1-4)
T rp

ket + 7, t) dt.

This averaging is equivalent to modeling the time reference
or phase of the process as a random variable uniformly
distributed over one cycle

X(t) = x(t + 0)

1 T
o |a| < —
T 2
Po(@) = T
0, >3 (1-5)

where p, is the probability density function for 6 [14]. In
this case, the mean and autocorrelation for the phase-
randomized process X are given by the time-averaged func-

tions in (1-4). This type of analysis may be appropriate in -

situations where the signal is not observed in synchronism
with its periodic structure. For example, a CS process may
be an interference in another signal-transmission channel
with a receiver that has no knowledge of the phase of the
interfering process. In such a situation, the concepts used
with stationary processes, such as power spectral density,
can be valuable in evaluating system performance. On the
other hand, in a receiver that is intended for the CS process
there is usually a great deal of information provided, in the
form of synchronizing pulses or a sinusoidal timing signal,
about the exact phase of the signal format. Most of these
systems are, in fact, inoperative without this information.
In these situations, the CS model is more appropriate.

One way that the CS model for a signal process can be
used to advantage is in the design of optimum filters.
Previous analyses of optimum filtering operations have
usually assumed the stationary model for signal processes
and result in time-invariant filters that “ignore” the cyclic
fluctuations in these processes. We shall demonstrate in
Section III that improved performance can be obtained by
recognizing that—by virtue of the timing information at the
receiver—the received process is actually CS, and the
optimum filter is a synchronized periodically time-varying
filter.

The CS model is also useful in the design and analysis of
synchronization schemes for extracting timing information
from received CS signals [16].

Several investigators have recognized the importance of
this class of nonstationary processes, and they have con-

! A more detailed discussion of the modeling of the signals mentioned
here and various others can be found in [13].

5

tributed to its characterization through the development and
analysis of representations for CS processes and their
autocorrelation functions. Gudzenko [7], Gladyshev [8],
and Hurd [5], [15] have contributed to the development
and analysis of the following Fourier series representation
for periodic autocorrelation functions for harmonizable as -
well as nonharmonizable CS processes >

[jnn(t + s)]

Y ¢t — s)exp T

n=—ao

kux(t,5) =

T/2

k(S +7]2,8— 7]2)exp (—];nns) ds.
2

(1-6)

Although this representation does not result from a corre-
sponding representation for the process x, we have derived
the following new relationship between the coefficient func-
tions {c,} and the process x

et — 5) = E{b,()b_,*(s)} 1-7

where b, is the phase-randomized version of the frequency-
translated process b,

b,(t) A bt + 0)

ba(t) & x(t) exp (‘f;f"‘) . (1-8)

In addition to providing a link between x and {c,}, this
relationship immediately yields the known result that ¢, is
the autocorrelation function for the stationary phase-ran-
domized process X.

In spite of this link, the lack of a corresponding process
representation appears to be responsible for the apparent
lack of useful properties and applications of this Fourier
series representation for autocorrelation functions. More
recent investigations have concentrated on series repre-
sentations for CS processes, from which corresponding
representations for autocorrelation functions follow.

Jordan, in his work on optimum discrete representations
[17], observed that the Karhunen-Loéve representation
(KLR) for a CS (T) process on the interval [nT,(n + 1)T]
can be obtained from the KLR on [0,7] simply by employ-
ing time-translated versions of the basis functions on [0,77].
Doing this for all such intervals results in the mean-square
equivalent translation series representation (TSR)

)= 3 3 amé,(t —nT), forall te(—oc0,00)

n=-—ow p=1

a) & [ X+ nT),) (1:9)

1]
where {¢,} are the eigenfunctions (extended to zero outside
[0,T]) of the linear integral operator on I*[0,T] with
kernel k,,. Similarly, Brelsford [9] observed that a CS (7))

2 Hurd’s work on measurable second-order CS processes is the
most comprehensive.




process can be represented on (— c0,00) with a TSR, as in
(1-9), by employing any orthogonal decomposition of x on
[0,7]—the motivation being to decompose continuous-time
CS processes into jointly WSS discrete-time processes.

The straightforwardness and simplicity of these TSR’s
are probably responsible for the apparent lack of further
investigations into representations of this type. However,
as we shall demonstrate in Sections IT and III, these TSR’s
are very useful for modeling many communication signal
formats and solving associated estimation and detection
problems. They also provide the first step in the develop-
ment of other representations.

Another approach to the representation of CS processes
was taken by Ogura [6], who derived a spectral representa-
tion that leads to the following mean-square equivalent
harmonic series representation (HSR) for harmonizable
processes

Jj2npt
a,(t) exp ( n ) , for all ¢t € (— 00,00)

a,(t) A fjo w(t — 1)x(7) exp (—_J%E) dz

sin (n¢/T) T)
Tt

w(t) A (1-10)

Ogura’s spectral representation for continuous-time CS
processes is complemented by Brelsford’s spectral repre-
sentation for discrete-time CS processes [9].

The first applications of the HSR and the TSR to the
characterization of CS processes through the identification
of various properties were presented in our preliminary
paper [18]. It is our intent in this paper to present a more
complete account of our findings on the use of series repre-
sentations for characterizing CS processes.® Although our
development and interpretations of the properties of the
HSR and TSR go well beyond those of previous investiga-
tions, it is not our intent to present these new results with
emphasis on generality or rigor. Rather, we have chosen to
emphasize their utility, in a somewhat tutorial fashion, with
practical examples of applications to optimum filtering
problems. .

II. SERIES REPRESENTATIONS AND STRUCTURAL PROPERTIES

Series representations for continuous-time processes can
be categorized into two classes: discrete series representa-
tions such as the TSR, wherein the representors are discrete-
parameter random processes (random sequences), and con-
tinuous-series representations such as the HSR, wherein
the representors are continuous-parameter random pro-
cesses. As discussed in the sequel, the HSR has been most
useful for characterizing the structural properties of CS
processes, whereas the TSR has been most useful for model-
ing random signal processes and solving associated detection
and estimation problems. However, despite these differences,

3 This paper is a summary of parts of the unpublished report [13].
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we shall show that these two types of representation are
intimately related.

Harmonic Series Representation

The HSR of (1-10) is most transparent when viewed in
the “frequency domain.” This representation partitions the
frequency support of x into bands of width 1/T, so that the
pth component a,(?) exp (j2npt/T) is simply the output of
an ideal one-sided bandpass filter with input x and transfer
function

1

TT

0, otherwise.

B B

_ P2
I-7

W,(f) =

The representor a,(-) is the centered (to the frequency-
band [—1/2T,1/2T]) version of the pth component
a,(-) exp [2np(-)/T].

Although the HSR is a valid mean-square equivalent
representation for noncyclic nonstationary harmonizable
processes, it is particularly appropriate for CS processes
since it accomplishes a decomposition of CS (T') processes
into a countable set of jointly WSS bandlimited processes,
viz., the representors {a,}, which are jointly WSS if and
only if x is CS (T)* [18].

The autocorrelation function for a harmonizable CS (T)
process has a harmonic series representation that corre-
sponds to the HSR for the process itself

kalts) = 3

ol = 9 xp [P0 39
P,q=— T

for all ¢, s € (— c0,00)

>

E{a,(t)a,"(s)}

ot = 5)

= f TW(t — Ow(s — Pke(t,y)

- exp [—-—_j Zn(pTi___- qy)] dt dy

- f ol H)Wo() exp [122(ft — v5)]

Koo(f+ 0| Ty +q|T)dfdv
1/2T

H Ku(f+pITv+q|T)
1/2T

-exp [j2nf (¢t — s)] df dv 2-1)

where K., is the double Fourier transform* of k.. This last
equality follows from the fact that K, .(f,v) consists of
impulse fences on lines parallel to the f = v diagonal and
separated by 1/T, as shown in the sequel. From this last

4 This is an important result that was not stated (or inferred) in
an earher work [6].
5 We are employing the extended Fourier transform that is defined
for periodic functions and may include impulse functions [11].
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equality, we see that the cross spectral densities {R,,} for
the {a,} are related to the bifrequency spectrum K., as
follows:

Rul) & [ 1) exp (=jinfe) d

1/2T
= Wo(f) K (f+plTv+q|T)dv
-1/2T
and
K. (W =YR,,(f—pITVo(f—v +(qa+pIT). (22
Note that

© T
f f [kex(t + 7, )> dt dt < 0 = 1,(*) € I?(— 00,00).
- Y0

In fact, since the spectral densities {R,,} are related to the
Fourier transforms of the coefficient function {c,(*)} in the
Fourier series representation (1-6) by the simple relation

o RN =Gy U+ (b + DD W) (29)

then various properties of {R,} and conditions for—and
modes of——convergence of (2-1) can be obtained from
Hurd’s extensive results for {C,} and (1-6) [5], [15].

The utility of the HSR for characterizing CS processes is
illustrated by the following properties of the spectral density
matrix R(f) with elements {R,,(f)}.

1) Stationarity: Since the components

[0 (57)]

of the HSR are individually WSS but are not jointly WSS
(because of the exponential factors), then a zero-mean CS
process will generally be WSS, if and only if the representors
{a,} are uncorrelated, i.e., if and only if the spectral density
matrix R is diagonal.

2) Phase Randomization: If % is the process that is derived
from a CS (T) process x by the introduction of a random
phase variable 0, X(t) A x(t + 6), then % is also CS (T)
[14]. Furthermore, if py(-) is the probability density func-
tion for 6 and Py(-) is the Fourier transform (conjugate
characteristic function), then the elements of the spectral
density matrix R(f) for % can be shown to be related to the
elements of the matrix R(f) for x by the formula

@24

B = Po (B2 Rl

Now, since py(-) is a probability density function, then
Py(n/T) < Py(0) = 1, and we see that the off-diagonal
elements of R are attenuated by the phase randomization.
Note that R will be diagonal and & WSS, for every x, if and
only if Py[(p — ¢)/T] = 6, (the Kronecker delta), which
is satisfied by a uniform density function. Furthermore, the
power spectral density for this stationarized process is
given by the formula

Kxx(f ) =

p=

o0

ot Rpp (f - P | T)' (2'5)

3) Time-Invariant Filtering: If % is the output of a time-
invariant filter with CS (T) input x, then X is also CS (T).
Furthermore, if the transfer function for the filter is denoted
G(*), then the elements of the spectral density matrix R for
% can be related to the elements of the matrix R for x by
the formula

Ry() = G(f+ pI TG (f + a| T) Rp(f). (2-6)

Note that if the filter is ideal low-pass with cutoff frequency
B, then all elements in R with indices |p| or |g| > BT are
identically zero.

4) Bandlimitedness: A random process is said to be band-
limited to the band [—B,B] if it is unaffected by passage
through an ideal low-pass filter with cutoff frequency B. In
this case, the double Fourier transform of its autocorrela-
tion function satisfies the bandlimiting condition K (f,v) =
0, for | f| > B and for |v| > B. Thus, using either (2-2) or
(2-6), we see that if x is CS (7') and bandlimited to [ — B,B],
then it admits an Mth order HSR, where M < BT, i.e.,
the HSR representors {a,; |p| > M} are identically zero.
Hence, if B < 1/2T, then x is WSS.

5) Degree of CS: The relative magnitudes of the off-
diagonal elements in the spectral matrix R appear to be a
useful indication of the degree of CS of a process. For
example, phase randomization tends to reduce the degree
of CS, and it attenuates the off-diagonal elements. In fact,
when the random phase is uniformly distributed, then the
off-diagonal elements are identically zero, and the process
is stationary (zero degree of cyclostationarity). Furthermore,
low-pass filtering tends to reduce the degree of CS, and it
reduces the size of higher order off-diagonal elements. In
fact, when the bandwidth is strictly limited to 1/27, then
all off-diagonal elements are zero, and the process is again
stationary. A convenient measure of the degree of CS
would be very useful in analyses dealing with CS processes,
as shown in the following discussion of optimum filtering
and as discussed in another paper [16] in relation to timing
extraction.

Translation Series Representation

The TSR of (1-9), where the {¢,} comprise any complete
orthonormal set on I*[0,T] (extended to the zero function
outside [0,77]), is a valid mean-square equivalent repre-
sentation for noncyclic nonstationary mean-square con-
tinuous processes. However, it is particularly appropriate
for CS (T') processes, since in this case it decomposes the
continuous-time process x into jointly WSS random se-
quences. That is, the discrete representors {{a,(:)};p =
1,2,- - -} are jointly WSS, if and only if x is CS (7). The
autocorrelation function for a CS (T') process has a trans-
lation series representation that corresponds to the TSR
for the process itself

-~

o0 00

kus(ts) = X Y rpg(n = m)gy(t — nT)¢g"(s — mT),

nm=—0o p,g=1

for all ¢, s € (— o0,0)




and
T — m)

A E{a,ma,*(m)}

T T
= f f kot + (n — m)T, )¢, *(t)p (s) dt ds.
o (1]
27
From (2-7), the double Fourier transform of k. is

Kx(fV)

7 L RAONOF) F 50—yt nlD)
9

where the {R,} are the elements of the spectral density
matrix R(f)

R(N2 ¥

n=—o

7 pg(1) €xp (—j2nnTf). 2-9)

Note that if
<] T
f f kot + 7, 8)|2 dt dt < o0
—o Y0

then the sequences {r,(n)} are square-summable.
Observe that K,, consists of impulse fences on lines

parallel to the diagonal f = v, and separated by 1/7. If x

is stationarized, then only the fence along the line f = v
remains, and the power spectral density is given by the
quadratic form

- 1,
K(f) = 7@ (NRUD*(S). (2-10)

Another class of discrete series representations for non-
stationary processes is the time-frequency dual of the TSR

x(t) = Y. Y b,(p)0,(t) exp (ﬂ—;pt—) , forallte(—o0,00)

bu(p) & [ 500,40 exp (“222) ay @-11)
where the Fourier transforms {®,} of the basis functions
comprise any complete orthonormal set on [ —1/27, 1/2T']
(extended to zero outside [ —1/2T, 1/2T]). The basis func-
tions in this frequency TSR are translated in frequency—
by means of the complex exponential factors—by integer
multiples of 1/7, whereas the basis functions in the time
TSR (1-9) are translated in time by integer multiples of 7.
Note that {b,(p)} is a discrete representation (with respect
to the basis {6,}) for the HSR representor a,.
Note also that with the particular basis

\/? sin (a(t — nT)|T)

6.(1) = (t — nT)
VT exp (—j2nnfT),  |f] < o
0,(f) = 1
0, 1> 5= @12)
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(2-11) is a TSR in both the time and frequency domains;
however, the basis functions in the time-domain TSR are
not duration-limited to [0,7°]

$.(0) = JT exp (j2;pt) sin (nt/T)

7wt

ay(n) = b,(p).

Furthermore, the spectral density matrix for this TSR is
simply the periodic (1/T") extension of the spectral density
matrix for the HSR.

As a final note, we mention that with the nonduration-

limited basis functions
_ (M\'?sin [(t — pT/M)nM|T]
Pa(t) = (T) (t — pT/M)aM|T (2-13)

which are orthonormal on I?(— 00,0), the TSR of (1-9)—
with the interval of integration changed from [0,7] to
(—0,00), and the range of summation over p reduced
from [1,00) to [1,M]—is in fact the sampling representa-
tion for nonstationary processes bandlimited to the fre-
quency-interval [ — M/2T, M/2T] [19].

In the next section, we demonstrate the practical utility
of the TSR for modeling important types of communication
signal formats and for solving optimum filtering problems.

III. CoNTINUOUS-WAVEFORM ESTIMATION

In this section we consider the problem of minimum-
mean-square error (MMSE) estimation of CS processes.
In particular, we consider the problem of linear noncausal
continuous-waveform estimation (optimum noncausal filter-
ing). We restrict our attention here to noncausal filtering
because the results are easier to interpret, and because these
results provide a lower bound on mean-square error that,
by incorporating a sufficient time delay in the estimate, can
be approached by a causal filter [20]. '

The optimum noncausal filter is the linear system with
impulse-response function A(-,-) that minimizes the mean-
square error

J(1) & E{[x(t) — 2()]’}

0
() = f h(t,5)y(s) ds 3-1)
= 0
for every t e (—o0,00), where x is the random process to
be estimated (transmitted signal), and y is the observed
process (received signal) from which the estimate (filtered
signal) £ is to be obtained.

The following linear integral equauon is well known to
be the necessary and sufficient condition that implicitly
specifies the impulse-response function for the optimum
filter [1]

f W1,0)k,(0,5) do = ky(t,s),  forallt, s € (—00,00)

¢2)

where k,, is the autocorrelation function for y and k,, is the
cross correlation for y and x. The minimum estimation
error that remains after optimum filtering is given by the
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formula [1]

Jo() = k(1,1 ~ f " )k (1,5) d,

for all t € (— 00,00). (3-3)

If y and x are jointly CS (T'), then the optimum filter is a
periodically (T') time-varying system and the minimum
estimation error is a periodic (7)) function of time.

We shall solve (3-2) for this optimum time-varying filter,
and evaluate the time-averaged value of the minimum
estimation error,

1 T
U@é?f‘uom

0

(3-4)

We shall also solve for the time-invariant filter that min-
imizes the time-averaged value of the estimation error (J,
evaluate the minimum value of this time-averaged error
{J>o, and evaluate the relative performance measure (im-
provement factor)

N

I )0
Jod
First, we state the following new and important theorem

on the equivalence of optimum time-invariant filters for CS
processes.

P A > 1.

(3-5)

Theorem 1: The optimum filter for the stationarized
(phase-randomized) versions %, j of the CS processes x, y is
identical to the time-invariant filter that minimizes the
time-averaged value of the periodic mean-square estimation
error {J) for x,y, and it has transfer function

A =28

The minimum time-averaged estimation error is given by
the formula

(3-6)

@00=En®)—fm15ﬂiidﬁ (3-7)

-o Ky(f)

In contrast to the explicit solution of Theorem 1 for

optimum time-invariant filters, there is no previously known

generally applicable solution for optimum time-varying

filters for CS processes. In this section we employ the series

representations of Section II to obtain general solutions,
and we illustrate these solutions with specific examples.

Theorem 2: The impulse-response function 4 for the
optimum time-varying filter for the general MMSE estima-
tion problem (the solution to (3-2)) admits the TSR

© M

h(t,s) = ), Y hpn — m)p,(t — nT)¢,*(s — mT),

nm=—0w pg=1
forallt,se[—o0,00] (3-8)
provided that

1) the transmitted and received signals x,y are jointly
CS (1);

2) y is composed of the sum of a colored component z
and a white component, with power spectral density
A, that is uncorrelated with x and z;

3) x and z admit Mth order TSR’s with orthonormal
basis {¢,} on [0,T7].
The sequence of matrices {h(n)} is given by the inverse
transform :
1/2T
h(n) =T f H(f) exp (j2rnTf) df 3-9)
—1/2T

where the matrix of functions H(f) is given by the formula
H(f) = C(HID(f) + ]~ (3-10)

The matrices D,C are spectral densities [z transforms
evaluated at z = exp (—j2nfT), as defined by (2-9)] corre-
sponding to the correlation matrices

T
don) = f f kot + 1T, $),*(1),(s) dt ds

T
Cpaln) = f f kot + 1T, $)$,5 ()b (s) dt ds (3-11)
0

and 7 is the identity matrix. Furthermore, the time-averaged
value of the minimum estimation error is given by the
formula

1/2T
@ = |
-1/2T
where R(f) is given by (2-9).
Proof: Substituting the TSR’s for k,,k.,,/ into the

necessary and sufficient condition (3-2) yields the following
necessary and sufficient condition on {/,,(n — m)}

tr [R(f) = H(NC'(f)* ] df (3-12)

M ©
.;1 mgw hyi(n — m)d;(m) + Ah,(n) = c,(n),
for all n, and all | p|, |g] < M. (3-13)

Recognizing this double sum as the composition of a
discrete convolution and a matrix product, and equating
z transforms of both sides of the equation yields (from the
convolution theorem) the necessary and sufficient condition

on H(f)

H()D(f) + AH(f) = C(f), forall fe [—1/2T, 1/2T]

(3-14)
which is satisfied by (3-10). Now the formula (3-12) for
{Jy» can be verified by substituting the TSR’s into (3-3)

and performing the integration indicated in (3-4) to obtain
the formula

1 M ) M
<%>=?Z[m@— 3 zhgm%mﬂ (3-15)
p=1 m=-—ow g=1
i/2T
=f r [R() — BHCH)M] df. (3-16)
-1/2T
/ Q.E.D.

The structure of the optimum time-varying filter of this
theorem is shown in Fig. 1, and it consists of an input bank
of time-invariant filters with outputs that are periodically
(T') sampled to yield sequences that are applied to a multi-
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Fig. 1. Structure of optimum periodically time-varying filter with
impulse-response function that admits an M th order TSR (Theorem
2). {a,(n)} are the TSR representors for the received signal y.

\
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Fig. 2. Structure of optimum periodically time-varying filter with
impulse-response function that admits an Afth order HSR (Theorem
3). Hpl(f) = 0, for | f]| = 1/2T.

port time-invariant sampled-data filter; the filtered se-
quences are then employed to impulse-excite an output
bank of time-invariant filters with outputs that are summed
to form the MMSE continuous-waveform estimate. Notice
that the input bank of filters and samplers resolves the
received CS signal into WSS TSR representor sequences
and that the output bank of filters and the summer re-
constructs the optimum signal estimate £ from the op-
timally filtered sequences. Hence the optimum filtering is
executed by the sampled-data filter, and the remainder of
the structure merely accomplishes resolution and recon-
struction. By employing TSR’s we convert the problem of
MMSE estimation of a scalar CS process to the problem of
MMSE estimation of a vector of jointly WSS sequences.®

The approach of this theorem can be extended to those
cases where the processes admit TSR’s with basis functions
that are not duration limited to [0,77], and/or not ortho-
normal.

For example, the TSR of (2-11), (2-12) can be used with
the extended version of Theorem 2 to derive Theorem 3,
which provides a frequency-domain type of solution.
Theorem 2 provides a time-domain type of solution.

Theorem 3: The impulse-response function 4 for the
optimum time-varying filter for the general MMSE estima-

¢ This filter is substantially different from that suggested by Jordan
which performs independent fixed interval smoothing for each interval
[nT,(n + 1)T][17].
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tion problem admits the HSR

M j —_—
h(t,s) = Z hpq(t — §) exp (‘M) ,
pa=-M T
for all ¢, s € (— c0,00) (3-17)
provided that

1) the transmitted and received signals x,y are jointly
CS (T);
2) y is composed of the sum of a colored component z
and a white component, with power spectral density
A, that is uncorrelated with x and z;
3) x and z admit Mth order HSR’s.
The matrix of Fourier transforms of the elements {4,,} is
given in (3-10), where the elements of the spectral density
matrices D,C are given by the formulas

1/2T
D,(f) = W) f ko (F+ 01 Tov + q| T)dv
-1/2T
A 1/2T
Cpq(f)=W0(f) sz(f"'"PlT,V—i-q[T)dV.
-1/2T
. (3-18)

Furthermore, the time-averaged value of the minimum
estimation error is given in (3-12) where R is given by (2-2).

The structure of the optimum time-varying filter of this
theorem is shown in Fig. 2 and consists of an input bank
of harmonic multipliers with outputs that are applied to a
multiport time-invariant low-pass filter. The filtered com-
ponents are applied to an output bank of harmonic mul-
tipliers with outputs that are summed to form the MMSE
estimate. Note the parallel to the TSR structure of Fig. 1.7

Although Theorems 2 and 3 are stated and proved for
finite-order representations (finite M), these solutions do
extend to the case where M is infinite for special subclasses
of infinite-order representations. This is illustrated in
example (5).

Examples

We now discuss various examples of time-varying filters
for CS signals in additive noise. We begin with an extended
version of Theorem 2 that is particularly convenient for a
class of optimum filtering problems frequently encountered
in studies of communication systems. Specifically, we assume
that a transmitted signal x has been subjected to time-
invariant channel dispersion and additive WSS noise, so
that the received signal is given by

y(t) = on g(t — Ox(t) dv + n(t), forallte(—o0,0)

(3-19)

where g is the impulse-response function for the dispersion
(transfer function G(f)) and # is the additive noise (power
spectral density K,,(f)). We further assume that x admits

7 The structure of this filter resembles that of Brelsford’s auto-
regressive predictor for CS sequences [9].
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an Mth order TSR with basis functions {¢,} that are not
necessarily duration-limited, nor orthonormal
M ©
x(t) = Y Y a,me,(t —nT), forallte(—o0,0).
p=1 n=-ow
(3-20)

For this class of filtering problems, the optimum time-
varying filter is given by the formula

h(t,s) = 3, Y hy(n — m)¢(t — nT)0,*(s — mT),
e for all t, s € (—o00,00) (3-21)

where {h,,} are given by (3-9) with H(f) defined as
H(f) A RNILNHR(S) + I]71 (3-22)

where R(f) is the spectral density matrix for {a,} and L(f)
is defined as

L(f) A X £(n) exp (—j2nnTY)

N f s )':DP:% 2) e (j2nnTf) df. (3-23)

0, is the inverse Fourier transform of the function
G(f)D
0,(/) & SN
K.(f)

Furthermore, the time-averaged value of the minimum
filtering error is given by the formula

— oo

(3-24)

1/2T
o =f w BOHP]df  (3-29)
-1/2T

where B(f)is L(f) with |G(f)| and K,,(f) replaced by 1;
ie.,

b,(n) = f ¢, (t — nT)g, (1) dt. (3-26)
This solution is easily verified using a procedure paralleling
that given in the appendix of [21].

Note that the Poisson sum formula [1] can be employed
to convert (3-23a) into the alternate form

_ & (6 = mT)P®, (f — mITYOf — m/T)
L) = 2 Kol — miT) '

(3-23b)

In the examples to follow, we shall restrict consideration
to problems in which the noise is white (power spectral
density N,), and there is no dispersion, i.e., G(f) = 1. For
this special class of problems, the preceding solution re-
duces to the simpler form

h(ts) = ¥ Y hyn — my(t — nT)*(s — mT)

H(f) = R([B(/IR(S) + NoI]™*

1/2T
oy = Ny f tr [BUDH(/)] df
—-1/2T
= Notrh(0), iff B(f) = I (3-27)

1

Note the parallel to the formulas (from Theorem 1) for
the optimum time-invariant filter

A/DYP(NHRAND*(f)
/DD (NHRAOD*(f) + No

(> = No f T B df = Nof©).  (328)

H(f) =

Our first two examples were presented in our preliminary
paper [18]. Therefore, we shall only summarize them here.
The remaining three examples are discussed in more detail.

1) FDM Signals: As discussed in [18], an example of a
random signal that is conveniently represented by a finite-
order HSR is the FDM signal composed of the sum of M
separate uniformly-spaced (in frequency) phase-locked
sinusoidal carriers that are each amplitude modulated with
individual stationary signal processes (power spectral den-
sities {KI,'}). If the individual baseband signals are un-
correlated, then the general structure of the optimum filter
provided by Theorem 3 reduces to M parallel paths. The
pth path is composed of a sine wave demodulator at the
input, a Wiener filter for the pth baseband signal, and a
sine wave modulator at the output. Thus the optimum
time-varying filter demultiplexes and demodulates the FDM
signal, optimally filters the baseband components, and then
modulates and multiplexes the filtered components. Using
the results of Theorems 1 and 3, it was shown that as the
signal-to-noise ratio (SNR) increases, the improvement
factor P (3-5) approaches 2. It was also shown that because
of the similarity in the formulas for <{J,> and {(J),, the
two filters can be compared on a channel-by-charnel basis
and large differences among the statistics of the baseband
signals will not affect the comparison. This is not the case
in the TDM scheme discussed in the following example.

2) TDM Signals: As discussed in [18], an example of a
random signal that is conveniently represented by a finite-
order TSR is the TDM signal composed of the sum of M
separate PAM signals that are uniformly interleaved with a
time separation of T/M. If the individual baseband signals
(with power spectral densities—before sampling—denoted
by {K,}) are uncorrelated, and the pulse translates are
orthogonal, then the general structure of the optimum
filter provided by Theorem 2 (or (3-27)) reduces to M
parallel paths. The pth path is composed of a matched filter
and periodic sampler, a discrete Wiener filter for the pth
amplitude sequence, and a pulse-generating filter at the
output. Thus the optimum time-varying filter (paralleling
that for the FDM signal) demultiplexes and demodulates
the TDM signal, optimally filters the sample sequences,
and then modulates and multiplexes the filtered sequences.
Using the results of Theorems 1 and 2 (or (3-27) and (3-28)),
it was shown that the difference between <J,> and (J),
narrows down to a term in the denominator of the in-
tegrand. One conclusion based on this simple difference is
that if all the processes multiplexed are statistically identical,
then the TDM signal is WSS, and there is no improvement
(P = 1). On the other hand, if the individual processes are
very different, then the degree of CS can be large, and there
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can be substantial improvement. For example, if the M
processes have disjoint power spectral densities, then there
is a low-noise improvement of P = M. Similarly, if all but
one of the M baseband signals should happen to vanish,
then there is a low-noise improvement factor of P = M.
3) PAM Signals: In this example, we use the PAM signal
(1-2), which admits a first-order (M = 1) TSR, to illustrate
several important characteristics of CS processes. To begin
with, we consider full-duty-cycle unit-energy rectangular
pulses. This PAM signal has constant mean and variance.
Assuming that the power spectral density K(f) of the WSS
process—with sample values that amplitude-modulate the
pulses—is bandlimited to [—1/27, 1/2T], we obtain from
(3-27) the following time-averaged value of the minimum

filtering error
12T N,K
<J0> — J [ (f)

—_ 3-29
—121 No + K(f) 4 29

and we obtain from (3-28) the following minimum value of
the time-averaged filtering error

{To

- ¥ f V2T NoK(N)[sin(n(Tf — n)/m(Tf — m]* af,
n==w J_127 No + K(f)[sin (n(Tf = n)/n(Tf — n)]*

(3-30)

Now, for high SNR’s, {(J,> ~ N,/T, and for any number
there exists an N, small enough to guarantee that {(J), >
INy/T, so that P > I. Thus we see that although the
signal has constant mean and variance, the optimum time-
varying filter significantly outperforms the optimum time-
invariant filter. For example, an improvement factor of
P > I = 10 results with an SNR of ¢?T/N, = 10*, where
" we have chosen K(f) = o7, for all fe[—1/2, 1/2T]. We
summarize this result by saying that the degree of CS of a
signal with constant mean and variance need not be small.

We now consider zero-mean PAM with unit-energy sinc
pulses of bandwidth I/T. From (3-27), (3-28), assuming
constant power spectral density bandlimited to [—1/27,
1/2T7], we obtain

00,21
J —= S n
Jo o2 + 0,21
0202
I3, = 95 On 3.31
o o212 (3-31)

where o? is the time-averaged signal variance and 0,2 =
NoI/T is the noise variance. Notice that the effective noise
variance is reduced by the factor 1/I for the time-varying
filter. If we fix the SNR at unity, then the improvement
factor is P = (I + 1)/2. Thus we see that there is a sub-
stantial improvement in performance at this low SNR,
provided that /is much greater than one. (I = 1 corresponds
to transmission at the Nyquist rate and renders the PAM
signal WSS.) We conclude that high SNR is not a pre-
requisite for improved performance with time-varying filters.
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Next, we discuss PAM with less-than-full-duty-cycle rec-
tangular unit-energy pulses of width 7/I. Assuming uncor-
related pulse amplitudes, we obtain from (3-27), (3-28) the
following estimation errors:

6 2N,/T
J — s 0
Jo o> + No/T
© 2 2 2
<J>0 = Noas |(I)(f)| 5 df> ‘;s INO/T . (3_32)
~w No + a2|@(f)] os" + INo/T

For high SNR’s, there is an improvement factor P > I that
increases as the pulsewidth decreases. Thus improvement
increases with increasing degree of CS.

More detailed results on the solution (3-27) for the
optimum time-varying filters for PAM signals are given
in [21].

4) Synchronous M-ary Data Signals: An important class
of signals that is of practical interest in digital communica-
tions is the class of synchronous M-ary signals defined in
(1-3). In this expression, {a,} (hereafter denoted {b,}) is an
M-ary random sequence, each random variable of which
has the alphabet of realizations {o,&,," * *,0}. This class
of signals includes FSK and PSK signals, and PPM, PWM,
and AM signals. These synchronous M-ary signals admit
Mth order TSR’s where the pth basis function is ¢,(¢) =
¢(t,0,) and where the M jointly WSS sequences {a,(n)}
comprise indicator sequences. That is, for every integer n,
the realizations of all but one of the M elements {a,(n),
a,(n)," - -,ay(n)} are zero, and the nonzero realization is
equal to one. For this TSR, the matrix of correlation
sequences, with elements {r,,(n — m)}, is a matrix of joint
probabilities of which the (n — m)th element of the pgth
sequence is the joint probability of the event b, = «, and
b, = a, Also, the mean value of the random variable
a,(n) is just the probability of the event b, = o,

As a specific example of a synchronous M-ary data signal
we consider the FSK signal

0

x(t) = Y, w(t — nT) cos (2nb,fot)

n=—

(3-33)

where w is a unit-energy sinc pulse of bandwidth B < f, =
integer multiple of 1/T, and where the frequency parameters
{b,} are statistically independent M-ary random variables
with equiprobable realizations {1,2,- - -,M }. The Mth order
TSR for the centered version (x — E{x}) of this process
has a constant spectral density matrix with elements

) 1
Rl = "o
where J,, is the Kronecker delta.

Now let us consider the problem of optimally filtering
this FSK signal out of white noise. Employing (3-34) in
(3-27) and (3-28) results in the estimation error variances

(3-34)

_LINM -1
o> = T MN, + 1
{Jdo = ! NoM — 1) (3-35)

T MN, + (M — 1)2BTM
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Using an effective noise bandwidth of 2BM to obtain a
noise variance of 2BMN, and using the time-averaged
signal variance (M — 1)/MT, we express the improvement
factor in terms of the SNR p

_ 1+ p2BTM|(M — 1)
1+p '

P (3-36)

The lowest practical bandwidth B = 1/T corresponds to
transmitting pulses at the Nyquist rate, and results in a
minimum improvement factor of 4 for binary FSK at high
SNR’s. As the bandwidth of the pulse is increased in order
to decrease intersymbol interference, the high-p improve-
ment factor increases in direct proportion. Hence the time-
varying filter becomes more attractive, relative to the time-
invariant filter, as the quality of transmission increases.
Note that for SNR’s as low as unity, there can still be a
substantial improvement.

Detailed results on the solutions (3-27) for optimum
time-varying filters for synchronous M-ary data signals are
given in [21].

5) Video Signals: For this example, we consider the pro-
cess that results from scanning a two-dimensional visual
pattern using the conventional rectangular scanning format
(without interlace). The visual pattern is modeled by a
two-dimensional random step function, giving a stationary
autocorrelation with exponential form that is separable in
the horizontal and vertical directions [22]. Neglecting
frame-to-frame correlation, the scanner output is a CS (7))
process, where T is equal to the line-scan interval. Consider
any two time instants ¢, and ¢,, where ¢, occurs in the mth
line after the one that contains #,. Then the scanner output
has a normalized autocorrelation function given by

kl(tpts) = a™exp (=2nfolty — 1, + mT]) (3-37)

where the parameter f, characterizes correlation in the
horizontal direction and « is the line-to-line correlation (m
is a function of #,,7,).

The Karhunen-Loéve TSR has proven to be especially
useful for representing this process. For this representation,
the ¢,(¢) are the normalized solutions of

fT exp (—2nfolt — s, (s) ds = A,¢,(t), forallte[0,T].

0

The eigenfunctions of this equation are cosine and sine
functions with frequencies that are given by the solutions of

an (1) =% n a1 =

respectively, and the corresponding eigenvalues are given

by [1]
SEICIR

The matrix of crosscorrelations for this TSR has the
particularly simple form '

r(n) = ol"A

(3-38)

(3-39)
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TABLE 1
PERFORMANCE OF OPTIMUM TIME-VARYING FILTER FOR VIDEO SIGNAL:
10 log;o (p{Jo)) DB, FOR TYPICAL VALUES OF LINE-TO-LINE CORRELA-
TION AND SNR p

.98 19.716.6 }3.3]1.0

95 17.313.9]1.4{0.2

where A = diag {A,}. Thus the spectral density matrix is
' 1 —o?

R(f) = [(1 . (X)Z + 4o sin? (an)

] A (3-40)

Now consider the problem of continuous waveform es-
timation when this signal is received with additive white
noise. For this case, (3-27) is expressed as

Joy = % ;2:‘,1 Ap [’IP + No (i i Z)]

e mo (53]

This performance has been numerically evaluated for the
specific case of a 500-line square format with equal correla-
tion in the visual pattern along horizontal and vertical
directions. This requires that o = exp (—2nf,7/500). As-
suming approximately equal resolution requirements in the
horizontal and vertical directions, the bandwidth of the
signal is approximately 500/27. Using this bandwidth, we
approximate (3-41) by the contribution of only the first 500
terms, and we take p = T/500N, as a measure of the
signal-to-noise power ratio. In Table I, the performance of
the optimum filter for typical values of « and p is indicated
by —101og, o (p{Jo»). Since we have assumed a unit-variance
signal, this quantity represents the improvement (in decibels)
in optimum filtering over that of an ideal low-pass filter
that simply rejects the noise at frequencies above 500/2T.
For the parameter values chosen, the cyclic fluctuations in
the correlation of the video signal are insignificant (low
degree of CS), and the improvement factor P is negligible.
This fact has been verified numerically by evaluation of
{J >, in (3-28) for this case.

Observe that even though the TSR for the video signal is
infinite dimensional (M = o0), we were still able to employ
it in Theorem 2 to solve the optimum filtering problem.
The reason for this is that the infinite-dimensional TSR
spectral density matrix R is diagonal (3-40). This is in fact
the case for various signal formats including PAM signals,
TDM (not necessarily PAM) signals, and video signals.
The property in common here is the Markov-like form of

—-1/2

(3-41)
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the autocorrelation function

ko (t + mT, s) = a,k.(ts), forallt,se[0,T] (3-42)

for all integers m. This form results in a spectral density
matrix for the Karhunen-Loéve TSR that has the diagonal
form

R(f) = A Y o, exp (—j2rnmfT). (3-43)

Another form for infinite-dimensional TSR spectral den-
sity matrices that can permit matrix inversion is the sum of
a diagonal matrix and the outer product of finite-rank
matrices

R(f) = A(f) + P(NHQ'(f)

where A is diagonal and P,Q are oo x M dimensional (M
finite). It can be shown [13] that any TSR spectral density
matrix for a random process which is the output of a
periodically (7) time-varying Nth order linear dynamical
system driven by jointly WSS white noise processes, €x-
hibits the preceding form with M = 2N, Q constant, and
A = r(0), where r(0) is diagonal if the TSR employs an
orthogonal expansion on [0,77].

(3-44)

IV. SuMMARY

It is evident that many physical processes are more
accurately modeled by a CS process than by a stationary
process. Fortunately, the CS process has properties that
make it a great deal less formidable in analysis than the
general nonstationary process. In fact, techniques used for
wide-sense stationary processes are generally applicable
since scalar-valued CS processes can be represented by
vector-valued jointly WSS processes. Furthermore, the
representors may be either of the continuous or discrete
type. Some of the representations discussed here when
applied to generally nonstationary processes affect a de-
composition into representors that, although not WSS, are
still more elementary than the process being represented.

The value of using the more accurate CS models in place
of time-averaged (or phase-randomized) WSS models for
processes is demonstrated with examples that illustrate
optimum-filter performance improvement. The CS models
have also proven valuable in the design and analysis of
optimum filtering structures and of synchronization schemes
employed to extract timing information from received CS
signals.

The practical utility of the representations for CS pro-
cesses that we discuss is illustrated in three ways. First, the
representations give insight into structural properties of CS
processes and exploit their similarities to WSS processes.
Second, our examples show that the representations provide
natural models for many communication signal formats.
Third, they lead to analytical solutions and result in prac-
tical interpretations of optimum periodically time-varying
filters for CS processes.

A basic property of a CS process that is of practical
interest is its degree of CS. This property might be in-
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terpreted as the “distance” to the “‘nearest’ stationary
process. This distance measure could be formulated in a
variety of ways, depending on the application at hand. Our
examples show that such simple measures as the amount of
fluctuation of the mean and the variance over one cycle
may not be adequate to characterize the degree of CS. A
possible measure is the relative performances of the op-
timum filters for a CS process and its phase-randomized
version in the case of additive white noise. This measure
provides useful information for designing scanning or multi-
plexing formats and for deciding whether or not to employ
time-variable signal processing operations. Its drawbacks
are that it is often not a convenient measure to evaluate
numerically and that it is dependent on the level of the
noise interference.

Further work is needed on representations of processes
that are not strictly CS but could be modeled similarly using
interval and phase parameters that drift slowly with time.
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