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“Modulation-Rate” Distortion in Frequency Modulators

WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—An analysis of ‘‘modulation-rate” distortion originating
in frequency modulators is presented. The analysis is based on the
solutions of the differential equations representing two fundamental
classes of variable frequency oscillators. It is shown that the VFOs
of one class produce ideal frequency modulation, while the VFOs
of the other class inherently produce distortion. It is shown that
this distortion is a function of the ratio of two rates, the rate of
change of energy storage capacity and the rate of change of stored
energy.

INTRODUCTION

FREQUENCY modulator can be modeled as a
two-port with a modulating signal V,.s input,
and a modulated signal Vg, output. Ideally, the

output signal would be given by the following expression:

VFM = AO CcOoS [Kf Vmod dt + 0] (1)
where 4,, K, 6 are constants. The frequency w(t) of the
output signal is the derivative of the argument and, for

the ideal modulator, is proportional to the modulating
signal

o) = 2 [K [ Vs dt + 0] = KVs. @)
In general, Vo, < [1 4 8(¢)]; therefore, the modulated
frequency becomes w(t) = w, + «,8(f) where w, is com-
monly referred to as the carrier frequency.

For nonideal frequency modulators, the output signal
as shown in (1) must be modified by adding amplitude
modulation and frequency distortion. That is,

Vew = A(f) cos [ [ ®Veus + D) dt] ®)

where A(f) is the amplitude modulation and D(¢) is the
frequency distortion.

For many applications, the undesired amplitude modu-
lation is of less concern than the frequency distortion,
because under certain conditions the amplitude modula-
tion can be removed by limiting and filtering [1]. Of prime
importance is the frequency distortion, because in most
cases it cannot be separated from the desired signal [1].

There are several sources of distortion in frequency
modulators: nonlinearities, thermal and shot noise, method
of frequency deviation, characteristics of the frequency
deviating elements, etc. This paper deals with distortion
resulting from one source: method of frequency deviation.
It is the purpose of this paper to present an analysis of
this particular distortion, to be called “modulation-rate”
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Fig. 1. Basic VFO.

distortion (abbreviated to rate distortion'), to identify
the mechanism by which this distortion is created, and
finally to evaluate various methods of frequency deviation
with respect to rate distortion performance.

MobpEeLs AND DIFFERENTIAL EQUATIONS OF VFOs

In essence, a frequency modulator is a variable fre-

~quency oscillator (VFO). The general form of a VFO is

shown in Fig. 1, where 8 is a voltage-variable frequency-
selective network, its transfer characteristic being con-
trolled by the input modulating signal Va.q; and u is an
amplifier that compensates for losses in 8 such that the
loop is essentially lossless.

Four fundamental forms of frequency-selective networks
will be considered:

1) parallel antiresonant LC
2) series resonant LC

3) RC-type Wien bridge

4) RC-type bridged T.

Ten different VFOs may be constructed from these four
fundamental forms. Circuit models of these ten VFOs and
the differential equations representing each are shown in
Fig. 2. In these circuit models, the amplifier x has been
modeled by an ideal current or voltage amplifier. The
derivation of a typical differential equation is shown in
Appendix I. In the derivation of these differential equa-
tions, one idealizing assumption has been made: the gain
function of u has been assumed to be a constant such that
the losses in 8 are exactly canceled. In other words, it has
been assumed that the VFOs are oscillating in equilib-

rium. This assumption precludes the nonlinearity normally

necessary for equilibrium.”

t The quantity hereafter referred to as “rate distortion’’ should
not be confused with the totally unrelated quantity from information
theory called ‘“‘information-rate” distortion and abbreviated to rate
distortion.

2 This assumption has been made in order that any distortion
appearing in the solution of the governing differential equation can
be identified as modulation-rate distortion, that is, distortion
due only to the method of frequency deviation.
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Fig. 2. (b) Parallel L()C VFO.
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Fig. 2. (c) Series LC(t) VFO.
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TABLE I
Config-  Frequency Change of Differential
uration  Deviating Variables Equation
Element(s)
Parallel C(1) y = Ct)Vem 7
LC z = (LC())™
Parallel L(t) y = L)V
LC z = (L({)Co)? j+azy=0
Series L(t) y = L({)Vy
seriel cw z = gL((g%go—l
eries t y = Cl)Vem
LC z = (LC(t)t -
Wien bridge  R(¢) y = Vem n
RC z = (R(t)Co)?
Wien bridge  C(¢) y = C)Veu
RC z = (RoC(£))?
Bridged-T C(t) y = Ct)Vey
RC z = (R,C(t))™? i
Bridged-T R(t) y = Vem j—=y+ay=0
RC z = (R(@E)Co) z
Parallel L) « Ct) y = L{t)Vpu
4! or
¥y =CH)Vrum
z = (LE)CE)
Series L(t) « Ct) y = Ct)Veum
LC or
y = L{)Vrm
z = (LE)CE) -

By making a simple change of variables in the ten
differential equations shown in Fig. 2, the ten equations
may be reduced to two general forms. These are shown
in Table I.

SOLUTIONS OF THE DIFFERENTIAL EQUATIONS

Case 1

The governing differential equation representing four
of the ten VFOs is [2]

d2
A .
£y @

<

|

j+e@y =0,

U

A simple means of showing that, in this case, ideal fre-
quency modulation is not plausible is to substitute into
(4) the desired solution and observe that the modulation
function z, which relates the modulating signal V.. to
the frequency-deviating element, is far too complex to be
realized with any practical element. The desired® solution
is

y(®) = A cos [K [ Vawa dt + o]. ®)

Substituting (5) into (4) and letting A(t) = (KVmoa) ™ *
yields the following:

_ 2 _]; <Vmod> _ ?’_ (ffmod>2
WO = & + 3\ T 1T

3 Actually, the most desirable solution would have constant
amplitude; but it is impossible for such 2 solution to satisfy (4) re-
gardless of z. Therefore, amplitude variation is included in the form
of the solution.
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where z is inversely proportional to the frequency-deviat-
ing element (from Table I). Such a relationship certainly
cannot be realized with any known inductive or capacitive
device.

Equation (4) is Hill’s equation [3] and, with the sub-

stitution z « (1 + 8(f)), (4) becomes the Schroedinger

equation [4]. In general, (4) has no closed-form solution;
however, there are several possible methods of approxima-
tion [3]-[7]. Since the information sought here is an explicit
expression for the modulated frequency, it would be de-
sirable to transform (4) into another differential equation
in which the transformed variable is the modulated fre-
quency. Because (4) is a linear differential equation, the
desired transformation can be accomplished by assuming
a solution of the following complex form:

y() = exp [7, f o) dt] ®)

where w(f) is complex. Substituting (6) into (4) yields
the desired transformed differential equation

io— o +1z=0 )

where the real part of w(f) is the modulated frequency.
Equation (7) is a nonlinear differential equation. A method
of approximation known as the perturbation method [6]
is applicable to (7) provided z is a member of a restricted
class of functions defined by convergence criteria. First, a
perturbation parameter e must be artificially introduced
into (7). This can be accomplished by defining a new
variable and modulating parameter as follows:
A

¥ = ew, Q 4 e/ 5,
Then (7) becomes

(x > 0).

ey — ¢ 4+ Q@ = 0. (8)

Now it is assumed that ¥(f) can be developed into a power
series in ¢, that is,

w(t) = Z O at). ©)

Substituting (9) into (8) and equating like powers of e,
the following sequence of differential equations is obtained.

Yo — Q=0 e
o — 290t = 0 : €
W — 2%, — 1 = 0 D€
iy — 2905 — 29 = 0 &

i¢3 — 2%, — 2‘l/1¢3 - '50; =0 564

From this sequence, the general expression for ¢, is
extracted.
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1 ...
¥, = [y — Z ai; il n > 0,
2, i,720
i+i=n
0 = {2’ “7 o)
1, 7=
Yo = Q.

Substituting (10) into (9) and replacing ¢ with ew and ©
with e4/z 2 em(t), the following expression* for w is
obtained.

©

w(®) = 2 w(t)

n=0

1 ..
w,(t) = %Z{) @y — Z a;6,0;],

1,720
iti=n

Wy = m(t) .

Since odd-indexed w’s are imaginary, the desired solution
of (4), which is the real part of (6), can be written as’

y(@) = eXp[’if(w1+w3 + ws + )dt]

'Cos[f(wo+w2+w4+ ---)dt]

where®
Wy = hz(ﬂ
i
@1 2m

. ZLP@)L;@]
2 m | 8 \m 4m
3

4
1 [1 G 297 (m)“
o, = g | L m_ 297 (m

Referring to (3), the following definitions can be made.

4In this expression, the perturbation parameter ¢ has disap-
peared.

5 A general statement about the convergence of this infinite
series would present difficulties. However, it can be seen from the
expressions in (11) that for a slowly varying modulation function
(m) w1, ws, w3, wa grow progressively smaller. This is illustrated with
the example in the section ‘‘Interpretation of the Solutions.”” For
a rigorous treatment, see [13], [14].

¢ wo and w; comprise what is known as the WKBJ approximation
’[co] t[he5]solution of (4); this approximation requires w; < wo. See
5], [15]).

A(l) £ exp [z f > wa(t) dt]
’ﬂﬂ0>dg
D) £ 2 )
n>0
KV = m(t) £ +/z £ modulating function.
Case 14

For the parallel LC ()-type and series L(t)C-type VFOs,
the desired signal Vyy is (from Table I) proportional to
xy; but £ = m®. Therefore Vey « m*y(t); that is,

Veu = B(t) cos [[ (m(t) + D)) dt:\- (12)
B(t) is amplitude modulation, m(¢) is the desired modu-

lated frequency, and D(¢) is the rate distortion and is
given by the following expression:

1 3 <\ 2
D) = o [5 ()
+L[L‘ﬁ _ z%zz(m) _ 13 (ﬂ)
m* 16 m 128 \m 32 \m
(3)

_5m @ @(mfr'n]
8 m’ +32 m® +

13)

Case 1B

For the parallel L(¢)C-type and series LC ()-type VFOs,
the desired signal Vgy is (from Table I) proportional to
[ zy(t) dt; but « = m’, therefore Vey « [ my(t) dt;
that is,”

Veum = f (B(t) cos [f (m() + D(®) dt]) dt. (14)

This integral is not of a simple form. This complication
can be circumvented by making the substitution y = 2/«
before solving (4). The same method of solution is appli-
cable to the transformed differential equation. The desired
solution is proportional to the real part of z(f) and is
given by

Ven = B'(t) cos [f (m(t) + D'(¥) dt]- 15)

The difference between D’(f) in this case and D(¥) in
Case 1A is contained solely in the numerical coefficients.
The form is identical in both cases.

Case 2

The governing differential equation representing the
remaining six VFOs is
. T 2
p— 9 tzy=0. (16)
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Again, as in Case 1, a method of checking on the
plausibility of ideal frequency modulation is to assume
the desired solution, substitute it into (16), and solve for
the modulation function z(f), which relates the modu-
lating signal V.., to the frequency deviating elements.
The desired solution is as shown in (1). The resulting
modulation function is

x(t) = KVmod'
That is, the exact solution [8], [9] of (16) is

y(®) = A, cos [f z(t) dt + 0] 17

where 4, and 6 are constants.

Case 24

For the bridged-T R(f)C-type and Wien bridge R()C-
type VFOs, the desired signal Vyy is (from Table I)
equal to y(f). Therefore,

Vew = Ay cos I:K f Vosdt + o] (i8)

where Voo o« 1/R(). From (18) it is clear that the
RC-type VFOs in which the resistance R is modulated
inversely proportional to the modulating signal, and the
capacitance C is constant, produce ideal frequency modu-
lation with constant amplitude. There is no rate distortion.

Case 2B

For the bridged-T RC(f)-type and Wien bridge RC(f)-
type VFOs and the L(#)C(t)-type VFOs, the desired signal
Veu is (from Table I) proportional to z(£)y(¢). Therefore,

VFM = AOVmod COoS [Kf Vmud dt + 0] (19)

where Vioq « 1/C(t) for the RC-type VFOs and Vo
1/C(®) « 1/L(t) for the LC-type VFOs. From (19) it is
clear that the RC-type VFOs in which the capacitance
is modulated inversely proportional to the modulating
signal and the LC-type VFOs in which the inductance
and the capacitance are modulated together, each in-
versely proportional to the modulating signal, produce
amplitude product modulation in additional to ideal
frequency modulation. There is no rate distortion.

INTERPRETATION OF THE SOLUTIONS

The results of the preceding section may be summarized
as follows.

1) The VFOs considered, in which no energy storage
elements are modulated, produce ideal frequency
modulation with no amplitude modulation and no
rate distortion.

2) The VFOs considered, in which both storage ele-
ments are modulated proportionally, produce ideal
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frequency modulation with amplitude product
modulation and no rate distortion.

3) The VFOs considered, in which one of the two
storage elements is modulated, produce rate distor-
tion and rate-sensitive amplitude modulation.

From these results, it can be concluded that rate dis-
tortion must be the result of nontracking energy storage
capacities. More specifically, it can be seen from the
expression for rate distortion, as shown in (13), that rate
distortion increases from zero as the ratio

( rate at which the frequency of oscillation is deviated)
magnitude of the frequency of oscillation

increases from zero. But the rate at which the frequency
of oscillation is deviated is proportional to the rate at
which the energy storage capacity of one element varies
relative to the storage capacity of the other, and the magni-
tude of the frequency of oscillation is proportional to the
rate at which energy is exchanged between the two
storage elements. Therefore, rate distortion increases from
zero as the ratio

(relative rate of change of storage capacity)
rate of change of stored energy '

increases from zero.

Thus, rate distortion is sensitive to the ratio of two
rates of variation, and as brought out in the development
of the solutions for Cases 1A and 1B, rate distortion is
sensitive to the type of energy storage element being
deviated in a particular configuration.

Ezxample

To exemplify the nature of rate distortion, a parallel
LC(t)-type VFO [see Fig. 2(a)] with single-frequency
modulation will be considered. The modulating signal is
given by the following expression:

Viaoa = Vol + X cos w,t) (20)

where X and w, are constants. The modulated signal is
given by (12) and the rate distortion by (13), where
m(t) £ /2. But from Table I,

Vo L __1 1
VELLH) VLl VC)/C,

If the variable capacitor is a hyperabrupt junction
varactor diode with its junction capacitance inversely
proportional to the square of the reverse bias voltage [10],

Therefore,
m() = w(l + X cos w,i)

A1 (21)
* VLG,
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Fig. 3. Harmonic distortion in the FM output of a parallel LC(¢)-
type VFO modulated with Vmoa = Vo (1 4+ Xcoswmt).

Substituting (21) into (13) yields the following approxi-
mate® expression for rate distortion:

D@) = (%:)2 4;1 a, cos (Nw,t)
o= —3X- X
a, = 19_6X2
a; = —% X
ay = ;—g X

Fig. 3 shows a plot of second, third, and fourth har-
monic distortion as a function of the relative rate of
modulation (w,/w,) and the relative peak frequency
deviation (X).

From Fig. 3 and the expression for rate distortion, it
is clear that the amount of distortion increases as the
relative rate of modulation and the relative peak fre-
quency deviation increase.

SUMMARY

An analysis of rate distortion in frequency modulators
has been presented. It has been shown that rate distortion
results from interaction between the energy exchange

8 Tt has been assumed that wm/wo and X are small enough that
the expression for rate distortion (13) may be truncated after the
first term (for wm/woe < 1/10 and X < 1/3, the second term is down
more than 40 dB from the first term). )
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between two storage elements and the change of the
storage capacities of those elements. It has been shown that
certain types of frequency modulators create more rate
distortion than others, and that some types are distortion
free.

If high rate of modulation, high index of modulation,
and low distortion are desired, the RC-type VFOs in
which field-effect transistors are used as frequency devi-
ating elements look as promising as previously suggested
schemes [11], [12], and appear to be theoretically simpler
realizations.

APPENDIX
DERIVATION OF DIFFERENTIAL EQUATION REPRESENTING
Bripgep-T RC(f)-Tyee VFO [Fic. 2(i)]

" Letting’ F(Vem) = 2Vem and summing currents into
the node between the two capacitors results in

5d _o9d _ Yo _
Summing currents into the output node results in
da _4a _ Vem _
31 (CVen) — 5, (CVo) — 555 = 0. (26)

Solving (26) for V, and d/dt(CV,) and substituting into
(25) results in

CL (Vi) + s [ Vewdt = 0. @)
Differentiating (27) yields
& Vo) + 5L oy, + C0md — 0. 29
Equation (28) may be rewritten as
g-Zy+ay =0
y=COVeum, 2z=(RCE®)™" (29)
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