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Spectral Correlation of Modulated Signals:
Part II—Digital Modulation
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Abstract—As a continuation of Part I, the spectral correlation function
is presented for a variety of types of digitally modulated signals. These
include digital pulse-amplitude, pulse-width, and pulse-position modula-
tion, and various types of phase-shift keying and frequency-shift keying.
The magnitudes of the spectral correlation functions are graphed as the
heights of surfaces above a bifrequency plane, and these graphs are used

- as visual aids for comparison and contrast of the spectral correlation
properties of different modulation types.

I. INTRODUCTION

HIS paper is a continuation of Part I [I] where it is

explained that the spectral correlation function is an
important characteristic of modulated signals that can be
exploited for various signal processing tasks such as detection,
classification, parameter estimation and synchronization, and
extraction, especially for signals buried in noise or masked by
interference. In Part 1, the spectral correlation function is
calculated for the most commonly used types of analog
modulation. In this Part I, the spectral correlation function is
presented for a number of the most commonly used types of
digital modulation. including digital pulsc-amplitude, pulse-
width, and pulsc-position modulation, amplitude-shift keying,
phasc-shift keying (including BPSK, QPSK. SQPSK, and
MSK). and coherent and incoherent frequency-shift keying.
The magnitudes of the calculated spectral correlation functions
arc graphed as the heights of surfaces above the bifrequency
planc in order to facilitate comparison and contrast of the
spectral correlation properties of different modulation types.
In the interest of brevity. the majority of details of the
(sometimes tedious) calculations are omitted. The focus is on

interpreting the general results for various special cases of

practical interest.

The reader is reminded that in the graphs of the spectral
corrclation function, the surface above the faxis wherc o« = 0
is the conventional power spectral density function. This
provides a benchmark against which the strength of spectral
correlation can be measured. Also, because of the symmetries
S'f\?( -f) = §f\',(f) and §_\T“(f) = gf\‘,(f)*, only a quarter or a
half of the bifrequency (f, «) plane is shown in some cases.

II. DiGITAL PULSE MODULATION

In a digitally modulated pulse train, with a digital signaling
alphabet size of M, one of M distinct pulse types. say {q(¢),
q(0), qi(t), -+, ga(1)}, occurs every Tg seconds, which can
be expressed as

L M
Y= 2 E alll(n)qnl([_nTO) (n

n=-oc m=1
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where

o(n) = [61(n), 85(n), 83(n), -, 8y ()]’ @

is an indicator vector (for each value of n) with one element
equal to unity and the rest equal to zero. This signal can be
interpreted as an M-vector PAM impulse train subjected to an
M-vector time-invariant transformation (filter)

y()=q(1) @ x(¢) (3a)

where
x(t)= i 8(n)s(t—nT,) (3b)
q() = [q:1(0), q2(0), q:(1), “ -, qu (D). (3¢c)

Thus, the input-output spectral-correlation relation (24) in
Part I [1] for multiple-input filters applies directly:

Sy (N=0(f+a/DSUNQ'(f-a/2)* (da)
where
~ 1
ST == 87 (4b)
Ty
and S f) is the Fourier-series transform
S:(f) 2 Y, Ri(gTo)e T/ )

g= -

of the matrix of discrete-time cyclic autocorrelations

N

N1 :EA 6(n+q)8'(n)

R¢(qTy) = lim
N— oo

cexp [—i2wa(n+q/2)T,]. (6)

Formula (4b) follows from the vector version of the spectral-
correlation convolution relation (29) in [1], together with the
spectral aliasing formula (27) in [1], and is simply the vector
version of (48) in [1] with Q(f) = 1.

For the special case in which {8(n)} is purely stationary, (4)
reduces to

Se(/)

1 -
T QU +a/)8s(f+a/2)Q' (f-al/2)*, a=k/T,
0

0, a+k/T,

(7

for all integers k& (which is simply a vector version of the PAM
formula (49) in [1]). Furthermore, if {8(n)} is an uncorrelated
sequence and if the fraction-of-time distribution is uniform,
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then

~
1
A—ll, q:o,azk/TO

B(q 0) . levnraqTO’ q:'tO, a:k/To ( )

M2
0, aik/To

L

where I is the identity matrix and 1 is the matrix having all
elements equal to unity. It follows from (8) that

- 1 1 1 >
S5(f)= <M I—A? l> +W 1 Em 8(f-n/Ty). (9)

Substitution of (9) into (7) yields the explicit formula

E Qm(f+ O‘/2)Qm(.f_ a/Z)*

m=1

S =

1 M M *
_]WTTO [ E Qm(f+ OZ/Z)] I:EQn(f_a/z):I

m=1 n=1

. 1 -
|:1~F E 6(f+a/2—n/T0)] , a=k/Ty.
0 n=—oo

(10)

The cyclic spectra for a variety of digital pulse-modulated
signals, such as pulse-position, pulse-width, and pulse-fre-
quency modulation, can be obtained simply by substitution of
the appropriate pulse transforms {Q,,(f)} ' into (10) [or more
generally into (7) or (4)].

Example (Pulse-Amplitude Modulation): Consider M-
ary pulse-amplitude modulation (PAM) for which

Qm(f)zamQ(f)- (11)

In this case, (10) reduces to (49) in [1], which reveals that the
spectral correlation function is of the same general form for
analog and digital PAM.

Example (Pulse-Position Modulation): Consider binary
pulse-position modulation (PPM) for which M = 2 and

On(N)=Q(N)e /im, (12)

for which ¢(#) has nominal position zero. The spectral
correlation magnitude surface from (10) for this signal is
shown in Fig. 1 for t,/Ty = 0, t,/Ty = 1/2, and a rectangle
pulse g(¢) starting at £ = O with width 7,/4 [in Fig. 1(a)] and
T,/2 [in Fig. 1(b)]. The spikes represent impulses, and their
heights are proportional to the areas of the impulses.
Example (Pulse-Width Modulation): Consider binary
pulse-width modulation (PWM) for which M = 2 and

Qm(f)zwmQ(Wmf)’ m=1,2 (13)

for which g(¢) has nominal width unity. The spectral correla-
tion magnitude surface from (10) for this signal is shown in
Fig. 2 for rectangle pulses starting at = O with widths w, =
T,/2 and w, = T, [in Fig. 2(@)] and w, =
To/4 and w, = T,y/2 [in Fig. 2(b)].

m=1,2

III. DiGiITAL CARRIER MODULATION

Digital carrier-modulated signals can typically be expressed
in the form of either PM/FM or QAM time series in which the
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-5/To

(b)

Fig. 1. Spectral correlation magnitude surfaces for a unity-power binary
pulse-position modulated pulse train. (a) Pulse width = T7,/4, pulse
positions = 0, Ty/2. (The strongest spectral-line power = 0.25.) (b) Pulse
width = 7,/2, pulse positions = 0, T,/2. (The strongest spectral-line

power = 0.5.)
4 : 0
—7G/T,
-5/To T. 5/To

(b)

Fig. 2. Spectral correlation magnitude surfaces for a unity-power binary
pulse-width modulated pulse train. (a) Pulse widths = Ty/2, T,. (The
strongest spectral-line power = 0.75.) (b) Pulse widths = T,/4, Ty/2.
(The strongest spectral-line power = 0.375.)

amplitude- and/or phase- or frequency-modulating signals are
digital pulse modulated. Thus, the formulas from the preced-
ing section and [1] can be combined to obtain the spectral
correlation formulas for these signal types. The most com-
monly employed digital carrier-modulated signals are either
amplitude-shift keyed (ASK), phase-shift keyed (PSK), or
frequency-shift keyed (FSK) signals, or combinations of
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amplitude- and phase-shift keying (APK), or of phase- and
frequency-shift keying.
A. Amplitude-Shift Keying
An ASK signal is simply an AM signal
x(t)=a(t)cos2m fot + o) (14)
in which the amplitude time series is a digital PAM signal

o

a(f): E an[](f—”To— tO)-

"= oo

1s)

Conscquently, the spectral correlation function for an ASK
signal is given by (40) in [1] with cither (47) in [1] or (4)
substituted for S"( /). For any alphabet size M, we obtain

- 1 -

S )= T {LO+ fot+ a/2)O*(f+ fo— a/2)SE(f+fo)
+ QU — fot+ a/2)Q¥(f— fo— a/2)Se(f— fo)le” o
+ QU +a/2+ f) OF(f— /2= fo) Su+ 2o(f)
cexp | —i@ala+ 215110+ 2¢0)]

+Q(f+ /2= f)OX(f— a/2+ fo) e 2(f)

exp [—iQmla—2/olto— 2001}, (16)
and for a full-duty-cycle rectangle pulse, we have
= 7
q) {0, 1> Ty/2 (172)
and therefore
sin (7 fTy)
QN =——. (17b)
Tf
For a white amplitude sequence, we have
s R,(0) a=k/T,
o — a b 18
Su(«f) {0’ a#:k/T‘() ( )

for all integers k. The spectral correlation magnitude surface
specified by (16)-(18) for this ASK signal is shown in Fig. 3.
If £ T, is sufficiently large to render negligible the overlap in
the bifrequency plane of the four terms in (16), then ASK is,
like PAM and AM, completely coherent for all f and « for
which it is not completely incoherent and the power density is
nonncgligible.

B. Phase-Shift Keving
A PSK signal is simply a PM carrier

x(t)=cos[2mfot + ()] 19)
in which the phase time series is a digital PAM signal
o)=Y, a.q(t—nTo—1o). (20)

However, it is simpler to use the fact that a PSK signal is also a
binary ASK signal for M = 2, and for M > 2. it is a QAM
signal

x(1) = c()cosQR7 fot + ¢o) — s()sinRm fot +do)  (21)

with digital PAM in-phase and quadrature components c(7)
and s(¢). Thus, for binary PSK (BPSK), the spectral correla-
tion function is given by (16)-(17) (and for a white phase
sequence, it is given by (16)-(18) with R,(0) = 1).
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Fig. 3. Spectral correlation magnitude surface for amplitude-shift keying
(and binary phase-shift keying) with carrier frequency = 3.3/T,.

For a quaternary PSK (QPSK) signal with phases separated
by /2 rad and with time-aligned in-phase and quadrature
binary digital PAM signals

™

c()= E c,q(t—nTy—ty)

n=-o

3

s(= 3, $.q(t—nTo—1to),

n= - oo

(22)

it can be shown that formula (67) in [1] with S'i,‘ and §§‘ each
specified by (47) in [1] or (4) reduces to

SiN =5 U+ /24 /)QU -/ 2+ S+
0

+Q(f+a/2—f)Q(f = a/2 = fo) Se(f = fo)le 270 (23)

where R.(0) = R,(0) = 1 and for which it has been assumed
that the in-phasc and quadrature components are balanced in
the sense that

S =S¢(S)
where [ -], denotes the real part.

As a matter of fact, (23) applies to all APK signals that
exhibit balanced amplitude-phase constellations. Specifically,
if for every pair of amplitude and phase values, say (a,,, 0,,),
there are the three additional pairs (a,,, 0,, + 7/2), (@y, 6, +
), (@, 6, — w/2), and if (for example) the sequence of
amplitude-phase pairs is an uncorrelated purely stationary
sequence with uniform fraction of time distribution, then (23)-
(24) apply with

[S<(N), =0 (24)

s RO, a=k/T,
Sv(f)‘{o, a®k/Ty.

The spectral correlation magnitude surface for this class of
balanced APK signals is shown in Fig. 4. Notice that in this
class of APK signals, any number of amplitude values is
allowed in the alphabet of amplitude-phase pairs; however, the
number of phases must be an integer multiple of 4. If f, 7, is
sufficiently large to render negligible the overlap in the
bifrequency plane of the two terms in (23), then these APK
signals are completely coherent for all fand « for which they
arec not completely incoherent and the power density is
nonnegligible. This includes only values of « that are integer
multiples of the keying rate 1/7,. In contrast to the result for
BPSK shown in Fig. 1. there is no spectral correlation
associated with the carrier frequency fy (i.e., at o = +2f; +
k/T,) for balanced APK. It is balanced out between the in-
phase and quadrature components. Also, unlike BPSK, there is
no dependence of the spectral correlation on the carrier phase
bo-

There are other types of PSK for which (23) does not apply
because the in-phase and quadrature PAM signals are 50

(25)
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Fig. 4. Spectral correlation magnitude surface for balanced amplitude-
phase-shift keying (and quaternary phase-shift keying) with carrier fre-
quency = 3.3/T,.

percent staggered in time:

oo

C(t)z E C,,q(t—nTo—‘to— T0/2)

n=—o

(26a)

@

s()= 3 s.q(t=nTo—1p).

n=—o

(26b)

If it is assumed that {c,} and {s,} are statistically independent
binary sequences with

Sa(f) =0, @27

then it can be shown using (67) in [1] and either (47) in [1] or
(4) [for each of ¢(r) and s(¢)] that

- 1
S:(N) =aT. {QU+/o+a/2)0X(f+/o—a/2)
0

C[Se(f+ e ™ To+ S (f+fo)]

+ QU+ fo+a/2)Q*(f—fo—a/2)
C[S2(f—Jo)e mTo+ Se(f—o)le 2 xe0
+O(f+a/2+f) QX (f~ a/2~ o)

. [‘§?+2fo(f)e—i1r(a+2fo)To_ S’;x+2f0(f)]
©exp [—iQ@m[a+ 2]t + 2¢0)]

+OU+ /2= [)QMS~ a/2+ 1))
[§zm20(f)emine 2 To— §em20( )]

exp [—i@m[a =211t~ 2¢0)]}. (28)
If {c(nT.)} and {s(nT,)} are statistically identical, purely
stationary, uncorrelated sequences with zero means, then

~ - R.(0), =k/T,
Se(/)=S5(f) = {0 O
and (28) reduces to

(29)

o~

R.(0)
2T,

+Q(f+a/2— o) Q*(f — /2= fo) e~ 2T,
a=m/T,, m even

R.(0)

2T,

- exp { —iQwla+2/olto+2¢0)}

+O(f+a/2=f)Q*(f—a/2+ /o)

- exp { —iQw[a—2folto—2¢0)}],
a=+2f,+m/T,, m odd

[Q(f+a/2+f0) Q*(f— /2 + fo)

[QU +a/2+f) Q¥ (f— /2= /o)

S2(f)=<

(30)
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for this staggered QPSK (SQPSK) signal. A graph of the
spectral correlation magnitude surface specified by (30) with
Q(f) given by (17) is shown in Fig. 5. It can be seen by
comparison to Figs. 3 and 4 that SQPSK is similar to both
BPSK and QPSK, yet distinct. Like BPSK, it does exhibit
spectral correlation at some frequencies associated with the
carrier frequency o = +2f, + k/T,, but only for odd values
of k. Like both BPSK and QPSK, it also exhibits spectral
correlation at some frequencies associated with the keying rate
alone @ = k/T,, but only for even values of k. Also like
BPSK, but unlike QPSK, there is some dependence on the
carrier phase ¢y.

If the rectangle pulse shape g(¢) used in the SQPSK signal is
modified to half a cycle of a sine wave,

| cos (zt/Ty), [t] < Ty/2
q(’)‘{ 0, 7| >To/2,

then this is called a minimum-shift keyed (MSK) signal.
Formulas (28) and (30) still apply, but with

(3D

1
Q=3 [Qo(f+1/2T0) + Qo(f—1/2Tp)]  (32)

where Qqy( f)is given by Q(f) in (17). A graph of the spectral
correlation magnitude surface specified by (30) and (32) is
shown in Fig. 6.

As another illustration of the effect of a modification to the
pulse shape used for PSK, we consider a BPSK signal with a
bipolar pulse

_ 1, —Ty/2 < t<0
q()= { -1, 0 < t<Ty/2. (33)
This is sometimes called Manchester-encoded BPSK,

whereas BPSK with the unipolar rectangle pulse (17) is called
nonreturn-to-zero (NRZ) encoded BPSK. The spectral cor-
relation magnitude surface for BPSK with pulse shape (33) is
shown in Fig. 7.

C. Frequency-Shift Keying
One type of FSK signal is simply an FM carrier

X(£) = cosQ2r fyl + SO 2(u) du) (34a)

in which the instantaneous frequency-deviation time series is a
digital PAM signal

()= 5: a,q(t—nTy). (34b)

n=0

Since the instantaneous phase of this signal is a continuous
function of ¢ (assuming that g(f) contains no impulses), this is
called continuous-phase FSK (CPFSK). The spectral correla-
tion function for CPFSK can be obtained from (77) in [1] (for
a = *2f;). Another type of FSK, in which the phase is not
necessarily continuous, can be expressed as

x(t)=cos {27rf0t+i f: Sm(M27f, (t—nTy)
n=0 m=1

+0m(n)]q(t—nTo)} . (3%

If this signal is obtained by keying off and on M continuously
running oscillators with frequencies {f; + f,}¥, then

Om(n)=27fpnTo+ dm (362)
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10/T,

-5/To T> 5/To
Fig. 5. Spectral correlation magnitude surface for staggered quarternary-
phase-shift keying with carrier frequency = 3.3/Tp.
10/To
ol
-10/To
-5/T, ——f—» 5/To

Fig. 6. Spectral correlation magnitude surface for minimum-shift keying
with carrier frequency = 3.3/Tq.

Fig. 7. Spectral correlation magnitude surface for Manchester-encoded

binary phase-shift keying with carrier frequency = 3.3/T.
and (35) reduces to
o M
x()=cos {21 > N Su(n)fo+fnlt+bm)q(t— ”To)}
n=0 m=1

(36b)

which is called carrier-phase coherent FSK. As an alterna-
tive, if the signal (35) is obtained by exciting M narrow-band
filters with impulses every T, units of time, and if the filters
are returned to the same initial state 7T; units of time after
excitation, then

am (n) =ém (37)
in (35), and x(¢) is called clock-phase coherent FSK. In this
case, each of the M possible carrier bursts of length Tj always
starts off with the same phase ¢,. If there are an integer
number of carrier cycles per keying interval ([fo + fn1To =
integer), then clock-phase coherence and carrier-phase coher-
ence are equivalent. Also, if all M phases {¢,} are equal and
[fo + fmlTo = integer, then (35) is a CPFSK signal (although
CPFSK as generated in (34) does not require either clock-
phase coherence or carrier-phase coherence unless [f, +
JmlTy = integer and {¢,,} are all equal). One other possibility
is phase-incoherent FSK in which the phase sequence

Om(n)=0n

fluctuates randomly with 7 [and independently of 6,,(n)].

Example (Clock-Phase Coherent FSK): Use of (37) in
(35) yields the alternative but equivalent expression for the
clock-phase coherent FSK signal:

(38)

o M
x(®)=3, D) 8n(n) cos Qulfo+fnllt—nTol
n=0 m=1

+ém)q(t—nTo) (39)
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where g(¢) is the rectangle pulse (17). This is a digital pulse-
modulated signal (1) with

qm(t) =cos Qu[fo+fmlt+Dm)q(?). (40)

Therefore, the spectral correlation function for this FSK signal
is given by (7) (assuming the data {8(n)} are purely stationary)
with

sin [w(f—fo—fm) Tole*m
27(f=So+Sm)
N sin [7(f+fo+/fn)Tole”'#m
2r(f+So+Sm)

If the data {8(n)} are uncorrelated and have uniform fraction-
of-time distribution, then (7) reduces to (10). Letting f, = fo
+ fm, it follows that |S?(f)| has its maximum values at « = 0
and f = =f,, and if f, T, are integers, then there are
additional maxima at « = *2f, and f = 0. There are also
secondary maxima (down by the factor M — 1 from the
primary maxima) at o = f, * f/and =f = (f, F f)/2.

Example (Phase-Incoherent FSK): The phase-incoherent
FSK signal can be expressed in the alternative but equivalent
form

Qm(f)=

(41)

(0= a,(0)q(t—nTy) (42a)
n=0
where
a,(t)=cosQx[fo+f(n)]t+0,) (42b)
and
M
FO0 =S () . (420)

m=1

If {6,} is an independent sequence, has uniform fraction-of-
time distribution on the interval [— w, 7], and is statistically
independent of {f(n)}. then it can be shown that the cyclic
autocorrelation for this phase-incoherent FSK signal is given
by the product

Ry (=7 T, re(ryMa(r) (43a)
where
ra(r= Sm qt+1/2q(t—1/2)e- 7 df  (43b)
and
- , 1 N ,
M= lim —— ngNy,.(r)e"z“"”O (43¢)
for which
(1) & cos Qr[fo+f(n)]7). (44)

Thus, the spectral correlation function is given by the
convolution (in the variable f)

- 1
SsD=37 [QU+a/2)Q*(f—a/2)]
0

® |7 Mememdr. @)
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Fig. 8.

s

If { f(n)} is purely stationary and has discrete M-ary fraction-
of-time distribution {P,,}, then it can be shown that

M
M;'(T) = E Py, cosnf 1), a=k/T,. (46)
m=1
It follows from (45) and (46) that
. 1
SiN =17 2 PulQU+S}+a/DQNf+1)—ar2)
0 m=1
+Q(f—fI;,+a/Z)Q*(f—f,;I—a/Z)], a=k/Ty. (47)

Comparison of (10) (with (41) substituted in) to (47) reveals
that some terms present in (10) are absent in (47), and as a
result, there are no impulses in §f\¥(f) for phase-incoherent
FSK. unlike clock-phase coherent FSK, and there are no peaks
ata = +2f In fact, if 2f Ty is not an integer, there is no
contribution at all at o = +2f . However, if the products
{/nTo} are sufficiently large to render negligible the overlap
in the bifrequency plane of the 2M terms in (47), then the
incoherent-phase FSK signal (i.e., incoherent at the frequen-
cies of the carrier bursts) is, to a close approximation,
completely coherent (i.e., coherent at the clock rate and its
harmonics) for all f and « for which any one of these 2M
terms is nonnegligible. This includes only values of « that are
integer multiples of the keying rate 1/7,. However. STy is
usually not very large in practice.

Two graphs of the spectral correlation magnitude surface
specified by (47), corresponding to the two sets of frequencies
/Ty = {5,6, 7, 8} and {3 To}y = {5,7,9, 11} and a
uniform distribution P,, = 1/4, are shown in Fig. 8.

IV. CoNCLUSIONS

A new characteristic of modulated signals, the spectral
correlation function, which is described in Part I [1], is
calculated for a variety of digital modulation types. The results
clarify the ways in which cyclostationarity is exhibited by
different types of modulated signals. As explained in [1] and
references therein, these differing spectral correlation charac-

Spectral correlation magnitude surfaces for phase-incoherent quater-
nary FSK. (a) {(fo + /) To} = {5,6,7,8}. (b) {(Sfo + f)To} = {5, 7,
1}.

teristics can be used to empirically classify modulated signals,
even when the signals are buried in noise, and they also can be
exploited for signal detection, synchronization, and extrac-
tion. A signal can be synchronized to using a quadratic
synchronizer if and only if it exhibits spectral correlation [4].
Similarly, the existence of spectral correlation in a signal of
interest makes it possible to reject noise and interference for
purposes of signal detection and extraction in ways that would
be impossible for signals without spectral correlation [31, [5],
[6]. The results in this paper are essential for design and
analysis of signal processing systems such as detectors,
classifiers, synchronizers, and extractors that exploit spectral
correlation since one of the first steps in such design or
analysis is to determine the spectral correlation characteristics
of the signals of interest.

As explained in [1], the spectral correlation function
reduces to the conventional power spectral density function for
a cycle frequency of zero, @« = 0. Thus, the spectral
correlation formulas derived herein yield the well-known
formulas for power spectral density as a special case. A more
extensive trcatment of the spectral correlation characteristics
of modulated signals that includes graphs of phase as well as
magnitude is given in [3].
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