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Abstract—Several authors have shown that the structure of the least-
mean-square linear estimator of the sequence of random amplitudes in a
synchronous pulse-amplitude-modulated signal that suffers intersymbol
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CORRESPONDENCE

interference and additive noise is a matched filter whose output is
periodically sampled and passed through a transversal filter (tapped
delay line). It is our purpose in this paper to generalize this result to
synchronous m-ary signals (e.g., FSK, PSK, PPM signals). We prove that
the structure of the least-mean-square linear estimator of the sequence
of random parameters in a synchronous m-ary signal, which suffers
intersymbol interference and additive noise, is a parallel connection of
m matched filters followed by tapped delay lines. A similar structure is
derived for the continuous waveform estimator of a synchronous m-ary
signal. Finally, we present a structure for estimation-decision detection
of synchronous m-ary signals, which is based on least-mean-square linear
estimates of a posteriori probabilities.

I. INTRODUCTION

We are primarily concerned here with least-mean-square
(LMS) linear estimation of cyclostationary synchronous m-ary
signals that have been transmitted through a noisy dispersive
channel composed of a linear deterministic time-invariant trans-
formation and additive uncorrelated wide-sense-stationary (WSS)
noise. With this model for the channel, the received signal y is
given by the expression

) = fw g(t — o)s(o) do + u(2), (1

where g is the impulse response for the channel transformation
[transfer function G(f)], u is the additive noise [power spectral
density K,,(f)], and s is the transmitted signal.

We will consider only the class of signals that take the form

s6)= X plt = nT, ay), @

where {a,} is a random sequence, the nth element of which
“modulates™ the pulse p(¢t — nT,-). The random variables com-
prising {a,} are discrete with m-allowable levels {a;; j = 1,2,- -,
m}, and the random sequence is stationary of order 2. That is,
the probability that a, = «; is p(j) for all integers n, and the
probability that a, = «; and a, = «; jointly is p,_,(,)), for all
integers n and q. This stationary model for {a,} guarantees that
the random signal s is cyclostationary with period T [9].
Equation (2) for s is an idealized model for many synchronous
pulse-train formats such as frequency-shift-keying (FSK),
phase-shift-keying (PSK), pulse-width-modulation (PWM), pulse-
position-modulation (PPM), and others.

If the modulation of p(t — nT,-) with a, is linear, p(t — nT,
a, = a,p(t — nT), then s is a synchronous m-ary pulse-
amplitude-modulated (PAM) signal. For this special case
several authors (most notably Berger, Tufts, and Kaye and
George [1]-[3]) have shown that the structure of the LMS
linear estimator of the random sequence of amplitudes {a,}
is a matched filter whose output is periodically sampled (every
T seconds) and passed through a transversal filter [tapped
delay line, (TDL)]. The transfer function for the matched filter
is

G*()P*(f)
M = =7 7 3
) K./ 3)
and the transfer function for the TDL is
«Q(f)a

T(f) = m = E=Z_QO c; exp (j2#iTf), 4

where the elements of the m x m matrix Q are

Qu() = X pulioa) exp (j22nTY), ()
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and « is the transpose of the m-vector with elements {«;}, and
1 00
LN =5 X Kalf = nDIMG = w D (6)
n=—oo

The Fourier coefficients {c;} are the tap weights.

Note that the tap weights are difficult to solve for, and even if
they were known, the estimator is noncausal. The real value of
this solution is the identification of the structure of the optimum
linear estimator. Knowledge of this structure provides a basis
for developing receivers that can be near optimum and practical
for implementation (e.g., a causal approximation to the matched
filter M followed by the LMS N-tap TDL and an m-level threshold
detector). Furthermore—and perhaps most important—know-
ledge of the structure provides a basis for developing adaptive
receivers [4]-[7].

With this as motivation, we proceed to solve for the LMS
linear estimator for the general case of m-ary nonlinear modula-
tion.

II. PerioDIiC PARAMETER ESTIMATION

It is well known that the necessary and sufficient condition on
the impulse-response function for the LMS linear estimator for
the modulating sequence {a,} can easily be derived from the
projection theorem [8], and can be expressed as the linear
integral equation

Vt e (—00,00)

h(nT,0)k,(0,1) do = ky,(t,nT),
le (nT,0)kyy(0,t) do va(t:nT) {V integer n, (7)

where k,, is the autocorrelation function for the received
signal y

ky(o,t) = i {:‘ w(t — iT,a))wic — iT) + k(o — 1), (8)

i=—w j=1

and k,, is the cross-correlation function for y and {a,}

kyo(t,nT) = i i bi_w(t — iT, a;). )

i=—ow j=1

In the preceding expressions, {w;} are the inverse Fourier trans-
forms of the elements of the m-vector

W) = QUHW (S0 = QNHP([0G(f),

where the elements of P(f,«) are the Fourier transforms of the
pulses {p(t,x;)} and the elements of W(f,«) are the Fourier
transforms of the elements {w(z,x;)}, and where

(10

m
bl = Y 0%, (14)
q=1
In the preceding integral equation, / is the impulse-response
function for the LMS estimator whose outputs at the times
{nT} are the estimates {d,} of the parameters {a,}.
Now, it is shown in the Appendix that the solution to (7) is
time-invariant and has Fourier transform—the transfer function
for the estimator—given by the formula

H(f) = il M (NT(f), (12)
where
G*(HP*(f,2)
M, = 2 ~Das 13
) K. 13)

and the m-vector with elements T,(f) is

T(f) = U+ QOLNI'Qe = 31 erexp (2miTh), (14)
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where I is the m x m identity matrix and L is given by
1 S /.
LN = X Kalf = DM/ = i/ TIM(f = nlT). (15)

Clearly, M, is the matched filter for the dispersed version of the
pulse p(t,a,) in additive colored noise. Also, since T(f) is 1/7-
periodic then T,(f) is a TDL with tap weights {c;?}. Hence, the
structure of periodic parameter estimators for synchronous
m-ary signals is the parallel connection of m matched filters
each in tandem with a periodic sampler and a TDL as shown in
Fig. 1. This structure directly parallels that for PAM. In fact,
the formula for the m-vector of TDL’s is simply a vector-version
of the scalar formula for PAM (4), and this general solution when
applied to the special case of PAM reduces to the well-known
formula of (4).

In general, solving for the tap weights {e;} will be even more
difficult (due to the matrix inverse) than it is for PAM. Also, the
estimator is noncausal. Again, as for the case of PAM, the real
value of our solution is the identification of the structure of the
optimum estimator. Knowledge of this optimum structure
provides a basis for developing adaptive receivers and fixed
receivers that can be near-optimum and practical for implemen-
tation. For example, if we impose the constraint that our esti-
mator consist of a parallel connection of causal approximations
to the m matched filters followed by N-tap transversal filters,
then the mean-squared error is a quadratic functional on R™,
Thus, the LMS set of tap weights can be found by inverting an
mN x mN constant matrix.

IIT. ConTINUOUS WAVEFORM ESTIMATION

If it is desired to estimate the total synchronous m-ary wave-
form rather than the sequence of parameters then we must solve
a new integral equation for the LMS linear estimator [which
will be a periodically (7)) time-varying system]. The optimum
continuous waveform estimator for PAM can be obtained by
simply generating pulses with amplitudes equal to the estimates
obtained from the periodic parameter estimator. Similarly, it
will be shown that the optimum continuous waveform estimator
for nonlinearly modulated synchronous m-ary signals can be
obtained by modifying the internal structure of the periodic
parameter estimator to include m pulse generators.

Using the projection theorem, we obtain the following integral
equation for the optimum linear estimator for s

[ee)
f h(t,0)k,,(0,t) do = k,(t,1), Vt,z € (—o0,0), (16)
where k,; is the cross-correlation function for y,s
ky(tr) = X X plx — iT, aw,(t — iT). a7n

i=—o g=1

Now a method of solution [9], which parallels that given in
the Appendix, results in the following explicit solution for the
optimum impulse response function

e = Y 3 p — iT, ah(iT — ),

i=—o0w g=1

(18)

where the Fourier transforms of the functions {,} are given by
the formulas

H() = 3 MU, (19)
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Fig. 1. Structure for LMS periodic parameter estimation on synchronous

m-ary signals.

where {M,} are the m matched-filter transfer functions of (13)
and {T,,} are the transfer functions for the m x m matrix
[T(f)] of TDL’s

[T(N] = I + QUHLN] Q).

Thus, we see that the structure of the LMS continuous wave-
form estimator is a bank of m matched filters followed by a
matrix of TDL’s and an output bank of m pulse generators as
shown in Fig. 2.

If we postmultiply the matrix [T(f)] of (20) by the vector «,
then we obtain the vector T(f) of TDL’s, which is given in (14)
and is employed in the periodic parameter estimator derived in
the previous section

(20)

I(f) = [T(N)]e

Hence, if the m modulators at the output of the waveform
estimator (Fig. 2) are replaced by m attenuators with attenuations
{a,}, then the resultant time-invariant filter will have an impulse
response that is identical to that of the periodic parameter
estimator of (12) (Fig. 1).

ey

1V. DETECTION
From the preceding discussion we see that the estimates
provided by both the parameter estimator and the waveform
estimator can be expressed as weighted sums

G, = qﬁ:]l b(nT)a, (22)

0 m
5y = Y, Y b(nT)p(t — nT, a,), (23)
n=-—w g=1

where {b,(nT);q = 1,2,---,m} are the m outputs provided
every T seconds by the matrix of TDL’s in Fig. 2. So we see
that these two types of estimators both employ the same com-
ponent, denoted H, in Fig. 2 to compute the m sequences of
“weights” {b,(nT)}, and differ only in that the sequence esti-
mator employs the weights to compute an ‘“‘average alphabet-
letter”” every T seconds, and the waveform estimator employs
the weights to compute an ‘“‘average pulse” every T seconds.

In fact, it can be shown that the {b,(nT)} are LMS linear
estimates of the a posteriori probabilities of reception {Pr [a, =
a,/¥1}; ie., by(nT) is the LMS estimate of the probability that
the nth symbol transmitted was the gth letter of the alphabet,
given the received signal. Hence, the estimator component H,
consisting of the matched filters and TDL’s in Fig. 2 minimizes
the mean-squared error E{[b,(nT) — Pr [a, = o,/y]]*} subject
to the constraint of linearity. (The expectation is over the
ensemble of received signals.)
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Fig. 2. Structure for LMS continuous waveform estimation on syn-
chronous m-ary signals.

This result suggests a scheme for detection: eliminate the
output pulse-amplitude modulators in Fig. 2 and feed the m
probability estimates into an m-ary decision device, which treats
the probability estimates as if they were the actual probabilities.
Such estimation-decision detectors provide the basis for various
adaptive detection schemes. Note that the LMS error criterion
for estimating the probabilities is particularly appropriate when
the estimates are used to make decisions, since large errors—
which are likely to result in wrong decisions—are weighted more
heavily by this criterion than small errors—which are likely to
lead to correct decisions.

APPENDIX

We assume a form for the impulse-response function, which
is similar to that of the correlation functions

WkT,0) = Z Z cPOkT — (o — iT)).

i=—ow p=1

(A-1)

We see that the estimator is time-invariant since 4 depends only
on the difference of its arguments. The Fourier transform of A
(the transfer function) is

H() = & M0,
pe
where M), is the Fourier transform of 8,(¢) and
T(f) = X cf exp (j2miTY). (A-2)
With some foresight, we choose
G*(/)P*(f2,)
M = — 7 Tl A-3
() K. (A-3)

Now, changing the index on the infinite sum in (A-1) results in

the alternate expression

hkT,0) = Z Z e 0,(iT — o),

i=—o p=1

which, if substituted along with (8) and (9) into (7) yields

¥ 3w -, oa,)[Z Y

i=—0w g=1 j=—o p=1

2]
f w(o — iT)0,(JT — o) do + ciy — b;’_k] =0,
—©
Vt.k.
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This equation will be satisfied if the expression in brackets is zero
for all i,k,q

a0 m
Y D+ el — bl =0, Vikg, (A-4)
Jj=—o p=1
where
[ce]
D A f Wwo(—rT — 6)0,(c) do. (A-5)
— o0
Lettingj — k = n, i — k = rin (A-4) yields
m 00
Y Y Dol +ct—bi=0, Vrg (A-6)

p=1 n=—o

We denote the bilateral z transform of the sequence (indexed
by n) {c¢,”} as
&) A Y e

n=-—oo

Now, taking the z transform of both sides of (A-6) yields

Z D,(2)8)(2) + E(z) = by(2)

or in matrix notation
b(z).

It can be shown that D is nonnegative definite, so the indicated
matrix inverse exists and we have

éz) =

From (A-2), (5) and (11), we find that é(exp [—j2=Tf]) =
blexp [—2nTf]) = Q(f)e. Thus,

D) + 1é(z) =

[D(z) + I]"'5(2). (A-7)

()

Y D, exp (j2nrTf) +

r=-—aw

-1
(f) =[ I] 0. (A8)

But, using (A-5), it can be shown that

Z D, exp (j2nrTf) =
r=-—oao
where Q,L are defined in (5) and (15). Hence, T(f) is given
by (14).

QL(S),
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