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Abstract. The concept of coherence is fundamental and quite important in all fields dealing with fluctuating quantities. Although
there is a commonality among the many uses of the term coherence, the precise meaning of this term seems to vary from one
field to another and even within some fields. The purpose of this tutorial paper is to present a unifying view of the concept of
coherence that is particularly relevant to the related fields of statistical signal processing and time-series analysis, which
permeate numerous other more specialized fields. Precise mathematical definitions of a variety of types of coherence are given
and are related to commonly used physical meanings. A brief survey of methods, which can be implemented with digital signal
processing algorithms, for exploiting the various types of coherence that can occur in measurements of fluctuating quantities
is presented. Of the three basic types of coherence - temporal, spectral and spatial - some emphasis is placed on spectral
coherence since its use in signal processing has received the least attention in the literature.

Zusammenfassung. Das Konzept der Kohdrenz ist fundamental und sehr wichtig auf allen Gebieten, bei denen es um verdnder-
liche GroBen geht. Obwohl es eine Gemeinsamkeit in den vielféltigen Anwendungen des Begriffs Kohérenz gibt, variiert die
genaue Bedeutung dieses Ausdrucks in den unterschiedlichen Anwendungsbereichen und sogar innerhalb einzelner Bereiche.
Das Ziel der vorliegenden Ubersichtsarbeit besteht darin, eine einheitliche Darstellung des Konzeptes der Kohdrenz in Hinblick
auf statistische Signalverarbeitung und Zeitfolgen-Analyse zu geben, womit auch zahlreiche andere speziellere Gebiete erfalit
werden. Prizise mathematische Definitionen einer Vielfalt von Typen von Kohdrenz werden gegeben und mit den gemeinhin
benutzten physikalischen Bedeutungen verglichen. Es wird ein kurzer Uberblick iiber die Anwendungsméglichkeiten der ver-
schiedenen Typen von Kohidrenz wiedergegeben, die sich im Bereich der Messung verdnderlicher Gréen anbieten. Von den
drei grundsitzlichen Typen von Kohérenz - zeitlich, spektral und rdumlich - wird das Gewicht auf die spektrale Kohérenz
gelegt, da ihre Anwendung bisher die geringste Aufmerksamkeit in der Literatur erfahren hat.

Résumé. Le concept de cohérence est fondamental et tout a fait important dans tous les domaines traitant de quantités
fluctuantes. Bien qu’il y ait un principe commun aux usages nombreux du terme cohérence, la signification précise de ce terme
semble varier quelque peu d’un domaine & un autre et méme 4 'intérieur de certains domaines. Le but de cet article a caractére
pédagogique est de présenter une vue unificatrice du concept de cohérence particuliérement adaptée aux domaines apparentés
du traitement statistique du signal et de ’analyse de séries temporelles, qui ont une influence sur bon nombre d’autres domaines
plus spécialisés. Des définitions mathématiques précises d’une variété de types de cohérence sont données et relices aux
interprétations physiques couramment utilisées. Un bref rappel des fagons possibles d’utiliser les divers types de cohérence
pouvant intervenir lors de la mesure de quantités fluctuantes est présenté. Des trois types de base de cohérence - temporelle,
spectrale et spatiale — ’accent est mis sur la cohérence spatiale du fait que son utilisation en traitement du signal a regu moins
d’attention dans la littérature.
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1. Introduction

The concept of coherence is fundamental and
quite important in all fields dealing with fluctuating
quantities. Although there is a commonality
among the many uses of the term coherence, the
precise meaning of this term seems to vary from
one field to another and even within some fields.'
Some examples of usage include coherent source,
coherent field, coherent light, coherent optics,
coherent receivers, coherent signals, coherent aver-
aging, coherent processing, temporal coherence,
spectral coherence, spatial coherence, self-coher-
ence, mutual coherence, coherence time, coherence
bandwidth and so on. The commonality among
these uses of the term coherence is captured in the
following definition given in the Oxford English
Dictionary: coherence is ‘“the action or fact of
cleaving or sticking together”. This dictionary also
defines the term correlation as “mutual relation of
two or more things”. It follows from these defini-
tions that fluctuating quantities that are highly cor-
related can be said to be coherent. Tying the
concept of coherence to that of correlation is help-
ful because we have precise mathematical defini-
tions of correlation that can be brought to bear
on the problem of making precise and quantifying
what is meant by coherence.

The purpose of this tutorial paper is to present
a unifying view of the concept of coherence that is
particularly relevant to the related fields of statist-
ical signal processing and time-series analysis,
which permeate various other more specialized
fields such as lasers, optics and image processing;
communications, radar and telemetry; atmos-
pheric science, oceanography, geophysics and
astronomy; sonar, ultrasonics and acoustics; and
others. Unfortunately, it is not possible in a single
paper to also discuss the various physical origins,
historical development and numerous applications
to the various fields; but some historical notes are

' Over 20 years ago, Mandel and Wolf [31] in a comprehens-
ive treatment of optical coherence properties, wrote “No gen-
eral agreement exists on the precise meaning of the term
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‘coherence’ or the domain encompassed by ‘coherence theory’.
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included and a sampling of physical meanings and
uses of coherence is presented.

In Section 2, general mathematical definitions of
mutual coherence between two fluctuating quanti-
ties are given in terms of probabilistic and nonpro-
babilistic definitions of the correlation coefficient.
This is used to establish a link between coherence
and statistical linear dependence, and examples are
given. This general approach is then applied to spe-
cial situations that lead to definitions of temporal,
spectral and spatial self-coherence, as well as
mutual coherence. A spectral decomposition of
coherence which leads to the coherency function is
then described and used to further develop the link
between statistical linear dependence and coher-
ence, and an example is given. The quantification
of coherence between two fluctuating quantities is
then modified to provide a definition of partial
coherence between two fluctuating quantities that
are related to other fluctuating quantities. Coher-
ence is then given a geometric interpretation in
terms of the angle between two vectors, and the
link with statistical linear dependence is described
in terms of orthogonal projection. The existence of
spectral self-coherence is then tied to the property
of cyclostationarity of time-series, and several
examples with graphical illustrations are given. The
limited utility of spectral coherence for other non-
stationarity processes is explained. Finally, the
spectral characterization of joint temporal and
spectral self-coherence is explained and illustrated
graphically with several examples.

In Section 3, a sampling of the many physical
meanings of coherence that are commonly used is
explained and related to the mathematical defini-
tions presented in Section 2.

In Section 4, some methods for using the various
types of coherence that can occur in measurements
of fluctuating quantities are briefly described.
These include applications of temporal coherence
theory of optimum time-invariant filtering for sig-
nal extraction and prediction, applications of tem-
poral and spectral coherence theory to frequency-
shift filtering for signal extraction and prediction,
applications of spatial and spectral coherence
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theory to antenna array processing for direction-
of-arrival estimation, applications of spatial and
spectral coherence theory to blind adaptation of
antenna arrays for signal extraction (spatial filter-
ing), and applications of temporal and spectral
coherence theory to signal detection, classification
and time-difference-of-arrival estimation.

Although probabilistic treatments of temporal
and/or spatial coherence can be found in many
books and papers (cf. [4, 29] for probabilistic treat-
ments of temporal and spatial coherence, respec-
tively), nonprobabilistic treatments and spectral
coherence have received relatively little attention
[17]. Because of this, the emphasis in this paper is
on providing a unifying nonprobabilistic treatment
of all three types of coherence with special atten-
tion paid to spectral coherence. This emphasis is
reflected in the references chosen.

2. Coherence theory

2.1. Degree of coherence

Within a probabilistic framework, the degree of
coherence of two zero-mean random variables X
and Y'is defined to be the magnitude of their corre-
lation coefficient p:

o B{XYH}  Ryy
[E{XPIE{IY}1'?  [RexRyy]"?

&)

o)

where E{-} denotes expecation. For example

Bxy=E{XY*}éJ J xy*fxy(x, y) dxdy,
(2)

where fxy is the joint probability density for X and
Y. It can be shown (e.g., by using the Cauchy-
Schwarz inequality, cf. [15, Section 13.2]) that
0<|pl<1. For nonzero-mean variables X and 7,
the means must be subtracted before applying
definition (2). Thus, in general Ryy in (1) must be
a covariance rather than a correlation.

In practice, given an ensemble of random sample
values X(s) and Y(s) with ensemble index s, the

empirical degree of coherence can be calculated as
follows:

12— £xr ()
- [BXXB)’Y]] ’
where
~ 1 N
nyéﬁ Z X(s)Y*(s). (4)

It can be shown that if X(s) and Y{s) are drawn
from a population governed by fyy, then 5’” con-
verges to Ryy in a probabilistic sense (e.g., in mean
square or with probability equal to one) as N — 0.

The degree of coherence is a measure of how
closely X and Y are related by a linear transforma-
tion. This can be seen from the fact that the mini-
mized fractional mean squared error between X
and the linear transformaton aY of Y is given by
(cf. [15, Section, 13.3])

E(X—aYP}_ .,
S ey D o

where the minimizing value of a is

_E{XY*}

. 5b
(17} )

Thus, X and Y are closely related by a linear trans-
formation if and only if their degree of coherence
is close to its maximum value of unity. The two
random variables X and Y are said to be completely
coherent if and only if [p|=1 and completely inco-
herent if and only if |p|=0.

To illustrate the degree of coherence, Fig. 1
shows the scatter plots for three pairs of zero-mean
random variables. The scatter plots plot the
normalized samples X'(s)=X(s)/R¥¢ and
Y'(s)=Y(s)/R ¥+ as the coordinates of points in a
plane. In Fig. 1(a), X~aY and consequently,
p=1. In Fig. 1(b), X and Y are statistically
independent and p=0. In Fig. 1(c), Y=X * (where
fx(+) is an even function) and p<«1. This third
example illustrates that the degree of coherence is,
in general, a measure of the degree of only linear
dependence. Variables that are related to a high
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Fig. 1. Scatter plots for three pairs of variables: (a) high degree
of coherence; (b) zero degree of coherence; (c) low degree of
coherence, but high degree of nonlinear dependence.

degree, but nonlinearly, can have a low degree of
coherence. An exception to this is a pair of jointly
Gaussian random variables X and Y, which are
completely incoherent if and only if they are statist-
ically independent (cf. [15, Section 2.3]). However,
if |p|=1, then X and Y are completely statistically
dependent, regardless of their particular probabil-
ity distribution.

Within the nonprobabilistic framework of per-
sistent time-series, the degree of coherence of two
time-series x(z) and y(z) with zero time-average
values is defined to be the magnitude of their tem-
poral correlation coefficient p:

o Y Ry
[Kx@OPYWOPY T[RRI

where (-) denotes infinite-time average. For
example,

Ry =<{x()y*(2)7
T/2

x(O)y*(r) dz. (7

p (6)

. 1
2 lim —
T _1p
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In practice, given only finite length records of
x(?) and y(¢), the averaging time 7 must remain
finite. Thus, the empirical degree of coherence can
be calculated as follows:

Al A Iﬁxy|
:f’ 8
TN (®)
where
R 1 T/2
nyé}J x(D)y*(¢) de, )
-T2

which converges to R, as T — co. Also, the analog-
ous discrete-time average with time sampling incre-
ment 6,

fzxyzi él x(n8)y*(nd), (10)

can be used in place of (9).

The degree of coherence is a measure of how
closely x(¢) and y(¢) are related by a linear trans-
formation. This follows from the result

_ 2
i SFO =@y (@) >=1_| 2

s 11
. P P (112)
where
o= OO (i)
BOP

which is the nonprobabilistic counterpart of (5).
The temporal correlation coefficient (6) can be
reinterpreted probabilistically as in (1) by introduc-
ing the concept of fraction-of-time probability
density. Specifically, the fraction-of-time that
x<x(t)<x+ ¢ and y<y(t)<y+ ¢ is given by’

fx(t)y(t)(xa ¥; €)

1 (772
£ lim _J Ly (x5 &)Ly (y; €) dt,

T— o -7/2

(12)

% Although fraction-of-time probabilities such as (12) are
known to exist for time-series that are sample paths from
ergodic stochastic processes, it is not necessary to assume that
the time-series is associated with a stochastic process for limits
such as (12) to exist; see [3, 12].
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where I.y(- ; €) is the indicator function

1, x<x(t))<x+eg,

0, otherwise,

L(x; €) é{ (13)
and similarly for I,,(-; €).The integral in (12)
adds up the lengths of the subintervals of {—77/2,
T/2} over which the joint event x <x(#) <x+ ¢ and
y<y(f) <y+ ¢ occurs. The fraction-of-time prob-
ability density of x(¢) and y(¢) evaluated at x and
y is given by the limit

1
Seomo(x, )2 lln}) = Sroyn(X, y; €). (14)

In terms of this fraction-of-time density, we have
the expected value

E{x(t)y*(t)} éj J XY *frnpn(x, ) dx dy.

15)

Substitution of (12) and (14) into (15) and inter-
change of the order of the time-average operation
in (12) with the limit in (14) and the two integrals
in (15) yields

E{x()y*(1)}

1 T/2 1 s}
= lim —J {lim j xLyn(x; &) dx

T— o T -7/2

—0o0

1 o0
X; f YL (y; €) dy} dz

1 T/2
= lim ~j x(2)y*(¢) dt
T— o —T/2

= (x(O)y*(1)). (16)

Thus, the time-averages in (6)-(7) can be reinter-
preted (if one so chooses) as expected values as in
(1)-(2).

In the remainder of this discussion, with one
exception, only nonprobabilistic coherence defined
in terms of the temporal correlation coefficient (6)-
(7) is considered. (The one exception is a brief dis-
cussion later in this section on coherence of nonsta-
tionary processes.) The reason for emphasizing the

nonprobabilistic theory of coherence is that for
many applications the conceptual gap between
practice and the nonprobabilistic theory is nar-
rower and thus easier to bridge. Moreover, this
emphasis complements the emphasis on the proba-
bilistic theory that is found in most other treat-
ments of coherence.” (Nevertheless, as suggested
by (12)-(16), these dual theories are in fact related
by an isomorphism and are, therefore, mathemati-
cally equivalent. This is explained in [12, Section
5B and Chapter 15; 15, Section 8.6]).

Since the definition (6) of the degree of coher-
ence |p| relates to the correlation between two
different fluctuating quantities, it can be called the
mutual coherence. This general definition can be
specialized in several different ways to define vari-
ous types of self-coherence involving a single
fluctuating quantity. There are three primary speci-
alizations of the definition (6) of a degree of coher-
ence for single fluctuating quantities, as explained
in the following.

Temporal coherence®
Let x(¢) and y(¢) represent measurements of a
single time-series at two different times:

x()=z(t—t), yO)=z(—10). o))

In this case,

R, =z(t—1)z*(t— 1))
=)z (= [—u])
=Rzz(t2_tl)9 (18)

* Although Norbert Wiener, who introduced coherence to
the early signal processing community, did use the probabilistic
framework of stationary processes, he limited this use to the
proof of existence of time series for which the coherence (6)
exists and to the proof that averaging in (7) over only >0 or
t<0 yields the same result; otherwise, he used the nonproba-
bilistic framework [50].

* The study of temporal coherence seems to have its origins
in several fields, including optics, economics and meteorology,
dating back to the turn of the century (cf. [12, Section 1C]).
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which is the autocorrelation function for z(¢) eval-
uated at the time separation #, — ¢, . Similarly,

Ro=Ryy= Ro.(0). (19)
Thus, (6) yields
_ R.(7)
PT R0 20

where 7 =1t,—t,. This temporal self-coherence can
also be generalized to temporal mutual coherence
by replacing x(#) and y(¢) in (6) with x(¢—¢;) and
y(t—tp), respectively.

Spectral coherence

Let x(¢) and y(z) represent measurements of a
single time-series shifted in frequency by two
different amounts:

x()=z(t) e, y()=z() e 7. (21)

In this case,
Ry, = (z(z* (1) e 20, (22)

More generally, x(z) and y(f) can represent fre-
quency shifted versions of z(¢) at two different
times,

x()=z(t—1) e 2P, () =z(t— 1) e,
(23)

in which case
Ry, = {z(t—t)z*(t—t,) eI (24)
L2R¥(t) for th=—1,=1/2
and a=fi—f5. (25)

The function RZ%(-) is called the cyclic autocorrela-
tion function® evaluated at cycle frequency o and

’ The reason for using the adjective cyclic is explained in
Subsection 2.5. For finite averaging time 7 (cf. (7)) and/or for
finite energy functions x(¢) and y(¢), and with deletion of the
normalizing factor 1/ T (cf. (7)), (24) is known as the radar
ambiguity function in the very extensive literature on radar,
provided that x(f) and y(¢) are the analytic signals or complex
envelopes corresponding to real signals. But there are important
fundamental differences between the theory of cyclic autocorre-
lation for finite power time-series and the theory of radar ambi-
guity for finite energy functions, as explained in [12].

Signal Processing

time separation 7 [12]. Since (23) yields

R..=R,,=R..(0), (26)
(6) yields
_RZ(7)
B R:::'(O) ’ (27)

where a=f;—f,. This temporal/spectral self-
coherence can also be generalized to temporal/
spectral mutual coherence by replacing x(f)
and y(r) in (6) with x(r—#)e ™ and
y(t—t5) e ?¥¥ respectively. The reason for using
notation in which the time-shift 7 is an argument
within parentheses and the frequency-shift « is a
superscript is that we are interested in only individ-
ual discrete values of «, whereas we are interested
in all values of 7 in a continuum. The discreteness
of a is explained in Subsection 2.5.

Spatial coherence

Let x(f) and y(¢) represent measurements of a
single space-time waveform z(z, {) at two different
spatial locations ¢; and {5:

x()=z(t ),  y(O)=z( ). (28)

Then the magnitude of (6) yields the degree of spa-
tial self-coherence. More generally, x(z) and y(¢)
can represent spatial samples of z(¢,{) at two
different times

() =z(t=1t,0), yO=z2(1-1,8). (29)

The resultant temporal/spatial self-coherence can
also be generalized to temporal/spatial mutual
coherence between two space-time waveforms
x(t, £) and y(t, {). Furthermore, we can combine
the preceding three definitions in an obvious way to
obtain the definitions of temporal/spectral/spatial
self-coherence and mutual coherence.

2.2. The coherency function

In the cases of temporal/spectral coherence and
temporal/spatial coherence, it is possible to spec-
trally decompose the measure of degree of coher-
ence. This can be accomplished in practice by
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passing each of x(¢) and y(¢) through a tunable
narrowband bandpass filter (with transfer function
denoted by H(-)), and then measuring coherence
as a function of the center frequency f of the filter.
When this procedure is idealized by letting the
bandwidth A of the filter approach zero, we obtain
the following frequency dependent measure of the
degree of coherence:

P S DS T

where S,,(f) is the cross spectral density (which is
really a spectral correlation density as explained
shortly)

Sxy(f)=joo Ry(7) e ¥ dr, (3D

0

in which R,,(7) is the cross correlation function®
R (1) £{x(y*(1— 1)) (32)

For the special case x(z)=y(f), (31) reduces to
S.(f), which is the spectral density of time-aver-
aged power (as explained shortly).

This spectral decomposition is of more limited
use for temporal coherence because in this case we
have from (17)

ny(T) =R::(T + t2_ tl),

(33)
Rix(7) =R,,(7) = Ro(7).
Thus
P(f) :ei2nf(rz—z]), (34)

and therefore |p(f)|=1 for all x(¢). Hence, only
the phase of p(f) can be useful.

To verify that (30) is the correct result, we need
to use a few basic results from the theory of

¢ In optics the cross correlation function is often called the
mutual coherence function and the corresponding correlation
coefficient (6) is called the normalized mutual coherence func-
tion (cf. [4, 31, 48]).

stationary time-series [12]. Specifically, for the
convolutions

V() =y()@m ()2 J‘ h()y(t—u) du,

— o0

X'(1) = x(t)®@ha(1) £ J k ho(u)x(t —u) du,

we have
Rx’y’(f) = hZ(T) ®h1(-7) ®ny(T),

and therefore (using the Fourier transform (31)
and the convolution theorem for the Fourier
transform)

Sx’y’(v) = HZ(V)H;“(V)Sxy( V),

where

HI(V)=J (1) e du,

o0

and similarly for H,(v); we also have (by inverting
the Fourier transform (31))

Ro@= | s (39)

[ee]

It follows from (7) and (32) that R, = R.,(0).
Thus we have (using H,=H,=H in these basic
equations)

Ry =X (0)y' (D)%)

= Seyp(v) dv

=| [HWPSu(v)dv
rf+A4/2

= Sy (v)dv
Yf-A/2

=ASu(f), (36)
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where f'and A are the center frequency and band-
width of the ideal bandpass filter

1 AR )
H(V):{ . v=f1<4/2
0, otherwise,
and A is assumed to be small enough to make the

approximation (36) accurate.
It follows from (36) that

rA Rx’y’ ~ Sxy( f )

=~ : , 37
[jzx’x’lay’y’]l/2 [Sxx(f)Syy(f)]l/z ( )

p

and the approximation becomes exact as A — 0.
This yields the desired result (30).

To see that the cross spectral density (31) is
really a spectral correlation density, we simply
observe that (36) yields

.1
lim 1 Ry =S, f). (38)

A—0

Since R, is the correlation of the components of
x(t) and y(?) in the spectral band [ f—A/2,f+A/
2] passed by the filter, then the left member of
(38) is obviously a spectral density of correlation
evaluated at frequency f. For x(¢) = y(t), R, is the
time-averaged power (interpreting x'(¢) and y'(¢)
as voltages across one-ohm resistances) of the com-
ponents of x(¢) or y(¢) in the spectral band [ f— A/
2, f+ A /2] passed by the filter. Therefore, the left
member of (38) with x(¢)=y(¢) is obviously a
spectral density of time-averaged power.

In the statistical literature, the function p(f)
defined by (30) is typically called the coherency
function. Its magnitude can be viewed as a spec-
trally decomposed measure of the degree to which
two time-series are related by a linear time-invari-
ant transformation (a convolution). Specifically, it
is shown in [12, Section 7B] that the fractional
time-averaged squared error

2 <X —g(O®(*

, 39
x> &)

xy
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when minimized with respect to the impulse-
response function g(-), is given by

Sl L= (I df
min {e,,} =————— , (40a)
’ f Sul(f) df
where the minimizing function g(-) is given by
[ Sl o 40b
(1) f_w S,,(f) e~ df. | (40b)

In fact, the integrand in the numerator of (40a) is
the spectral density of time-averaged power of the
optimized error x(¢)—g(#)®y(t). This spectral
density of error is small at frequency f if and only
if the degree of coherence |p( /)| between x(¢) and
»(2) is close to unity at f. Similarly, for e,,, which
is obtained by interchanging x and y in the defini-
tion of e,,, (39), we obtain (40a) and (40b) with x
and y interchanged.

As an example, let us consider a time-series y(t)
that is a linearly distorted version s(¢) of a signal
x(?) plus uncorrelated noise n(¢):

y@O=s()+n(®),  s()=d1)®x(1),

where d(t) is the impulse response function for the
distorting transformation. In this case, we find that
(cf. [15, Section 13.2])

1
|P(f)|—m,
where
A Sss(f)
SNR(f)2
() Sun( )

is a frequency-dependent signal-to-noise ratio.
Clearly, in frequency bands where SNR( /) is high
(and only in such bands), y() =d(t)®x(r) is a
close approximation and, therefore, |p( f)|=~1is a
close approximation. Thus, |o(f)| is seen to be a
frequency decomposed measure of the degree to
which two time-series are related by a linear time-
invariant transformation.
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When applied to a single spatial waveform at
two points in space, by using (28), the coherency
function (30) becomes the self spectral correlation
coefficient introduced to optics little more than a
decade ago [32]. When applied to a pair of fre-
quency-shifted versions of a single time-series, by
using (21), the coherency function (30) becomes
the self spectral correlation coefficient introduced
to communications engineering only half a decade
ago [15, Chapter 12]. This is considered further in
Subsection 2.7. Yet the coherency function (30)
was in use in time-series analysis as a mutual spec-
tral correlation coefficient at least three decades
ago (cf. [34]), and its unnormalized version (31)
was introduced by Wiener over four decades ago
[501.

2.3. Partial coherence

If we have three time-series w(¢), x(¢) and y(%),
and we want to determine the coherence between
x(?) and y(¢), with the effects of w(f) removed,
we can first subtract from x(¢) and y(#) their
minimum-time-averaged-squared-error estimates

obtained with linear time-invariant trans-
formations of w(?),
x(1) 2 x(1) — g1 () @w(D),
)—g1(0) (41)

F() £y(1) — g2 @w(D),

and then obtain the coherence of the residuals X(¢)
and y(¢). The result,

Se(f)
- , 42
[Sicx(f)Sy'f(f)]l/z ( )

is called the partial coherency function. It is given
by [12, Section 7B]

po(f) &

psi(f)= [Sxy( 13 _,Sw;_f)f;_;@}
x {[Mf) —%}
Sy 172
X{Syy(f)—%}} @)

The same idea can be extended to remove
the effects of multiple time-series w(f)=
{wi(2), wa(2), . .., wu(t)} on x(¢) and y(z). Spe-
cifically, we obtain (42) with [12, Section 7B]

Ser([)=Su(f) = Gi(f)S5(f)

=S8 )GE(S)

TGS IGE(S), (442)
Ss(f) =S () =G [)Sm(SIGE(S),

(44b)
Sex(f) =Sl [) = G1( IS SIGT(S),
(44c¢)
where
Gi( /) A LSwm( )Sux(T*, (452)
Go(/) RIS wnl IS up( T (45b)

In these expressions, w(¢) is the vector of time-
series whose effects on x(¢) and y(z) are to be
removed, G,( /) is the vector of transfer functions
corresponding to the impulse response vector g,(¢)
for p=1,2 (ie, x()=x(t)—gi(H)®@w(t) as in
(41)), S,.(f) is the spectral density matrix with
Jk-th element S, (f), and S,.(f) is the spectral
density vector with j-th element S,,.( /).

2.4. Geometric interpretation of coherence

If we consider for the moment real-valued time-
series, then the empirical correlation (10) can be
seen to be the N-dimensional Euclidean inner pro-
duct of the two vectors with elements {x(nd)}1
and {y(n8)}7, scaled by N. In fact, even with the
scale factor 1/N included and complex-valued
time-series allowed, (10) is a valid inner product
on a linear vector space. The same is true for the
continuous-time counterpart (9) of the discrete-
time correlation (10), except that the vectors are
now time functions {x(¢)}77, and {y(#)}"%5, and
the linear vector space is infinite dimensional.
Moreover, the same is true of the limit correlation
(7). Tt is a valid inner product of the vectors
{x(1)}*, and {y(#)}Z,. This is discussed in more
detail in [15, Section 13.2].
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The point to be made here is that the numerator
of the correlation coefficient (6) is an inner product
and its denominator is the product of two norms
(the norm is the square root of the inner product
of a vector with itself). Consequently, the ratio (6)
can be interpreted as the cosine of the angle
between the two vectors {x(#)}%, and {y(¢)}Zs
(for real time-series). Furthermore, the best linear
estimate ay(f) of x(¢), which satisfies (11), is the
orthogonal projection of the vector {x(7)}Z, onto
the one-dimensional linear subspace consisting of
all linear transformations {ay(¢)}%, of the vector
{y(£)}Z.,. The closeness of this orthogonally pro-
jected vector to the original vector, as indicated by
(11), is determined by the closeness of the magni-
tude of its degree of coherence to unity and, there-
fore (for real time-series), by the smallness of
the angle between the vectors {x(#)}%, and
{»(¢)}*, . This geometrical interpretation of coher-
ence is developed in [15, Section 13.3].

Similarly, the best estimate of x(¢) obtained by
linearly filtering y(¢), which satisfies (40), is the
orthogonal projection of the vector {x(¢)}Z,, onto
the linear subspace consisting of all linear
transformations {a,y(t—u)};u-— of the time
translates {y(t—u)}ro-—o of {¥(#)}%,, where a,=
g(u) (cf. [15, Section 13.4]).

In conclusion, the degree of coherence (the mag-
nitude of (6)) as well as its frequency decomposed
version (the magnitude of (30)) can always be
interpreted (for real time-series) as the magnitude
of the cosine of the angle between the two time-
series interpreted as vectors. And this degree of
coherence is directly related to the accuracy of lin-
ear estimation of either time-series in terms of the
other, which can be interpreted in terms of the
distance between one time-series and its orthogonal
projection onto the space spanned by linear trans-
formations of the other.

2.5. Stationarity and cyclostationarity

Although mathematical models of time-series, to
which the idealized definitions of temporal, spectral
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and spatial coherence apply, must be stationary’ in
the sense of being persistent so that the infinite-
time averages (7) in the definition (6) exist and are
finite (neither infinite nor identically zero), we can
show that only a very special class of such station-
ary time-series can exhibit non-zero spectral self-
coherence. We can see this from the fact that the
cyclic autocorrelation function (25) must not be
identically zero for some nonzero cycle frequency
a in order to have nonzero spectral coherence
(since the numerator of the coherency function
(30) is the Fourier transform of (25)), and from
the fact that this cyclic autocorrelation function
evaluated at some lag value 7 is actually the limit-
ing Fourier coefficient (24) of the complex sine-
wave component e"*** contained in the lag-product
waveform z(t+7/2)z*(¢—1/2) for fixed 7. Only
time-series z(¢) with some underlying periodicity
will have such nonzero limiting Fourier coefficients
for o #0. Furthermore, these Fourier coefficients
can be nonzero for only a discrete set of cycle fre-
quencies « [12]. Such time-series are said to exhibit
cyclostationarity [12]. If a stationary time-series
(one for which {z(t+ t/2)z*(t—t/2)) exists and is
finite) exhibits no cyclostationarity, it is said to be
purely stationary [12]. For example, a statistical
sample of the usual model for thermal noise — an
ergodic stationary Gaussian stochastic process — is
a purely stationary time-series and, therefore, exhi-
bits no spectral coherence.

Time-series that exhibit cyclostationarity and,
therefore, exhibit spectral self-coherence often arise
from periodic signal processing operations applied
to otherwise purely stationary time-series. Such
operations include sampling, scanning, modulat-
ing, multiplexing and coding, which arise in com-
munication, telemetry, radar, sonar and control
systems. Cyclostationarity can also arise naturally

7 The class of stationary time-series is broader than the class
of all statistical samples of stationary stochastic processes. It
includes the statistical samples of asymptotically mean station-
ary stochastic processes as well. These processes include
cyclostationary processes, almost cyclostationary processes,
asymptotically stationary processes, and other nonstationary
processes (cf. [12, 15]).




W.A. Gardner | Coherence in signal processing 123

from periodicities associated with the physical phe-
nomenon giving rise to the time-series. This
includes data obtained from systems subject to
seasonal and other rhythmic variations, such
as electrocardiograms and other physiological
measurements, climatic, oceanic, meteorologic and
hydrologic data, and so on.

It should be clarified that periodic components
associated with cyclostationarity can arise in the
conjugate lag product z(1+ 7/2)z(¢t—t/2) as well
as the more commonly used lag product z(z+
7/2)z*(t— 1/2). The corresponding function

Lu(0) & (1 T/2)2(1—T/2) ) (46)
is called the conjugate cyclic autocorrelation
function.

As an example of a time-series that exhibits

cyclostationarity, we consider the amplitude-
modulated since wave

2(t) =a(t) cos(wot— 0), (47)

where a(t) is real and purely stationary. Using
Euler’s formula,

cos(wot — 0) = 5@ 4 JeTi(@or =0
we obtain
z(t+1/2)z%(t—1/2)

=sa(t+1/2)a(t—1/2)

X [eiZaJor e~i29+e—i2a)01 ei29+eimor+e—iwor]
Therefore, we have
Cz(t+T/2)z%(t—1/2) e

ia(t+1/2)a(t—1/2)> e a==+wo/7,
=<¢3¢a(t+1/2)a(t—1/2)) cos (wor), a=0,

0, otherwise,

(a)

of —

0

Fig. 2. Graph of temporal/spectral self-coherence function (27)

as the height of a surface above the plane with coordinates 7

and a: (a) for an amplitude modulated sine wave with carrier

frequency fy; (b) for an amplitude modulated pulse train with
pulse rate 1/ T.

because
la(t+1/2)a(t—1/2) ™'y =0
for all B #0 since a(t) is purely stationary. Thus,

iRu(7) e, a==w,/,
RE(1) =14 3 Ru(7) cos(wor), a=0,

0, otherwise.
(48)

Hence, RZ(7) is not identically zero for only two
nonzero values of a, as shown in Fig. 2(a). The
example shown in Fig. 2(a) corresponds to an
amplitude time-series a(f) with a triangular
autocorrelation.

As another example, we consider the real-valued
amplitude-modulated pulse train

[ee]

z(ty= Y amT)p(t—nT), (49)

n=—0o0

where a(?) is purely stationary and p(¢) is a finite
energy pulse,

f p(1) dt< 0.
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By using the formal characterization

z(r)=[a(t> > 5(r—nT>}®p<t>

n=-—0o0

1
=w()® = p(1),
W()®Tp()
where

W([) — a(t) § ei21|:mt/T,

m=—oc0

we can show that
a 1 a a
Rzz(T)=Fwa(T)®rp(T)s (50)
where
(1) éj p(t+1/2)p(t—1/2) 2™ dt.

o0

By an argument similar to that made for the
amplitude-modulated sine wave example, we can
show that

RS,W(T) — Raa(T) Z e—ian‘r/T

m=—o0

=R, (7)T i o(t—nT), a=gq/T

m=—0o0

for all integers q. Therefore, (50) yields

RE(D) =2 ¥ Ru(nT)ri(z—nT),

~ |-

a=q/T (51)

for all integers g. Thus, R:.(7) is not identically
zero for only values of « that are integer multiples
of 1/T, as shown in Fig. 2(b). The example shown
in Fig. 2(b) corresponds to a white amplitude
sequence a(n7T) and a rectangular pulse p(?) of
width T.
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2.6. Nonstationarity

It is interesting that within a probabilistic frame-
work, we can define spectral self-coherence for
nonstationary stochastic processes other than those
that exhibit cyclostationarity. All that is required
is that the probabilistic autocorrelation

Rux(t, ) 2E{X(t+ /DX * (1~ 1/2)}  (52)

depends on ¢ and does not contain any periodic
components in ¢ (other than a constant
component):

(Rxx(t, ) 7™ =0, a#0.

All such nonstationary stochastic processes exhibit
probabilistic spectral self-coherence but not cyclo-
stationarity. However, unlike the spectral self-
coherence associated with cyclostationarity, it is a
property of an ensemble of time-series, not a single
time-series, and it therefore cannot in general be
reliably estimated (and hence cannot be used in
practice) without using ensemble averages instead
of time averages [13]. Unfortunately, ensembles
from nonstationary stochastic processes are rarely
available in practice. There are two (and only two)
exceptions to this generality as explained in [13].
If either the nonstationarity (which is assumed to
be not cyclostationarity) is sufficiently slow that
the process is locally stationary (nearly stationary
over relatively long periods) and locally ergodic®
or the form of nonstationarity is known (e.g.,
Rxx(t, ) is a combination of functions of ¢ alone
and functions of t alone, and the functions of ¢
alone are known), then (and only then) the auto-
correlation and therefore the temporal and spectral
coherence can be reliably estimated using only
time-averaging operations on a single time-series.

It is also interesting that all spectral self-coher-
ence in nonstationary stochastic processes that is
not associated with cyclostationarity must be zero
on the average over time. This can be seen as fol-
lows. To obtain a measure of the correlation
between spectral components in a band of width A

¥ The subtleties of locally ergodic probabilistic models are
discussed in [12].
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centered at frequency f+ a/2 and another band of
width A centered at frequency f— /2, we simply
pass the process through a pair of corresponding
bandpass filters to obtain the two processes

X (1) =h()®X(2),
X ()=h-()®X(0),

(53)

then we frequency-shift these to a common band,
e.g.,

Y+(t) =X+(t) e—i21\:(f+a/2)t,

i (54)
Y-(1)=X_(1) &0~/
and finally we obtain their correlation
Ro=E{Y.()Y*(1)}. (55)

Substitution of (53) into (54) and the result into
(55) and interchange of the order of operations of
expectation and integration yields

R, = Hm(u)hf(u)}gxx(t— ”Jz”’, v— u>

x e 2™ dy do. (56)

The average of this spectral correlation over time
¢t will be nonzero if and only if

<BXX(t5 T) e_iZﬂat> :/'_é 0’ a ;é Oa

which would indicate that X(z) exhibits cyclosta-
tionarity with cycle frequency a.

The presence of the factor e *>** in this average
is a direct result of the down conversion operation
(54). However, if this operation is eliminated, then

we obtain

R,= th+(u)hf(v)BXX<t - ?, v— u) du do

= J H+(u>Hf(v)§§zX(u —v,E ; V)

X e P qy dy, (57b)

where

Sxx(f, )% JJBXX(E 1) e 2D qr dr

and
H.(f)4& Jhi(t) e " dt.

The average of this correlation (57b) over time ¢
can be nonzero only if the integrand is not ident-
ically zero for v=p. But as long as the passbands
of the two bandpass filters with center frequencies
f+a/2 and f—a/2 do not overlap, then the pro-
duct of their transfer functions H.(u)H*(u) must
be identically zero and therefore the integrand
is identically zero (even if X(¢) exhibits
cyclostationarity).

In summary, the concept of spectral self-coher-
ence is of limited utility (in the sense that it is not
a property exhibited by a single time-series, such
as a statistical sample of a stochastic process) for
nonstationary stochastic processes that do not
exhibit cyclostationarity and are not locally sta-
tionary. Examples of the former case are described
in the preceding subsection (and following subsec-
tion). An example of the latter case is given here.

A process X(?) is said to be locally stationary (in
the wide sense) if the autocorrelation function (52)
is nearly constant in the location variable ¢ over all
intervals of length T for some 7 that is much larger
than the width of the autocorrelation function (52)
in the lag variable 7. We consider the extreme case
of a locally stationary process for which the proba-
bilistic autocorrelation is given by

Rux(t, ©)=a*(1)(x),
where 6(7) is the Dirac delta function. This auto-
correlation corresponds to the process X(f)=
a(t)N(t), where N(t) is white noise. It follows that
(56) reduces in this case to

Ra=[g() @ ()] e,
where g(?) is the inverse Fourier transform of

G(/)EH(/HRHA(=f),

which is the transfer function of a bandpass filter
Vol. 29, No. 2, November 1992




126 W.A. Gardner | Coherence in signal processing

with center frequency o and bandwidth 24. Thus,
the stronger the spectral content of 4(¢) in the
vicinity of frequency «, the stronger the spectral
correlation of X(¢) for all frequencies separated by
a. The average of this spectral correlation Ryx over
all time ¢ is, however, zero unless a*(¢) contains a
finite-strength additive sine-wave component with
frequency «a, in which case X(f) exhibits
cyclostationarity.

This idealized example suggests that, in general,
the stronger the degree of spectral self-coherence
that can be reliably estimated from a single time-
series, the stronger the degree of local cyclostation-
arity. In fact, it is shown in [18] that for a locally
stationary process the spectral correlation
coefficient magnitude for widely separated bands
must be much less than 1/2 when the spectral con-
tent of a(z) is flat, but can be as large as 1/2 when
the spectral content of a(z) is highly peaked at
a/2.

In contrast to the relatively limited utility of the
concept of spectral self-coherence for nonstation-
ary stochastic processes, the concepts of temporal
and spatial self-coherence are generally useful for
nonstationary processes. Although these time-vari-
ant (nonstationary) degrees of coherence can be
accurately measured only with the use of ensemble
averaging (except for locally stationary processes),
their time-averaged values can be accurately meas-
ured using only time averdging on a single (pair
of’) time-series [single statistical sample of the (pair
of) stochastic process(es)] (cf. [12, Section 8.5;
13]). For example, the time-averaged temporal self-
coherence

o (Roxlt, D))
(Rxx(t, 0))”
where (- ) denotes averaging over the time param-

eter ¢, can be accurately estimated using (8) and
(17), where z(¢) is a statistical sample of X(¢).

2.7. Spectral characterization of temporal and
spectral coherence

Since the temporal coherence of a time-series z()
is completely determined by its autocorrelation
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function (20), then it can be characterized by the
Fourier transform of its autocorrelation,

S..(f)= f " Ru(r) e dr, (58)

o0

which (from (31) and (38)) is the spectral density
of time-averaged power in z(?).

The power spectral density S..( /) has long been
used as a descriptor of stationary time-series z(?).
But for time-series that exhibit cyclostationarity,
there is another more general descriptor that char-
acterizes both the temporal and spectral coherence
properties of the time-series. This descriptor is, by
analogy with (58), the Fourier transform of the
cyclic autocorrelation function (25) (sometimes
called the cyclic spectral density):

S‘Zz(f)éro RZ(7) e dr. (59)

0

It follows directly from (24)-(25), (38) and (59)
that, with a =£, —f>,

a . 1
Sz (f)ziln})ZRx’y’s (60)

where R, is the correlation of the components of
x(¢) and y(¢) in the spectral band [f—A/2, f+
A /2] which, from (23), is the correlation of the
time shifted components of z(¢) in the two spectral
bands [ f+/i—A/2, f+fi+A/2]and [ f+,—A/2,
f+fa+A/2]. Thus, S2(f) is the density of correla-
tion between the spectral components in z(f) at
frequencies separated by a =f; —f>. For a =0, this
reduces to the spectral density of time-averaged
power in z(?).

This spectral correlation function can be made
into a spectral correlation coefficient as in (30). It
follows from (23) that the factors in the denomin-
ator of (30) are given by

Sl [)=8=(f+/1): Sp(f)=S8=(fF12).

(61)

It follows from (25), (30), (59) and (61) that this
spectral correlation coefficient (the self spectral
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coherency function) is given by

Sz(f)
[Se.(f+a/2)Se( f~ /2]

for fi=—fo=a/2. (62)

Since a time-series z(¢) can exhibit cyclostation-
arity at only a discrete set of cycle frequencies a
[12], the spectral correlation function SZ(f) is
discrete in a, although it is generally continuous in
f- This spectral characterization of the temporal
and spectral coherence properties of time-series has
been calculated and graphed in [12] for a wide
variety of different types of modulated signals. Two
examples are presented here.

For the first example, we consider a sine wave
that is amplitude-modulated by a purely stationary
time-series as in (47). It follows from the formula
(48) for the cyclic autocorrelation for this time-
series and the Fourier transform relation (59) that
the spectral correlation function is given by

% aa(f) e:FiZB’ a:isz,
SES) = 4Sual [+ 1)+ 3Sual f~f0), @=0,
0, otherwise,
(63)

p(f)=

where fo= wo/2n. Thus, only spectral components
that are separated by |a|=2f; are correlated. This
can be easily understood by expressing the time-
series (47) as

2() = za(t) e e + za(r) e &,

Thus, each spectral component in a(z) is shifted
from its original frequency, say f, to f+ fo and f— f5.
The separation between the frequencies of these
pairs of identical (except for a constant phase
difference of 20) spectral components is 2f;.
Hence, all such components are completely corre-
lated (as long as S..(f)=0 for | f| =/, so that no
positively shifted components overlap with any
negatively shifted components). That is, it follows
from (63) that |p*(f)|=1 for a==+2f,. A graph
of |SZ(f)| interpreted as the height of a surface
above the plane with coordinates fand « is shown

(a)

(b)

0
J

Fig. 3. Theoretical spectral correlation magnitudes (a) for an
amplitude-modulated sine wave with carrier frequency fo; (b)
for an amplitude-modulated pulse train with pulse rate 1/ 7.

in Fig. 3(a) for the same example as that in Subsec-
tion 2.5. Notice that since SZ.( /) must be discrete
in a, such surfaces will always consist of infin-
itesimally thin slices parallel to the f axis. Also,
the slice along a =0 is the power spectral density
function.

For the second example, we consider a periodic
pulse train that is amplitude-modulated by a purely
stationary discrete-time time-series as in (49). It
follows from (51) for the cyclic autocorrelation for
this time-series and the Fourier transform relation
(59) that the spectral correlation function is given
by (cf. [12])

S?z(f)=% P(f+a/)P*(f—a/2)

X OZO: S f—a/2—n/T), a=k/T

(64)

for all integers k, and it is zero for all other values
of a. In (64), P(f) is the Fourier transform of the
pulse p(¢) in (49). Thus, only spectral components
that are separated by integer multiples of 1/ T are
correlated. This can be easily understood by
expressing the time-series (49) as

z(t)=w<z)®§p<r),
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where

w(t)y=a(t) Y ! 2mkt/ T,
k=—o0

Thus, each spectral component in a(¢) is shifted by
all integer multiples k of 1/ T. As long as S,.(f)=
0 for | f|>1/2T so that no shifted components
overlap with each other, then all spectral compo-
nents are perfectly correlated. That is, it follows
from (64) that [p*(f)|=1 for a=k/T for all k
for which the power density at f+ «/2 is nonzero:
S..(f£k/2T)+#0. A graph of the spectral correla-
tion surface |SZ(f)| for a flat spectrum S..(f)
(S f)=constant for | f|<1/2T and S.(f)=0
for | f|>1/2T) and a flat pulse p(¢) (p(¢)=0 for
|t| > T/2), which is the same as the example in Sub-
section 2.5, is shown in Fig. 3(b).

Other examples including sine waves that are
phase- or frequency-modulated by stationary time-
series as well as by amplitude-modulated periodic
pulse trains, and also periodic pulse trains that are
pulse-width or pulse-position modulated are pre-
sented in [12].

3. Some physical meanings of coherence

3.1. Coherent electromagnetic fields

The distinction between coherent and incoherent
radiation, say light, is not clear cut [5], and also is
not based solely on the mathematical definitions
of coherence given in Section 2. For example, a
narrowband wave of light observed at one point in
space,

z(t)=a(t) cos[wot + ¢ (1)],

obtained by passing incoherent incandescent radia-
tion (white light) through some narrowband opti-
cal filter, exhibits a high degree of temporal
coherence in both its envelope a(?) and phase ¢ (¢),
in the sense that

_ R.(7)
R..(0)
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_Rys(2)
’ Ryp(0)’

a

are very close to unity for relatively large values of
time separation 7; that is, values up to the coher-
ence time, which is approximately the reciprocal of
the bandwidth of a(¢) and ¢ () which is equal to
the bandwidth of the filter. The longer the coher-
ence time is relative to the period corresponding to
the center frequency of the filter, w,, the higher
the degree of monochromaticity (which is inversely
related to the relative bandwidth) will be. If this
spectrally filtered light is then spatially filtered and
colimated, it also exhibits a high degree of spatial
coherence. However, it is more practical to obtain
high degrees of temporal and spatial coherence
over relatively long times (much greater than the
propagation time across an optical system) and rel-
atively wide beams by using light amplification by
stimulated emission — a laser [47]. Moreover, there
is a distinction between laser light and filtered
incandescent light that cannot be explained in
terms of our mathematical definitions of coherence.
Specifically, laser light has a highly stable envelope
a(t) with relatively small variation about a positive
mean value. As a result, the joint fraction-of-time
density of the in-phase and quadrature components
c(t) and s(1),

z(t)=c(t) cos(wot) — s(t) sin(wot),
where
c(t)=a(t) cos ¢ (1), s(t)=a(t) sin ¢ (1),

looks like a continuous mountain range that forms
a ring centered at the origin of the plane. In con-
trast to this, the joint fraction-of-time density for
c(r) and s(¢) for filtered incandescent light looks
like a single mountain peaked at the origin. For
both types of light, the phase ¢ (¢) has a uniform
fraction-of-time density throughout the interval
[m, «].

Generalizing on the preceding, a spatially
extended source of radiation is called a coherent
source if the signals (say (28)) emitted at different
points on the source exhibit a sufficiently high
degree of mutual temporal coherence (6). Other-
wise it is said to be an incoherent source [48]. Also,
if we let u(z, {) denote the complex envelope of
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the space-time waveform x(¢, {) (i.e., the positive-
frequency portion of x(z, {) shifted in frequency so
that its center frequency is near zero), then the time
averaged value of {u(z, {)) is typically called the
coherent field, and the residual u(z, ) — u(t, {))
is called the incoherent field [28]. Thus, the coher-
ent field is zero for incoherent light as defined
above. Similarly, the time averaged squared magni-
tudes of these two quantities are called the coherent
field intensity and the incoherent field intensity,
respectively [28].

Attempts to generalize coherence from a meas-
ure of linear dependence to a measure of nonlinear
dependence have been made, for example, in the
field of quantum optics [23]. This has led to the
use of the term coherent states not only in quantum
optics [24], but also in signal theory [11]. However,
these coherent states in signal theory are nothing
more than an over-complete set of basis functions
that can be used for the representation of signals
in the joint time/frequency domain [27]. There is
no direct connection between the meaning of
coherence discussed in this paper and its (perhaps
unfortunate) use in the term coherent states for
particular sets of basis functions.

3.2. Coherence time and bandwidth of propagation
media

When a single-frequency signal — a sine wave —
propagates through a randomly time-varying
medium such as the ocean or the ionosphere, the
received signal will be spread in frequency. As a
result, its temporal self-coherence function (20) will
have a finite width in 7 (whereas the coherence
function of the transmitted sine wave is itself a sine
wave that extends forever in 7), which is on the
order of the reciprocal of the width of the power
spectral density function. The width of the tempo-
ral self-coherence function is called the coherence
time of the medium [28].

When two sine-waves with distinct frequencies
/1 and f, propagate simultaneously through a ran-
domly time-varying medium, and the two corre-
sponding received signals are each frequency-
shifted to zero frequency (nominally) and their

mutual coherence (6) is measured, the result will
decrease from |p| =1 as | f; — f2| increases until even-
tually |p|«1. That is, the mutual spectral
coherence’ (analogous to the spectral self-coher-
ence (27)) will exhibit a finite width in the param-
eter @ =f1—f,. This width is called the coherence
bandwidth of the medium [28].

3.3. Coherent signals in electrical circuits

The distinction between what are sometimes
called coherent and incoherent signals that are
found, for example, in radio and radar circuits is
quite different from the distinction for light waves.
Whereas the latter distinction involves the envel-
ope, the former distinction is based primarily on
the phase. For example, a sequence of sine wave
voltage bursts, such as in an amplitude-shift-keyed
signal (i.e., a sine wave whose amplitude is periodi-
cally shifted among a finite set of values) can all be
in phase with each other or their phases can change
randomly from one burst (keying interval) to the
next. The former type of signal is said to be coher-
ent, whereas the latter is called incoherent. Thus, a
coherent radio signal can have large fluctuations in
its envelope, but its phase must be almost time-
invariant.

On the other hand, the concept of a stable enve-
lope can be used to distinguish between two types of
narrowband radio signals that also are commonly
labeled coherent and incoherent. Specifically, the
output of an electrical oscillator, like laser light,
typically has a highly stable envelope but a phase
that fluctuates randomly throughout the interval
[—m, ], although this fluctuation is relatively slow
(depending on the effective bandwidth of the
oscillator) - the width of the temporal self-coher-
ence function of the phase is called the coher-
ence time of the oscillator. In contrast to
this, the output of a narrowband bandpass filter

° Notice that for a stationary random channel, the pair of
received signals are jointly cyclostationary with cycle frequency
a=fi—f, (as long as | f; —f3| does not exceed the coherence
bandwidth of the channel), in which case the signals are uncor-
related with each other.
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with the same bandwidth as the effective band-
width of the oscillator and with a broadband noise
input will have an envelope that fluctuates ran-
domly, completely analogously to the filtered inco-
herent light described in the previous subsection.

Nevertheless, any narrowband signal is often
called coherent if its amplitude and phase are essen-
tially constant throughout whatever time interval is
of interest for purposes of detection, measurement,
processing and so on, regardless of what their fract-
ion-of-time densities might be over time-intervals
that are longer, e.g., long enough to obtain statist-
ically reliable measurements of fraction-of-time
densities. But this is consistent with the mathemati-
cal definition of temporal coherence since (63) and
(64) would both be close to unity for all time-separ-
ations 7 of interest (which we have assumed are
less than the reciprocal bandwidth).

In addition to these temporal coherence proper-
ties of radio signals, essentially all modulated sig-
nals regardless of bandwidth, by virtue of their
cyclostationarity, exhibit spectral self-coherence
properties as explained and illustrated in Section 2.
In contrast to this, purely stationary noise exhibits
no spectral self-coherence, and plirely random
(white) noise exhibits no temporal self-coherence
since

R..(7) =Jm S.(f) e df

=Nod(1t)=0, 7#0,
for the flat power spectral density of white noise

S-(f)=No.

3.4. Coherent signal processors

The term coherent, as applied to an optical pro-
cessor, a radio communication receiver, a radar
receiver, or other signal processor, means that
the instantaneous phase of narrowband signals is
kept track of and utilized for some purpose. For
example, in coherent radio, the phase of a locally
generated sine wave is locked onto the phase of the
sine-wave carrier in the received signal, so that the
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signal can be coherently demodulated. In coherent
radar, the phase of the received signal relative to
that of the transmitted signal is measured and util-
ized. In adaptive coherent optical processing, a
received distorted wavefront is phase-compensated
so that all points on the wavefront are in phase. In
contrast to this, the phase is ignored by noncoher-
ent processors. (The term noncoherent is often
used here in place of the term incoherent. This
might be due to the common use of incoherent to
mean unintelligible, e.g., expression of thoughts in
sequence that do not cohere with each other.) In
signal processing in general, the term coherent
averaging is used to mean averaging of a phase-
dependent quantity, such as a complex envelope,
whereas noncoherent averaging denotes averaging
of a phase-independent quantity such as the magni-
tude of a complex envelope.

4. Some uses of coherence

In the allied fields of signal processing and time-
series analysis, temporal, spectral and spatial
coherences, as defined in Section 2, are typically
useful because they correspond directly to the accu-
racy with which one fluctuating quantity can be
approximated or estimated by a linear transforma-
tion of another fluctuating quantity.'® Some
examples of this are mentioned here. Because of
limitations on the length of this paper, only brief
descriptions of these examples are given. However,
references to more detailed treatments (containing
extensive reference lists) are given. Also, because

'® In spite of this fact, it has been said that the role of coher-
ence in signal processing is often not explicitly recognized. For
example, it is stated in [7] that “The coherence function pro-
vides a mechanism for measuring the linear association existent
between two time series. It has been used by statisticians and
scientists alike for this purpose, but its utilization by the signal
processing community is somewhat limited.” If this is true, it is
a curious state of affairs, since half a century has passed since
Norbert Wiener — who is credited with initiating the confluence
of the fields of time-series analysis and communication engi-
neering, which then evolved into statistical signal processing —
introduced coherence to the early signal processing community
(cf. [50]).




W.A. Gardner /| Coherence in signal processing 131

of the relative novelty of methods for exploiting
spectral coherence, a little more emphasis is put on
examples of the usage of this particular type of
coherence.

Although the methods of exploiting coherence
that are surveyed here are most likely to be imple-
mented with digital signal processing algorithms,
the methods are described in terms of continuous-
time signal processing operations because of their
closer ties with the underlying physics and the cor-
responding continuous-time theory discussed in
preceding sections. Typically, the translation of
methods from continuous time to discrete time is
straightforward.

4.1. Wiener filtering: temporal mutual coherence

When we have two distinct but partially coherent
time-series x(z) and y(¢), we can use the temporal
coherence between them to estimate one, say x(¢),
by filtering the other, y(r), that is by adding up
linearly transformed versions of time-shifted
replicas of y(t). The transfer function

G(f) :r g(t) e dr

of the filter that minimizes the time-averaged
squared error

() =% (65)
between x(¢) and its estimate

(1) & f guy(t—u) du

loe]

is given by [12, Section 7b]

Sxy(S)
S(f)

G(f)= (66)

which is known as the noncausal Wiener filter [50].
For example, if x(¢) and y(¢) are related by

(@) =s()+n(),

where
s(0)=x()®d(1),

and d(t) represents signal distortion and n(z) repre-
sents zero-mean additive noise that is uncorrelated
with s(¢), then (66) reduces to

G(f)=ff) PP,

where p( f) is the coherency function

L SeH 1
S SN Sa)
Su(/)

Thus, at frequencies f where the signal-to-noise
ratio (SNR) Sy(f)/S.(f) is high, the coherency
magnitude is close to unity and the filter G(f)
simply removes the distortion by using the inverse
of the distortion operation. However, at frequen-
cies where the SNR is low, the coherency magni-
tude is much less than unity and the filter G(f)
acts primarily as an attenuator to suppress these
noisy spectral components.

As another example, if x(¢) and y(t) are related
by

x(O)=s()+n(n),  y(O)=m(),

where s(¢) is a signal, n(¢) is additive noise and
m(t) represents a measurement of noise only that is
correlated with n(z), then the temporal coherence
between n(t) and m(z) can be used to partially can-
cel the noise n(¢) that corrupts the signal. If m(7)
has zero mean and is uncorrelated with s(z), then
it follows from (66) that the optimum noise-estima-
tion filter has transfer function

Sl f)
Spm(f)

G(f)=

The residual noise remaining after the noise
estimate

A(t) =g(t) (1)
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is subtracted from x(z) has fractional time-aver-
aged squared value

f Su( HIL=1p(IFT df

— 00

s

f Sl ) df

0

where p( f) is the coherency function for n(#) and
m(t). Thus, the extent to which n(¢) can be can-
celled in each frequency band of interest is deter-
mined by the coherency function.

For more detailed treatments see [15, Chapter
13] and the many references therein.

4.2. Wiener prediction: temporal self-coherence

If we have one time series x(#) and we want to
predict its future x(z+f) using linear time-invari-
ant transformations on its own past {x(u): u<t},
the degree of accuracy of the predictions, as meas-
ured by the fractional time-averaged squared pre-
diction error, is completely determined by the
degrees of temporal coherence of x(¢) for all pos-
sible time shifts:

(it + 1) = 2+ 1)
min 5
() dx@0P>

=1 —J g(t)p(t+1p) dr,
0
where

Xt +10) = J gt —uy(w) du,

o0

and the impulse-response function g(u) of the opti-
mum prediction filter is the solution to the Wiener—
Hopf equation [50; 15, Chapter 13]

JOO gwp(t—u)du=p(t+1ty), 7=0,
0

where p(7) = R..(7)/R.,(0). The greater the degree
of temporal coherence p(t) for t>1,, the more
accurate the predictions will be. For more detailed
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treatments see [12, 15] and the many references
therein.

4.3. Cyclic Wiener filtering and prediction:
temporal and spectral coherence

If the time series x(#) and y(¢) in either of the
filtering and prediction problems just described
exhibit cyclostationarity, then they possess spectral
coherence as well as temporal coherence. Thus, fre-
quency-shifted as well as time-shifted versions of
one of the time-series (or its past) can be linearly
combined to form an estimate of the other time-
series for the filtering problem (or of the future of
the same time-series for the prediction problem).
For example, if the cyclic correlation functions
R%,(7) and Rfy(f) are nonzero for some nonzero
values of a and f, then the smallest value of esti-
mation error (65) obtainable using only linear
transformations can be obtained using an estimate
of the form

=Y jw g/ (wy(t—u) e du,

[ee]

where the sum ranges over all the difference fre-
quencies y=a — f [12, Section 14A; 15, Section
12.8]. This estimate, which is a sum of linearly
transformed (with time-invariant impulse-response
functions {g,()}) frequency-shifted versions of
(1), can be reexpressed as the output

x(1) :foo A(t, v)y(v) dv

o0

of a single linear transformation with multi-
ply-periodically-time-variant impulse-response
function

h(t,v)=Y g,(t—0) e iy
Y

The transfer functions {G,(f)} corresponding
to the optimum impulse-response functions {g,(#)}
(those that minimize the estimation error (65)) are
the solutions to the set of simultaneous linear
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equations

at+y
2

ZGV(f)Sgy_y<f— )ISzy(f_ a/2)

y ,

for all values of fand all values of a for which the
spectral correlation functions are not identically
zero. This optimum multiply-period filter is called
the cyclic Wiener filter [19]. The value of the mini-
mized estimation error (65) is given by [12, Section
14A; 15, Section 12.8]

f [Sxx(f) —2 G ()SH(f— 7/2)*} dr.

[oe]

In the special case for which y(¢) is purely station-
ary this general formula reduces to

f Sxx(f)l:l - Ipa(f—a/2)lz} df,
where p“(f) is the mutual spectral coherency
function

S5(/) |
[Sxx(f+ a/z)Syy(f_ 0‘/2)]1/2

It can be seen from this special case that for each
value of a for which the spectral coherence is non-
zero, the minimized estimation error is reduced by
an amount determined by the degree of spectral
coherence [p“( f)|.

This situation where the time-series x(z) being
estimated exhibits cyclostationarity but the time-
series y(z) used to obtain the estimate is purely
stationary arises in the problem of identification
of time-variant systems. If y(¢) is the input to an
unknown system and x(¢) is the output, and if the
time-variations of the system are periodic (or sums
of periodic) functions, then we have this special
case. When all of the values of @ present in the
system’s time variations are included in the time-
variant linear transformation (the system model)
that produces the optimum estimate of the output
x(t) of the unknown system using the known input
y(t), then this optimum transformation is identical
to the unknown system [12, Section 14C].

pU(f)E

As an example of a signal estimation application,
if x(7) is the amplitude-modulated sine wave (47)
and y(7) is the sum of x(¢#) and white noise, the
error (65) resulting from the cyclic Wiener filter
can be as small as one half its minimum obtainable
without frequency shifts, i.e., using the (noncyclic)
Wiener filter [21]. In this case only two shifts,
y =+£2fy, are needed.

As another such example, if x(¢) is the ampli-
tude-modulated pulse-train (49) in additive white
noise, then for a pulse duration of 7/K (K> 1), the
cyclic Wiener filtering error (65) can be as small as
1/K times its smallest value, the (noncyclic) Wiener
filtering error, obtainable without frequency shifts
[21]. More dramatic improvements in performance
through the use of spectral coherence can be
obtained when signal distortion is severe and also
when the additive noise as well as the signal exhib-
its cyclostationarity. This latter case occurs, for
instance, when the noise contains interfering mod-
ulated signals. For example, K amplitude-modul-
ated pulse trains that overlap in both time and
frequency and have positive-frequency bandwidth
equal to K/2 times the pulse rate can be perfectly
separated from each other [19]. Similarly, K temp-
orally and spectrally overlapping phase-shift keyed
signals with positive-frequency bandwidth equal to
K times the keying rate can be perfectly separated
[19], and two overlapping amplitude modulated
signals can be separated, regardless of bandwidth
[19].

The value of using frequency shifting in addition
to frequency weighting and phase-shifting (which
result from time-shifting) can be easily seen for
the simple example in which interference in some
portions of the signal frequency band is so strong
that it overpowers the signal in those partial bands.
In this case, a time-invariant filter can only reject
both the signal and the interference in those highly
corrupted bands, whereas a frequency-shift filter
can replace the rejected spectral components with
spectral components from other uncorrupted (or
at least less corrupted) bands that are highly corre-
lated with the rejected components from the signal.

Another example involves reduction of signal
distortion due to frequency-selective fading caused

Vol. 29, No. 2, November 1992




134 W.A. Gardner /| Coherence in signal processing

by multipath propagation. Straightforward ampli-
fication in faded portions of the spectrum using a
time-invariant filter suffers from the resultant
amplification of noise. In contrast to this, a periodi-
cally time-variant filter can replace the faded spec-
tral components with stronger highly correlated
components from other bands. If these correlated
spectral components are weaker than the original
components before fading, there will be some noise
enhancement when they are amplified. But the
amount of noise enhancement can be much less
than that which would result from the time-invari-
ant filter, which can only amplify the very weak
faded components.

The relationship between frequency-shift pre-
diction for scalar-valued purely cyclostationary
time-series and conventional prediction for vector-
valued purely stationary time-series is pursued in
[33, 35, 39].

4.4. Antenna array processing: spatial coherence

Spatial coherence plays an important role when
linear combining is used with an array of spatially
separated single-antenna receivers in' the technique
of spatially diverse communications which is used
to combat signal fading due to propagation phe-
nomena [46]. Also, spatial coherence is the main
property that is used by memoryless antenna arrays
to form spatial reception beams and nulls (spatial
filters) in order to extract a desired signal while
rejecting interfering signals impinging on the array
[10]. The array can be viewed as providing spatial
samples of a space-time waveform, and the spatial
coherence is used by forming linear combinations
of the spatial samples. Also, algorithms for adap-
tively adjusting the weights in the linear combina-
tion typically exploit the spatial coherence. This is
true for signals that adjust the array to extract sig-
nals as well as algorithms that just measure signal
parameters such as direction of arrival (DOA). The
currently popular (among investigators in the algo-
rithms research community) spatially-coherent-sig-
nal subspace algorithms MUSIC and ESPRIT are
examples of this [36, 43, 45].
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To briefly illustrate the idea, we consider an
array of n antenna elements together with n corre-
sponding receivers that produce an n-vector y(z) =
[y 1), ¥, 2, ..., ¥(t, {n)} of analytic signals,
where {1, (>, ..., {,} represents the spatial loca-
tions of the » sensors. These signals can often be
modeled using a narrowband approximation as
follows:

y()=As(t) +n(t), (67)

where 4 is an nXd matrix whose columns
{a(6;):i=1,2,...,d} are the direction vectors
associated with the d signals [the elements of s(7)]
impinging on the array; {0,:i=1,2, ..., d} are the
corresponding d DOAs; and n(¢) is additive zero-
mean sensor noise, assumed to be independent
from sensor to sensor, and of equal average power
o’ for all sensors. It follows from this model that
the nXn matrix of temporal crosscorrelations of
the elements of y() is given by

R_Vy é @(t)yT(t)> :ARssAT + 0-215

where A" is the transpose conjugate of 4 and I is
the n X n identity matrix. The spatial coherence of
the d signals is reflected in the structure of this
spatial correlation matrix and this structure can be
used for purposes of estimating DOAs and extract-
ing signals.

For example, the rank of the # X n matrix AR, 4"
is no more than the rank of the d X d matrix R,
which cannot exceed its dimension d. If d<n and
no one of the d signals in s(¢) is completely corre-
lated with any of the other d— 1 signals, so that R,
is of full rank, then the null space of AR;A", which
is orthogonal to all d direction vectors {a(0;)}, is
spanned by the eigenvectors corresponding to the
n—d smallest eigenvalues of R, (each of which
equals o). Thus, singular value decomposition of
R,, can be used to estimate the number 4 of signals,
and to estimate the d DOAs by searching over 6
for the vectors a( ) (assuming the array calibration
function a( - ) is known) that are most nearly ortho-
gonal to all of the eigenvectors corresponding to
the n—d smallest eigenvalues.
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For broadband signals, temporal coherence, as
well as spatial coherence, can be exploited by using
arrays with memory (cf. [49]).

4.5. Antenna array processing: spectral and
spatial coherence

When the signals impinging on an antenna array
are modulated sine waves and/or periodic pulse-
trains, their spectral coherence, as well as their spa-
tial coherence (and also temporal coherence for
broadband signals), can be exploited for signal
parameter estimation and signal extraction.

To illustrate how spectral coherence can be used,
we consider the situation in which d, <d of the d
signals impinging on the array all exhibit cyclosta-
tionarity with the same cycle frequency a (assumed
known). In this case, the cyclic spatial correlation
matrix

<R.?’J’(T)> £ <y(t+ T/2)yT(l‘— 7/2) e—i2naz>
for the model (67) takes the form
R;,(1)=AR(T)A",

where A4 is the matrix of direction vectors for the
d, signals and R3(7) is their d, X d, correlation
matrix. Since there is no contribution to R;,(7)
from the sensor noise or the d—d, signals that do
not exhibit cyclostationarity with cycle frequency
a (or spectral coherence with frequency separation
o), we have performed a signal selection or sorting
function by simply obtaining a reliable measure-
ment of this matrix. This matrix is independent of
the particular characteristics of the sensor noise
and the number and characteristics of interfering
signals. If Ry(7) is of full rank, then the d,
direction vectors {a(6;)} are all orthogonal to the
null space of Rj,(7), assuming d, <n. Therefore,
the d, DOAs {0,} can be estimated by searching
over 6 for the vectors a(6f) that are most nearly
orthogonal to all basis vectors in this null space.
To find the approximate null space, we can use the
usual singular value decomposition methods. The
effectiveness of such spectral coherence exploiting
methods of DOA estimation is demonstrated in

[15, Section 12.8; 41, 44]. For example, if d,=1
signal having cycle frequency a arrives from an
angle 6 that is very close to the angle from which
an interfering signal arrives, then the spectral-
coherence-exploiting methods of DOA estimation
need only estimate the angle 0 of the desired signal,
whereas a conventional method such as MUSIC or
ESPRIT must successfully resolve the angles of
both signals, which typically requires much greater
data collection time.

In addition, the concept of Spectral COherence
REstoral (SCORE) can be used to develop algo-
rithms that blindly (without the use of training sig-
nals, knowledge of DOA, knowledge of array
geometry or array calibration) adapt antenna
arrays to extract desired signals while rejecting
undesired interfering signals (i.e., to spatially filter
the received data) [1, 2; 15, Section 12.8; 40]. Spec-
tral coherence restoral exploits the spectral coher-
ence property of a signal of interest by using an
appropriate frequency shift a that preserves corre-
lation for the signal of interest while decorrelating
interfering signals and noise. This is analogous to
the adaptive spectral-line-enhancement filtering
technique that uses a time shift to preserve tempo-
ral correlation for narrowband signal components
while decorrelating wideband noise components.

As an example of a SCORE technique, the vec-
tor w of weights in the linear combination w'y(¢) of
the spatial samples the effectively forms an antenna
reception pattern can be taken to be that vector
which jointly with the vector v maximizes the
degree of mutual spectral coherence

_ Ri(»m  _ wi R (T)v
P RAORAO]Z (W R, w)(0'R,,0)] >

between the linearly combined signals
x()=wly(t) and z(1)=0'y(2).

When there are d, signals in p(#) exhibiting cyclo-
stationarity with cycle frequency a, then the first
signal is still estimated by maximizing the mutual
spectral coherence p. The second signal is estima-
ted by maximizing the partial coherence (e.g. see
Subsection 2.3) between x,(¢) and z,(¢) after the
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effects of x,(¢) and z,(¢) have been removed from
¥(£) and y(t— 1) e'*™™, respectively. Similarly, the
Ith signal is estimated by maximizing the partial
coherence between x; (f) and z, () after the effects
of xi(t),...,x;-1(t) and z(¢),...,z-1(¢f) have
been removed from y(7) and y(z— 1) >, respec-
tively. The d, solutions w are given by the gen-
eralized eigenvectors corresponding to the d, non-
zero generalized eigenvalues of the generalized

eigenequation [15, Section 12.8]
R3,(DR,R3,(T) w=2R,w. (68)

Each solution vector w is optimal for one of the d,
signals. This SCORE technique can be derived as
a particular application of common factor analysis
(also called canonical correlation analysis), which
is well known in the multivariate statistics commu-
nity [30]. Since only the d, signals in y() exhibiting
cyclostationarity with cycle frequency a are corre-
lated with components in y(¢— 7) €™, the adap-
tive spatial filtering problem can be re-interpreted
as the common factor analysis problem in which it
is desired to estimate the signal components that
are common to two data sets. By choosing these
two data sets to be y(¢) and y(t—7)e”™ and
applying standard results from common factor
analysis, the algorithm (68) is obtained.

Another SCORE technique uses the generalized
eigenvectors of the simpler generalized eigenequa-
tion [40]

Ry (T)w=AR,w.

Blind adaptive SCORE techniques, which exploit
both spectral (through R},) and spatial (through
Rj, and R,,) coherence, often produce nearly (or
exactly) maximum signal-to-interference-and-
noise-ratio solutions [2]. For example, if there is
only d, =1 signal of interest impinging on the array
that exhibits cyclostationarity with cycle frequency
a, then the solution corresponding to the one non-
zero eigenvalue of (68) is given by

wocRy_yla(Gl),

which is the well-known maximum-SINR (and
minimum-mean-squared-error) weight vector for a
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signal arriving from direction 8, for any array and
any number and type of interfering signals and
noises that are uncorrelated with the signal of
interest.

4.6. Detection and classification. spectral and
temporal coherence

Randomly fluctuating modulated signals that
are severely masked by other interfering signals
and noise can be more effectively detected, in some
applications, by detection of spectral correlation
rather than detection of energy. This is so, for
instance, when the energy level of the background
noise or interference fluctuates unpredictably,
thereby complicating the problem of setting energy
threshold levels [12, Section 14E; 14; 15, Section
12.8; 22]. The utility of spectral correlation for
detection is illustrated in Fig. 4, where it is difficult
to see the contribution from the signal in the meas-
ured spectrum at a =0, but it is easy to see the
contribution in the measured spectral correlation
function at a==+2fy, a==%1/T, a=+2f+1/T.
The signal here is a binary phase-shift-keyed sine
wave (BPSK)'' with sine-wave frequency f, and

Fig. 4. Measured spectral correlation magnitudes for simulated
signals: (a) BPSK signal corrupted by noise and interference;
(b) uncorrupted BPSK signal.

" The BPSK signal can be obtained by forming the product
of a sine wave with a binary valued pulse-amplitude modulated
signal of the form (49).
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keying interval T, the noise is white, and the inter-
ference consists of five amplitude-modulated sine
waves. Figure 4(a) shows thc measured spectral
correlation magnitude surface for the corrupted
BPSK signal, and Fig. 4(b) shows the measured
surface for the uncorrupted BPSK signal.

This example also suggests that the unique pat-
terns of spectral correlation that are exhibited by
different types of modulated signals (cf. [12,
Chapter 12; 15, Chapter 12]) can be effectively
exploited for recognition of modulation type for
severely corrupted signals. However, the produc-
tion of reliable spectral correlation surfaces is a
computationally intensive task. A survey of meth-
ods of measurement of spectral correlation is given
in [12, Chapter 13] and computationally efficient
digital algorithms are presented in [6, 38].

To illustrate the potential for using spectral cor-
relation characteristics to classify signals, the spec-
tral correlation surfaces for three types of PSK
signals with keying rate 1/ T are shown in Fig. 5.
The signal types are BPSK, quaternary PSK
(QPSK) and staggered QPSK (SQPSK). It can be
seen that the spectra (¢ =0) of these three signals
are identical to each other and therefore cannot

10/T

10/T

-5/T —_— 5/T

10/T

-5/T — 5/T

Fig. 5. Theoretical spectral correlation magnitudes for three
types of PSK signals: BPSK, QPSK and SQPSK.

be used to distinguish among these signal types.
However, the overall spectral correlation surfaces
are highly distinct and can therefore be used effec-
tively for classification.

4.7. TDOA estimation: spectral and temporal
coherence

Parameters such as time-difference-of-arrival
(TDOA) of signals at two sensors, which can be
used for radiating-signal source location, can be
more effectively estimated for modulated signals in
some applications by using measurements of cyclic
(a #0) cross-correlations and cyclic cross-spectra,
rather than conventional (¢ =0) cross-correlations
and cross-spectra. This is so, for example, when
there is a multiplicity of interfering modulated sig-
nals that cannot be separated because of the lack
of a sufficient number of sensors, such as antenna
elements, or when the signal is weak relative to the
noise or interference [9, 20]. This can be seen as
follows. The two signals received at two sensors
can be modeled as

yi(t) =s(t) +n(1),
Va(t) = (a)s(t —to) +m(1), (69)

where 1, is the TDOA of the signal s(¢), and n(?)
and m(t) consist of interfering zero-mean signals
and noise that are independent of s(#). For this
model the ratio of the cross-spectrum of y;(¢) and
¥2(2) to the auto-spectrum of y,(¢) is given by

Sa(f)
Suf)

_ (@) exp(—i2nf19) Sos(f ) + Spn( S )
Sus(S) +Sun(S) '

In the absence of noise and especially interference,
Sum(f)=8,:(f)=0 and therefore

S0 o)z, e

where B is the support of Si(f). Thus, the inverse
Fourier transform of this ratio of spectra peaks at
to (cf. [8]). However, when S,,.( /) is not negligible,
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the desired linear (in /) phase characteristic of this
ratio of spectra can be severely masked. This is
illustrated with the auto-spectral correlation
magnitude |ST,(f)| shown in Fig. 4 (for the same
signal, interference and noise environment as that
considered in the preceding subsection on detection
and classification), which closely resembles the
cross-spectral correlation magnitude |S%H(f)].
(Since the magnitude of the signal component of
the cross-spectrum at ¢ =0 is completely masked
by the interference components, its phase charac-
teristic is also severely corrupted.) Notice, how-
ever, that the cross spectral correlation at any of
the cycle frequencies a of the BPSK is relatively
free of contributions from the noise and interfer-
ence. In fact, for the model (69), we have

Sa(f)
St(f)

_ (@) exp(—i[2nfto + 61)S( /) + Smn(f)
Su(f)+Su(f)

where 0 =nart,. Thus, as long as the noise and
interference do not exhibit spectral coherence
with frequency separation @ corresponding to a
cycle frequency of the signal s(z), then
Son()=Sm(f)=0and S&(f)#£0 for (say) feB,
and, consequently,

g%%;: (@) exp(—i[2nfto+ 0]), feBa,

as desired. The effectiveness of such spectral-coher-
ence exploiting TDOA estimation methods is
demonstrated in [9; 15, Section 12.8; 20].

>

5. Summary

In this paper, a unifying view of the concept of
coherence is presented. Precise mathematical defi-
nitions of the degree of coherence of various types,
including temporal, spectral and spatial coherence
as well as self, mutual and partial coherence, are
given. A spectral decomposition of coherence is
developed, and the connection between cyclosta-
tionarity and spectral coherence is explained. The
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practical limitations of the somewhat evasive prop-
erty of spectral coherence of nonstationary/non-
cyclostationary processes are revealed. Geometric
interpretations of coherence and its intimate link
with linear relationships are discussed. A variety of
physical meanings of the term coherence and a
broad sampling of uses of coherence properties in
signal processing are briefly described.

Of the three types of coherence, temporal, spatial
and spectral, the third type has not received as
much attention in the literature as the first two.
This is due in part to the fact that only signals that
exhibit cyclostationarity or local cyclostationarity
(or nonstationarity of a form that is known prior to
measurement) possess useful properties of spectral
coherence (when ensemble averaging is not pos-
sible). To help promote awareness of the utility of
spectral coherence, a little more emphasis is placed
on the uses of this particular type of coherence. A
more detailed tutorial treatment of spectral coher-
ence is given in [16].

It is hoped that the unifying view of the funda-
mental concept of coherence presented in this
paper will enhance understanding and foster uses
of coherence throughout the broad field of signal
processing. Although the treatment of coherence
presented here is intended to be uniquely compre-
hensive and unifying, the scope is still limited.
Topics omitted, including primarily relationships
between coherence and causality (cf. [7, 25, 37]),
methods of and performance evaluation for coher-
ence measurement (cf. [6, 12]), physical modeling
of coherence in the study of wave propagation and
scattering, and various physical meanings and uses
of coherence, are not necessarily less important or
in any other way subordinate to those included.

References

[1] B.G. Agee, S.V. Schell and W.A. Gardner, “The SCORE
approach to blind adaptive signal extraction: An applica-
tion of the theory of spectral correlation”, Proc. IEEE/
ASSP Fourth Workshop on Spectrum Estimation and
Modeling, Minneapolis, MN, 3-5 August 1988, pp. 277-
282.




(2

(3]

(4]
{31
(6]

(7

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

W.A. Gardner | Coherence in signal processing

B.G. Agee, S.V. Schell and W.A. Gardner, “The self-
coherence restoral (SCORE) approach to blind adaptive
array processing”, Proc. IEEE (Special Issue on Multidi-
mensional Signal Processing), Vol. 78, No. 4, April 1990,
pp. 753-767.

J. Bass, “Stationary functions and their applications to the
theory of turbulence. I. Stationary functions; II. Turbulent
solutions of the Navier-Stokes Equations”, J. Math. Anal.
Appl., Vol. 47, 1974, pp. 354-399 and 458-503.

M. Born and E. Wolf, Principles of Optics, Pergamon,
New York; 1959.

R.N. Bracewell, “Defining the coherence of a signal”,
Proc. IRE, Vol. 50, February 1962, p. 214.

W.A. Brown and H.H. Loomis, Jr., “Digital implementa-
tions of spectral correlation analyzers”, IEEE Trans. Sig-
nal Process., Vol. 40, 1992 (in press).

J.A. Cadzow and O.M. Solomon, Jr., “Linear modeling
and the coherence function”, IEEE Trans. Acoust. Speech
Signal Process., Vol. ASSP-35, January 1987, pp. 19-28.
G.C. Carter, “Coherence and time delay estimation”,
Proc. IEEE, Vol. 75, No. 2, 1987, pp. 236-255.

CXK. Chen and W.A. Gardner, “Signal-selective time-
difference-of-arrival estimation for passive location of
manmade signal sources in highly corruptive environ-
ments. Part II: Algorithms and performance”, IEEE
Trans. Signal Process., Vol. 40, 1992, pp. 1185-1197.
R.T. Compton, Jr., Adaptive Antennas, Prentice Hall,
Englewood Cliffs, NJ, 1988.

I. Daubechies, “The wavelet transform, time-frequency
localization and signal-analysis’, IEEE Trans. Inform.
Theory, Vol. 36, No. 5, September 1990, pp. 961-1005.
W.A. Gardner, Statistical Spectral Analysis: A Nonproba-
bilistic Theory, Prentice Hall, Englewood Cliffs, NJ, 1987.
W.A. Gardner, “Correlation estimation and time-series
modeling for nonstationary processes”, Signal Processing,
Vol. 15, No. 1, July 1988, pp. 31-41.

W.A. Gardner, “Signal interception: A unifying theoreti-
cal framework for feature detection”, IEEE Trans. Comm.,
Vol. COM-36, No. 8, 1988, pp. 897-906.

W.A. Gardner, Introduction to Random Processes with
Applications to Signals and Systems, Macmillan, New
York, 1985, Second Edition, McGraw-Hill, New York,
1989.

W.A. Gardner, “Exploitation of spectral redundancy in
cyclostationary signals”, IEEE Signal Process. Mag., Vol.
8, April 1991, pp. 14-36.

W.A. Gardner, “Two alternative philosophies for estima-
tion of the parameters of time-series”, IEEE Trans.
Inform. Theory, Vol. 37, 1991, pp. 216-218.

W.A. Gardner, “On the spectral coherence of nonstation-
ary processes”, IEEE Trans. Signal Process., Vol. 39, 1991,
pp. 424-430.

W.A. Gardner, “Cyclic Wiener filtering: Theory and
method”, IEEE Trans. Comm., 1992 (in press).

W.A. Gardner and C.K. Chen, “Signal-selective time-
difference-of-arrival estimation for passive location of
manmade signal sources in highly corruptive environ-
ments. Part I: Theory and method”, IEEE Trans. Signal
Process, Vol. 40, 1992, pp. 1168-1184.

(21]

[22]

(23]

[24]

[25]

[26]

(271

(28]
[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37

[38]

[39]

[40]

139

W.A. Gardner and L.E. Franks, ‘“Characterization of
cyclostationary random signal processes”’, [EEE Trans.
Inform. Theory, Vol. IT-21, 1975, pp. 4-14.

W.A. Gardner and C.M. Spooner, “Signal interception:
Performance advantages of cyclic feature detectors™. IEEE
Trans. Comm., Vol. 40, 1992, pp. 149-159.

R.J. Glauber, “The quantum theory of optical coherence”,
Phys. Rev., Vol. 130, No. 6, June 1963, pp. 2529-2539.
R.J. Glauber, “Coherent and incoherent states of the radi-
ation field”, Phys. Rev., Vol. 131, No. 6, September 1963,
pp. 2766-2788.

C.W.J. Granger, “Investigating causal relations by econo-
metric models and cross-spectral methods”, Econometrica,
Vol. 37, No. 3, 1969, pp. 424-438.

K. Hasselmann and T.P. Barnett, “Techniques for linear
prediction for systems with periodic statistics”, J. Atmos-
pheric Sci., Vol. 38, 1981, pp. 2275-2283.

C.W. Helstrom, “An expansion of a signal in Gaussian
elementary signals”, IEEE Trans. Inform. Theory, Vol. 12,
January 1966, pp. 81-82.

A. Ishimaru, Wave Propagation and Scattering in Random
Media, Academic Press, New York, 1978.

G.M. Jenkins and D.G. Watts, Spectral Analysis and its
Applications, Holden-Day, San Francisco, CA, 1968.
R.A. Johnson and D.W. Wichern, Applied Multivariate
Statistical Analysis, Second Edition, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

L. Mandel and E. Wolf, “Coherence properties of optical
fields”, Rev. Modern Phys., Vol. 37, No. 2, April 1965,
pp. 231-287.

L. Mandel and E. Wolf, “Spectral coherence and the con-
cept of cross-spectral purity”, J. Opt. Soc. Amer., Vol. 66,
June 1976, pp. 529-535.

A.G. Miamee and H. Salehi, “On the prediction of peri-
odically correlated stochastic processes,” in: P.R. Krish-
naiah, ed., Multivariate Analysis V, North-Holland,
Amsterdam, 1980, pp. 167-179.

W.H. Munk, F.E. Snodgrass and M.J. Tucker, “Spectra
of low-frequency ocean waves”, Bull. Scripps Inst. Ocean-
ography, Vol. 7, 1959, pp. 283-362.

M. Pagano, “On periodic and multiple autoregressions”,
Ann.'Statist., Vol. 6, No. 6, 1978, pp. 1310-1317.

A. Paulraj, R. Roy and T. Kailath, “Estimation of signal
parameters via rotational invariance techniques —
ESPRIT”, Conf. Record, Nineteenth Asilomar Conf. on
Circuits, Systems, and Computers, Pacific Grove, CA, 6-8
November 1985, pp. 83-89.

D.A. Pierce and L.D. Haugh, “Causality in temporal sys-
tems”, J. Econometrics, Vol. 5, 1977, pp. 265-293.

R.S. Roberts, W.A. Brown and H.H. Loomis, “Computa-
tionally efficient algorithms for cyclic spectral analysis”,
IEEE Signal Process. Mag., Vol. 8, April 1991, pp. 38-49.
H. Sakai, “Circular lattice filtering using Pagono’s
method”, IEEE Trans. Acoust. Speech Signal Process.,
Vol. ASSP-30, No. 2, April 1982, pp. 279-287.

S.V. Schell and B.G. Agee, “Application of the SCORE
algorithm and SCORE extensions to sorting in the rank-
L spectral self-coherence environment”, Proc. Twenty-
Second Annual Asilomar Conf. on Signals, Systems, and
Computers, Pacific Grove, CA, 30 October-2 November
1988.

Vol. 29, No. 2, November 1992




140

[41]

[42]

[43]

[44)

[43]

W.A. Gardner | Coherence in signal processing

S.V. Schell and W.A. Gardner, “Signal-selective high-reso-
lution direction finding in multipath”, Proc. Internat.
Conf. Acoust. Speech Signal Process. 1990, Albuquerque,
NM, 3-6 April 1990, pp. 2667-2670.

S.V. Schell and W.A. Gardner, “Progress on signal-selec-
tive direction finding”, Proc. Fifth IEEE/ASSP Workshop
on Spectrum Estimation and Modeling, Rochester, NY, 10—
12 October 1990, pp. 144-148.

S.V. Schell and W.A. Gardner, “High-resolution direction
finding”, Chapter in: N.K. Bose and C.R. Rao, eds.,
Handbook of Statistics, Vol. 10, Elsevier, Amsterdam,
1992 (in press).

S.V. Schell, R.A. Calabretta, W.A. Gardner and B.G.
Agee, “Cyclic MUSIC algorithms for signal-selective
direction estimation”, Proc. Internat. Conf. Acoust. Speech
Signal Process. 1989, Glasgow, 23-26 May 1989,
pp. 2278-2281.

R.O. Schmidt, A signal subspace approach to multiple
emitter location and spectral estimation, Ph.D. Disserta-
tion, Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA, 1981.

Signal Processing

[46]

[47]

(48]

[49]

[50]

M. Schwartz, W.R. Bennett and S. Stein, Communication
Systems and Technigues, McGraw-Hill, New York, 1966,
Chapter 10.

A.E. Siegman, Lasers, University Science Books, Mill
Valley, CA, 1986.

A.R. Thompson, J.M. Moran and G.W. Swenson, Jr.,
Interferometry and Synthesis in Radio Astronomy, Wiley,
New York, 1986.

H. Wang and M. Kaveh, “Coherent signal-subspace pro-
cessing for the detection and estimation of angles of arrival
of multiple wide-band sources”, IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-33, August 1985,
pp. 823-831.

N. Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, The Technology Press of MIT and
John Wiley & Sons, New York, 1949. Originally issued in
February 1942, as a classified National Defense Council
Research Report.




