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Abstract—The importance of the concept of cyclostationarity in design
and analysis of signal detectors, synchronizers, and extractors in
communication systems is briefly discussed, and the central role of
spectral correlation, in the characterization of random processes that are
cyclostationary in the wide sense, is explained. A spectral correlation
function that is a generalization of the power spectral density function is
described, and a corresponding generalization of the Wiener-Khinchine
relation and several other fundamental spectral correlation relations also
are described. Explicit formulas for the spectral correlation function for
various types of analog-modulated signals are derived. This includes pulse
and carrier amplitude modulation, quadrature amplitude carrier modula-
tion, and phase and frequency carrier modulation. To illustrate the
differing spectral correlation characteristics of different modulation
types, the magnitudes of the spectral correlation functions are graphed or
described in graphical terms as the heights of surfaces above a bifre-
quency plane.

I. INTRODUCTION

A cyclostationary process is a random process with
probabilistic parameters, such as the autocorrelation
function, that vary periodically with time. Cyclostationary
processes are appropriate probabilistic models for signals that
have undergone periodic transformations, such as sampling,
scanning. modulating. multiplexing, and coding operations,
provided that the signal is appropriatcly modeled as a
stationary process before undergoing the periodic transforma-
tion. In response to the increasing demands on communication
system performance, systems analysts arc beginning to dis-
cover the importance of recognizing the cyclostationary
character of most communications signals, and to abandon the
simpler more approximate stationary models that have been
used in the past. The growing awareness of the relevance of
the concept of cyclostationarity is illustrated by recent work in
synchronization [1]-[10]. crosstalk interference and modula-
tion transfer noise [11], [12]. transmitter and receiver filter
design [13]-[16]. adaptive filtering and system identification
[17]-[19]. coding [20]. [21]. queucing [22]. [23], and detec-
tion [19]. [24]. [25]. In addition., the growing role of
cyclostationarity in other signal processing arcas is illustrated
by recent work in biomedical engincering [26]. climatology
[27]. and hydrology [28]. and by recent developments in basic
thcory for prediction [29]. extraction [13], [19]. detection
[19]. [25]. and signal modeling and representation [30]-[33].

It is shown in this paper that spectral correlation is a
characteristic property of wide-sense cyclostationarity (cyclo-
stationarity of the autocorrelation), and a spectral correlation
function that is a generalization of the power spectral density
function is described. The spectral correlation concept has
associated with it four fundamental properties of processcs that
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are of significant practical value: 1) different types of
modulated signals (such as BPSK, QPSK, and SQPSK) that
have identical power spectral density functions can have
highly distinct spectral correlation functions; 2) stationary
noise and interference exhibit no spectral correlation (the
spectral correlation function is identically zero); 3) the spectral
correlation function contains phase and frequency information
related to timing parameters in modulated signals; and 4) the
existence of spectral correlation in a signal means that some
spectral components can be estimated using other spectral
components of the signal. Furthermore, all optimum signal
processors (such as estimators and detectors) that are specified
in terms of the cyclostationary autocorrelation function can be
interpreted and implemented in terms of the spectral correla-
tion function. For example, the low-SNR likelihood ratio for
detection and the low-SNR likelihood function for parameter
estimation for random signals in white Gaussian noise are, in
general, completely specified by the signal autocorrelation
function (cf. [10], [19], [34]). Similarly, the optimum periodi-
cally time-variant filter for a cyclostationary signal in station-
ary noise is completely specified by the signal and noise
autocorrelation functions [13], [19], [35]. Also, the optimum
quadratic transformation for generation of maximum SNR
spectral lines from a cyclostationary process for purposes of
detection and synchronization is completely specified by the
spectral correlation function for the signal and the power
spectral density for the noise [10], [19]. Consequently,
properties 1)-4) can be exploited for detection, classification,
paramcter cstimation, and extraction of signals buried in noise
and further masked by interference. Although the spectral
corrclation function is a second-order (quadratic) statistic or
probabilistic parameter like the power spectral density func-
tion, these four properties enable it to be used to accomplish
tasks that are impossible to accomplish with the power spectral
density function [19]. This includes synchronization [10] and
noise and interfecrence rejection for signal extraction and
detection [19]. For example. modulated signals that are
severely masked by other interfering signals as well as noise
can, in some applications, be more effectively detected by
detection of spectral correlation rather than detection of
energy. This is so. for instance, when the energy level of the
background noise or interference fluctuates unpredictably
[25]. Also. there arc situations in which cyclostationarity is
problematic, rather than being a property to be exploited. For
example, nonlinearitics in transmission systems (e.g.. travel-
ing-wave tube amplifiers and noise limiters) can inadvertently
generate spectral lines from cyclostationary signals, and these
spectral lines can cause severe interference effects (cf. [12]).
As cxplained in [10]. the characteristics of spectral lines (their
frequencies and strengths) that can be generated with quadratic
nonlincaritics arc dctermined by the spectral correlation
function.

Since constraints on the length of this paper do not allow for
explicit discussion of the various applications of spectral
correlation, only one particular application is described here
and the description is briet. This application concerns the
problem of extracting a signal of interest from a background of
both broad-band noise and band-limited interference. If
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interference in some portions of the signal band is so strong
that it swamps the signal in those partial bands, then the
optimum time-invariant filter (Wiener filter) simply rejects
those bands. However, if the spectral components of the signal
in those bands are correlated with spectral components of the
signal in other bands, then the optimum periodically time-
variant filter will use those correlated components to estimate
and replace the rejected components [19]. If the correlation is
high and the noise and interference in the bands with
correlated components are low, the replaced components can
be of high fidelity. If an adaptive periodically time-variant
filter is used, the appropriate weighting of the frequency-
shifted components is learned through the process of adapta-
tion [19]. In order to gain an understanding of the potential for
this approach to signal extraction, the spectral correlation
characteristics of signals of interest must be determined.

The primary objective of this paper is, therefore, to
introduce a general approach and several general formulas for
calculating the spectral correlation function, and to obtain
explicit formulas for the spectral correlation functions for
many of the most commonly used types of modulation. As a
visual aid, the magnitudes of these calculated functions are
graphed (or described in graphical terms) as the heights of
surfaces above a bifrequency plane. In this Part I, the
modulation types considered are all analog and include pulse
and carrier amplitude modulation, quadrature amplitude car-
rier modulation, and phase and frequency carrier modulation.
In Part II [43], various types of digital pulse and carrier
modulation are considered.

Although the probabilistic approach based on expected
values, which is conventional for power spectral density
calculations, could be adopted here, as in [35], the nonproba-
bilistic approach based on limiting time-average values is used
instead because of its closer conceptual ties with empirical
methods for measurement of spectral correlation [41]. The
link between these two approaches, which is briefly discussed
herein, is explained in more detail in [42].

II. SPECTRAL CORRELATION

This section is a very brief review of the fundamental
concepts, definitions, and a few basic properties of spectral
correlation. An in-depth introductory treatment is given in the
tutorial paper [42] which is prerequisite for a full understand-
ing of the notion of spectral correlation.

In order to measure the local spectral content of a waveform
x(t) over the time interval [t — T/2, t + T/2], we use the
finite-time Fourier transform

Xr(t, v) 2 |

1+7/2 i
x(u)e 2™ dy, )

(-T2
evaluated at frequency ». The correlation between two such
local spectral components at frequencies v = f + «/2 and v
= f — a/2 (where fis the midpoint and « is the separation of
the two frequencies) normalized by \/_, measured over an
interval of length At, is given by

A2 1
Xr(t, f+a/2)

: 1
St | =

1
N X%(t, f-a/2) dt (2)

(where the superscript asterisk denotes complex conjugation.)
An idealized measure of spectral correlation for a persistent
waveform is then given by the double limit

SA(f) £ lim lim S%(Na. 3)

As At — oo, the measure of correlation becomes ideal (all
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random effects are averaged away), and as 7 — oo, the
bandwidth of the spectral components being corrclated be-
comes infinitesimal. The order of the two limits in (3) is
crucial since for any truly random waveform (one whose
spectral density function contains continuous components, not
just Dirac deltas), the limit as 7" — oo does not exist for finite
At [19]. It is shown in [42] that the idealized spectral
correlation function (3) can be characterized as the Fourier
transform

SeN=\" Re(rye-2vr dr )
of the limit function'
1 ram )
R(r) £ lim Z?S X(t+7/2)x(t—7/2)e- 27t dr. (5)
Ar— o

To show this, one first shows that the product of normalized
finite-time Fourier transforms in (2) is itself characterized by a
Fourier transform

1
= Xr(t, f+a/DXH(1, [~ al2)

ST 1 S(T—\TIVZ
T -(T-|72

. e~i21ra(l+u) du] e—i21rfr dr (6)

x(t+u+7/2)x(t+u—1/2)

and then the limit as A — oo in (3) and the integral with
respect to 7 in (2) are interchanged with the integrals with
respect to 7 and u in (6) to obtain

S"‘(f)— lim

T— o

T 1 p(T-I7h2 )
S —S R(1) due >/ dr (7)

-7 T J-(T-|72

which can be shown to yield (4).

If « is set equal to zero, then (2) becomes the temporal
mean-square value (average power) of the local spectral
component, and therefore (3) becomes the average power
spectral density function SO(f) = S.(f). Also, in this case,
(5) becomes the autocorrclatlon function R"(T) = R.(7), and
(4) therefore becomes the Wicner relatlon [36] (which is
commonly called the Wiener-Khinchine relation in the
probabilistic setting). For o # 0, R"(T) in (5) is the strength
of any finite additive sine wave component with frcqucncy a
that might be contained in the lag product waveform y,(¢) %
x(t + 7/2)x(¢t — 7/2). Relation (4) reveals that there is a one-
to-one correspondence between such periodicity in lag prod-
ucts, which is called cyclostationarity, and spectral correla-
tion. This correspondence, (4), is called the cyclic Wiener
relation [42]. The function R“(-r) is called the cyclic autocor-
relation, and the spectral corrclauon function S;’(f) is also
called the cyclic spectral density [42]. If R"‘(T) 0 for all «
# 0and R.(r) # 0, then x(¢) is said to be purely Stationary.
If R $(7) # Oonly for o = integer/ Ty for some period Ty, then
x(t) is said to be purely cyclostationary with period T,. If
R“(T) # O for values of « that are not all integer multiples of
some fundamental frequency 1/7j, then x(¢) is said to exhibit
cyclostationarity. In modulated signals, the periods of cyclo-
stationarity correspond to carrier frequencies, pulse rates,
spreading code repetition rates, time-division multiplexing
rates, and so on.

If x(¢) itself contains no finite additive sine wave compo-
nent, then the temporal mean of X (¢, f) is zero for f # 0.
Consequently, S“(f) is actually a spectral covariance function

! The relationship between the limit function (5) and the radar ambiguity
function is discussed in [42].
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in this casc, and the power spectral density S.( f) is actually a
variance. Therefore, the normalized function

Sa S‘:(f)
i = [Sc(f+a/2)S(f~a/2)]' ®

is a complex correlation coefficient which satisfies

|CN| < 1. )

This function C"(f) is called the spectral autocoherence
Sfunction |42]. The waveform x(1) is sand to be completely
coherent at f and « if |C‘*(f)| , and it is said to be
completely incoherent at f and « 1t C“(f) = 0. The
parameter « is called the cycle frequency, and the parameter f
is called the spectrum frequency [42].

In the probabilistic approach, a stochastic process x(f) is
defined to be cyclostationary (in the wide sense) with period
T, if the probabilistic autocorrelation

R.(t, 1) = E{x(t+7/2)x(t—1/2)} (10)

(in which E{-} denotes expected value) is periodic with
period Ty, R(t + Ty, 7) = R (¢, 7) [35]. The coetficients of
the sine wave components of this autocorrelation

1 702 .
Ry = — | Rt e Prerdr (D
) oY To?

(where o = integer/ Ty) are called the cyclic autocorrela-
tions. For a stochastic process that exhibits cyclostationarity at
more than onc fundamental frequency, R (f, 7) consists of a
denumerable sum of finite additive periodic components and
has the Fourier series represcentation

R(f, 7)=) Ry(r)e ™! (12)
where

1 72 )

RY(7) = lim — \ R.(1, T)e 2midr,  (13)
- T T 702

and the sum in (12) ranges over all values of « for which (13)
is not identically zero. If only one periodic component is
present in R.(¢, 7) (i.c., if R.(f, 7) is periodic), then (13)
reduces to (11). The nonprobabilistic counterpart of R (¢, 7) in
cither (10) or (12) is given by

Ru(t, )= Ry(r)elm (14)

where R (r) is defined by (5). For a purcly cyclostationary
A1), R (r 7) is also given by [42]

R.(t, 7)= hm

°2N+1

N

E x(t+7/2+nTy)x(t—1/2+nTy), (15)
n= - N

whereas for an x(¢) that exhibits cyclostationarity with the
periods T = T, T = T>, T = Ty, -+, T = Ty for some
integer M (or M = o0). we have [19]. [42]

Ru(t, n=RUAN+ S IR, 73 T)-RYU7))  (16)

i=1

where R.(t, 7; T;) is given by (15) with 7, = T;. Thus, there
is a duality between the more common probabilistic theory of
stochastic processes that exhibit cyclostationarity [35] and the
nonprobabilistic theory [19]. [42] adopted here. If the stochas-
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tic process is cycloergodic [19], [31], [35], then ﬁjj(r) =
R(7) and these two dual theories merge into one.

A particularly convenient method for calculating the spec-
tral correlation function for many types of modulated signals is
to model the signal as a purely stationary waveform trans-
formed by a linear periodically time-variant transformation.
Specifically, consider a vector-input, scalar-output, linear
periodically time-variant (LPTV) system with period T;, and
with impulse-response function A, expanded in a Fourier
series:

y(t)= Sm h(t, u)x(u) du 17

h(t, u)= 3 gu(1—u)e™ /7o (18)

n= —oo

where A(t, u) is a row vector and x(u) is a column vector. The
system function, which is defined by the row vector

G )= | h i-nerdr, (19)
is then given by the Fourier serics

G, N=S G(f+n/Tpe? /T Q)

n= - o

for which G, is the Fourier transform of g,,. It can be shown by
straightforward (but tedious) calculation that the cyclic auto-
correlations and cyclic spectra of the input x(¢) and output y(f)
of the LPTV system are related by the formulas? [42]

Rf‘f(T)= E S tr {[ﬁz—(n—/n)/To([)

e l1r(n+ln)l/T0]r(y (t—T)} dr (21)

nm

SiN= T G+ /DS IS~ [ m)/2T)

G (f-a/2)f (22)

m

in which R“ is the matrix of Cychc cross correlations for the
vector- valucd waveform x(¢), S“ is the corresponding matrix
of Fourier transforms, and r¢, is the matrix of finite cyclic

cross correlations of the Fourier-coefficient functions g,.
which is defined by

P &7 g it a/2)g, (1 r/De R dr. (23)

nm

Formula (22) is used in the following sections for calculating
the spectral correlation for various types of modulated signals.
This formula can be generalized for linear time-variant
systems with more than one periodicity, in which case the sum
in (18) is expanded to include all harmonics of each of the
fundamental frequencies corresponding to each periodicity, by
simply expanding the double sum in (22) similarly [19].

A special case of interest is a time-invariant filter, for which
all n # O terms in (18) and (20) are zero. In this case, (22)
reduces to

g_(:(f)=Go(f+a/Z)Sz(f)Gé(f_a/z)*’ Q4

and for o = 0, this is recognized as the conventional formula
for the power spectral density at the output of a multiinput
filter.

*In (21) and (22), the prime denotes matrix transposition and tr{ -} denotes
the matrix trace operation.
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For a discrete time-series x(n T,), the counterparts of (4)
and (5) are [42] the Fourier-series transform

SUf) & Y Ra(kT,)e i2mkTes (25a)
k= —o
and the limit sequence
N
R:(kT,) £ lim x(nTy+kT.
x( *) Nevoo 2N+1 "=E_N ( % *)
- X(nTy)e 2ratntk/DT.  (26)
The inverse Fourier-series transform is given by
N 121, )
RehT)=T, | Sxpernr.as.  @sb)
—1/2T,

For the case in which the time-series x(nT,) is obtained by
time sampling a waveform x(¢), it can be shown [42] that (4)
and (25a) are related by the spectral aliasing formula

1 kil -
F E S;"*”'/T*(f— m/2T,—n/Ty,). (27)

* pm=—oo

Se(f)=

As an example, for the special case of o = 0, the formula (27)
becomes

- 1 e
Sx(f)zF E S T(f-m/2T,—n/T,) (28)

* nm=—-oo

for the power spectral density of the time-sampled waveform.
The terms corresponding to 72 = 0 account for the fact that the
powers of superposed (aliased) spectral components do not
add directly when the components are correlated [33]. If the
waveform x(f) is purely stationary, then it has no spectral
correlation and the m # 0 terms vanish.

Another useful formula for calculating spectral correlation
is the spectral-correlation convolution relation

Ssn=3 " seog-wsima @)
8

which holds for the product
y(@)=x(1)yw(r) (30)

of two statistically independent® waveforms [42]. The sum in
(29) extends over all values of 3 for which neither factor in
(29) is identically zero. As an example, for the special case «
= 0, the formula (29) becomes

SN=%|"_sru-vsiwma @
B

for the power spectral density of the product of independent
waveforms. If either factor x(¢) or w(z) is purely stationary,
then all terms except 8 = 0 are zero, and this is recognized as
the conventional convolution formula for the power spectral
density of the product of two purely stationary waveforms.
In viewing the graphs of spectral correlation presented in
the following sections, it should be kept in mind that the
surface above the f axis where o = 0 is the conventional PSD.
This provides a benchmark against which the strength of
spectral correlation can be measured. Also, because of the
symmetries S¥(—f) = S(f) and S;%(f) = S(f)*, only a
quarter of the bifrequency (f, «) plane is shown in some
cases. Impulses (Dirac deltas) in the spectral correlation

3 It is shown in [19] that in the fraction-of-time probabilistic sense, every
periodic waveform (or sum of periodic waveforms) is statistically independent
of every other waveform.
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function are shown as narrow pulses added to the continuous
part. The relative heights of these pulses shown in the graphs
correctly reflect the relative values of the areas of the
impulses, but the absolute heights are scaled for graphical
convenience. The scale factors used can be deduced from the
data in the captions.

III. PULSE AND CARRIER AMPLITUDE MODULATION

In this section, we study the spectral correlation properties
of conventional amplitude-modulated sine wave carriers with
and without carrier phase fluctuation, conventional amplitude-
modulated pulse trains with and without pulse-timing jitter,
and other more specialized amplitude modulation types such as
stacked-carrier spread spectrum and pulsed-noise signals. All
these signals can be derived from product modulation and
filtering operations on unmodulated signals.

Consider the generalized amplitude modulation (AM)
waveform

x(O)y=a(t)p(1) (32a)

for which p(¢) is a periodic (or almost periodic) carrier with
Fourier series

p()=3 Pgei2msr, (32b)

8

Examples of this type of modulation are conventional AM
signals, stacked carrier spread-spectrum signals, and pulsed-
noise signals. Equation (32) is an LPTV transformation of a(z)
for which the Fourier coefficient functions g3(1) of the
impulse-response function are given by

gs(1)=Py6(7) (33a)
where
1 2 )
Py £ lim = Sﬁmp(t)e"z”ﬁ’ dr.  (33b)

Therefore, formula (21) (with x(¢) and y(¢) there replaced by
a(r) and x(¢), respectively) can be applied to obtain the cyclic
autocorrelation

R«(7)=3 PPy ,Ra~B(r)e 6 -207,
By

(34

Fourier transformation of (34) [or direct use of (22)] yields the
cyclic spectral density

SxN=Y, PP ,Se8(f—v+B/2). 35)
B,

For the special case in which a(?) is purely stationary, (35)
reduces to

SN=3 PP, ,S,(f—v+as2). (36)

If a(¢) is white, then it follows from (36) that the autoco-
herence magnitude is given by

E PVP(]—V

v

LAk

|Ca(f)] = (37)

where P_, = P¥. Equation (37) is a kind of correlation-
coefficient sequence for the sequence of Fourier coefficients
{P,}. As an example of (37), if x(¢) is a pulsed noise signal,
then { Pz} are the Fourier coefficients of an on—off square
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wave, with period T; and duty cycle of, say, 100 n percent:

Pﬁ:i Snro o 2781 df = - iT8T sin (mBT,) ‘
T() 0 7F6T0
As an example of (36), if x(¢) is a stacked carrier AM signal,
then Py is a constant for a finite set of values of 3, suchas 8 =
fo + nAfforn =0,1,2,3, -+, N — 1, and P; is zero for
all other values of 8. Let us consider some other examples in
more detail.
Example (Amplitude Modulation): If p(t) is given by

p(t)=cos R7fot +dy) (38)

then we have conventional AM and (34) and (35) reduce to

- [, 1 4
R_';(r)z5 R«(7) cos (27rf07)+Z Ro+2o(1)e2%0

I, ,
+ZR:;'2f0(T)e*’2"’0 (39)

and
. 1. . . A
SHN =7 ISiUHf) + S5~ fo) + St 2o(f)e2%0

+8e-20(f)e*i2¢0].  (40)

This result can be used to obtain the cyclic spectra for other
types of modulation that involve an amplitude-modulated
carrier. Examples for which a(#) is cyclostationary are binary
phasc-shift keying and amplitude-shift keying, which are
treated in [43]. For the special case in which the amplitude a(¢)
is purely stationary, x(¢) is purely cyclostationary with period
To = 1/2f,. and (40) reduces to

(1 1.
Z&;(f+fo)+2 S (f=So)s a=0

. 1 . ,
SaN=9 5 SulNe*o, a=2f (4D
to, otherwise.

A typical graph of the spectral corrclation magnitude surface
|Se(f)] is shown in Fig. 1. It follows from (41) that the
magnitude of the spectral autocoherence of x(7) (8) is given by
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3fo

s

; -3t
-41,/3 — /3

Fig. 1. Spectral correlation magnitude surface for an amplitude-modulated
sine wave with carrier frequency fo.

Example (Pulse-Amplitude Modulation): If p(t) is given
by

p(n=3 8(t-nTy), (44)

n=—o

then P; = 1/Ty for B = m/ T, for all integers m, and
therefore (35) yields

- 1 i -

Sif(f)=—T— E Sg”"/TO(f—n/To+m/2To). 45)

2
0 nm=-o

If the product time series (32) and (44) is filtered using an
impulse-response function g(¢), then y () = x(1) ® q(t) is the
pulse-amplitude modulation (PAM) signal

o

y(ny=73, a(nTo)q(t—nTo). (46)

n=-—oo

Application of the input-output spectral correlation relation
for filters (24) (with G, there replaced by Q) to (45) yields

- 1
Sf:(f)=ﬁ QU +a/2)Q*(f-a/2)
0

S, Sem/To(f—n/To+m/2T,) (47)

nm= —oo
for this PAM signal. The spectral correlation aliasing formula

(27) [with x(¢) there replaced by a(¢)] applied to (47) yields the
alternative formula for PAM:

- 1 } -
Sf,f’(f)=77 QU +a/2)Q*(f—a/2)55(f).  (48)
0

|CuNl=

fora = +2f;. Conscquently. if a(s) is band limited such that
S,(f) = Ofor |f| = Band S,(f) # Ofor |f] < B, withB <
ﬁ). then

and x(f) is completely coherent for o = +2f, and all
frequencies f for which it is not completely incoherent because
there is no power density. But if B > fo. then [C2(f)| < 1
for | f| > 2fo — B. For example. if a(¢) is white (S.(f) = Aq
for —oo0 < f < o), then |Co(f)| = 1/2for —o0 < f < o
and || = 2/. ’

SN 2)
(So(N+ Sa(f+ ) Sa() + 8uf— SN + Sulf+ ) Su(f = )] 2
If a(¢) is purely stationary. then (48) reduces to
S«(/)
1 -
(43) — Q(f+a/2)Q*(f—a/2)S,(f+a/2), a=k/T,
|/l = Bor|a|#2/, 0 ={ To
0, azk/T,
(49)

(for all integers k) by using
Se+kTo(f)=8(f+k/2T).
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It follows from (49) that the spectral autocoherence magnitude
(8) is given by

|ICa(NI=1, a=k/T, (50)

for all f for which S,(f + «/2) # 0. Therefore, the PAM
signal is completely coherent at o« = k/ Ty for all integers k
and all f for which the signal is not completely incoherent
because there is no power density. A graph of the spectral
correlation magnitude surface | S %(/)| for a white amplitude
sequence {a(nTy)} and a rectangle pulse g(¢) of width Ty is
shown in Fig. 2.

Example (Jittered PAM): The more realistic model of
PAM that incorporates pulse-timing jitter

=)

y()=Y, aq(t—-nTy—e,) (51)
can be reexpressed as
y(@)y=la()w(1)] ® q(1) (52)
where w(t) is the jittered impulse train
w(t)= Y 8(t—nTy—e,) (53)
and a, = a(nT, — €,). This model is appropriate for either

jitter that occurs in the process of forming the PAM signal or
jitter that occurs after the PAM signal has been formed,
provided in this latter case that a(?) is sufficiently narrow band
(low pass) or broad band and that the statistics of a, are
independent of the jitter. The general formulas (24) and (29)
applied to (52) (assuming {e,} and a(f) are statistically
independent) yield

SH(N)=Q(f+a/2)Q*(f-a/2)

ST s r-nSiwy an, (54
ﬁ — 0o
and for a purely stationary amplitude a(f), this reduces to

S (N=0(f+ /O (f~ /DS, () ® S%(N]. (55)

If the jitter sequence {e,} is purely stationary, then w(?) is
purely cyclostationary with period T;, and y(¢) is therefore
also purely cyclostationary with period 7,. However, the
strength of spectral correlation at « = k/ T will be attenuated
by the convolution in (55). On the other hand, if {e,} is an
independent-increment sequence [35] (in the fraction-of-time
sense [19]), then w(r) will be purely stationary and so too will
y(t). Nevertheless, y(7) can still exhibit reliably measurable
spectral correlation locally in time. The former (purely
stationary {e,}) model is appropriate for jitter relative to a
tracking clock synchronized (imperfectly) to y(¢), whereas the
latter (independent-increment {¢,}) model is appropriate for
absolute jitter and drift. It can be shown [43] that for an
independent sequence of jitter variables {e,}. the spectral
correlation function is given by

= Y Y.Qun/Ty) ¥ Qrln+k)/Ty)

0n=-o

; 1
Se(N==

S S(f+n/To+k/2 To)+% (Y *Q2rk/Ty)
0
—VFQr[f+ k2T ) V. Qrlf - k/2To))},

a=k/T, (56)
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Fig. 2. Spectral correlation magnitude surface for a pulse-amplitude

modulated pulse train with pulse rate 1/ 7.

for all integers k and is zero for all other values of «. The
function ¥, is the characteristic function for the sequence {¢,},
defined by

N

S, exp{iwe,}.

=-N

¥ (w) £ lim 57

‘ N-w 2N+1 ©7
In general, the larger the variance of {¢,} is, the narrower ¥,
will be and the more the spectral correlation in y(¢) will be
attenuated. As an example, if €, has Gaussian fraction-of-time
density with zero mean and variance of, then [19]

1
¥ (w)=exp {—5 ofwz} .

Example (Phase-Deviated AM): The more realistic model
for AM that incorporates carrier phase deviation

x(t)y=a(t)cos[2mfot + ¢ (1)] (59

is still an example of product modulation, and therefore
formula (29) applies (assuming that ¢(f) and a(7) are statisti-
cally independent) to yield

Sxn=% rm Sa=f(f~v)S5(v) dv
B

(58)

(60)

where
w(t)=cos[2mfot + ¢ (2)].

As explained in Section V, the spectral correlation function for
the phase-modulated sine wave (61) is given by the Fourier
transform of the cyclic autocorrelation function

(61)

r1 .
S Re{¥.(1, = D07}, a=0
1
Z ‘1,1(1’1)’ a=2f0
Re(7)=7 (62)
1
- ¥.(1,1)%, a=—2f
4
kO, aF i2f0, 0

where Re{-} denotes the real part and the function ¥, is the
joint characteristic function for ¢(f + 7/2) and ¢(f — 7/2):

1 p12
(o, @) 2 lim = [ explils(r+7/2)0
T-o T J_112

+o(t—7/2)w,] dt. (63)
In general, the larger the variance of ¢(¥) is, the smaller ¥ (1,
1) will be in magnitude, and the more the spectral correlation
in x(¢) will be attenuated. For example, if ¢(#) is a purely
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stationary Gaussian waveform with zero mean, then [19]

¥.(1, ) =exp{ - [Rs(0) + Rs(7)]}.

IV. QUADRATURE-CARRIER AMPLITUDE MODULATION

(64)

Consider the quadrature-carrier amplitude modulation
(QAM) waveform

x(1) = c(t)cosQmfyt) —s(£)sin 7 fot)

=a(t)cos[2wfot + ¢ (1)] (65a)
for which
a(t)=[c(t)*+s(£)*1"?
¢ (¢)=tan"" [s(£)/c(?)]
c(t)=a(t)cos[o(1)]
s(t)=a(t)sin[p(1)]. (65)

This is a particular LPTV transformation of the two-dimen-
sional vector of waveforms [c(?), s(z)]’ for which the vector of
impulse-response functions is

h(t, u)y=[cosQRnfot)6(t—u), —sin(RQufyt)6(t—u)]
and the vector of corresponding system functions is

G(t, f)=[cos@mfot), —sin(2wfot)].
Application of formula (21) yields

R(1)= % [Re(r)+ RY(1)Icos2mfyr)

~% [Re(7)— R (m)Isin27fo7)

+41—1 > {Rg+o(r) = Ry+2/o(7)]

n€{-1,1}

—ni[R (1) + R & 0(7)1} (66)

and application of formula (22) yields the cyclic spectral
density

) 1 ; 3
5=, S, A{lSa(f+nfo) + S+ nfo)l

n€{-1,1}

—ni[$2.(f+nfy) - S (f+nfo)l}
1
+Z E

ne{-1,1}

{[Sz+2n0(f) — Sx+2nio( )]

—ndS””%U)+S““WfH} (67)

Examples for which c(?) and s(¢f) are cyclostationary are
quaternary-phase-shift keying and some amplitude-phase-shift
keying, which are treated in [43].

For the special case in which the in-phase and quadrature
components ¢(¢) and s(¢) are jointly purely stationary, x(#) is
purely cyclostationary with period 7, = 1/2f;,, and we have

o | - - -
S¢(f) =2 [Sc(f+/0) + Sc(f = fo) + Ss(f+ /o) + S,(f = fo)]

1 . -
~3 [Ses(f+/0)i— Ses(f=So)i]  (68)
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and

o 1

S;‘(f)=z S ()= Ss(N] + lSCS(f)r’ a=+2f, (69)
with S¢ = Ofor o # Oand o # +2f,. (In these formulas, the‘

subscripts 7 and i denote the real and imaginary parts,
respectively.) Thus, the cyclic spectral density of QAM is of
the same general form as that shown in Fig. 1 for AM, except
that the full symmetry shown there is typically not exhibited by
QAM. Only symmetry about the f axis and symmetry about
the « axis is always exhibited by QAM. Moreover, it follows
from the autocoherence inequality (8)—(9) that the heights of
the surfaces centered at (f, o) = (0, +2f;) are lower than or
equal to the heights at (f, o) = (£/p, 0). If c(?) and s(¢) are
band limited such that S,(f) = S,(f) = O for |f| = fo, then
(68)—(69) yield

[Se(f) = Ss (N2 +4[Ses() 12
[Sc(N+ SN2 —4[Ses (N’

| Ca(N)|?= =+2f

(70a)

for the spectral autocoherence magnitude of x(¢). Moreover, it
is shown in [35] that any process x(¢f) that is purely
cyclostationary with period 1/2f; and is band limited to f €
(—2fo, 2f0) can be represented in the form of (65) (Rice’s
representation, see [32]) for which c(¢) and s(¢) are purely
stationary and band limited to f € (—f;, fo). This includes
many band-limited analog-modulated sine wave carriers, with
purely stationary modulating signals, used in conventional
communications systems and essentially all modulated peri-
odic pulse trains with excess bandwidth (beyond the Nyquist
bandwidth) of 100 percent or less and purely stationary
modulating signals. Thus, for all such signals, the spectral
autocoherence magnitude is given by (70a). Furthermore,
(70a) can be reexpressed as

_ 4(1 - |écs(f)|2)gc(f)‘§s(f)
[Sc(f)+g:(f)]2_4[§cs(f)i]2 ’

o= izfo
(70b)

where C(f) is the cross coherence between c(?) and s(?)
[19], [35], and the denominator can be reexpressed as

[gc(f)+§s(f)]2—4[gcs(f)i]2= 16[§x(f—f0)§
- Ax(f—fO)tz,]a |f|<f0 (71)

where the subscripts e and o denote the even and odd parts,
respectively, of S,( Jf) about the point f = f, for f > 0.
Consequently, for given spectrum S, and spectral product
S, S;, the autocoherence magnitude of x(¢#) increases as the
magnitude of the cross coherence between c(¢) and s(¢)
increases. Furthermore, for given cross coherence |Cm| and
spectral product S, S;, the autocoherence magnitude of x(¢)
increases as the dominance of the even part (about fp) of the
spectrum S, over the odd part increases (assuming S, (f)S;(f)
+ 0).

It follows from (70a) that x(¢) is completely incoherent
(C“(f) = 0)at @ = +2f;and at any fif and only if ¢(z) and
s(t) are balanced at f in the sense that

1) gc(f) ZSS(f)

and

2) gcs(f)r:O

It also follows from (70b) that x(¢) is completely coherent
(Ii’ ()| = Data = +2f;and at any |f| < f, if and only if
either

|Ca(N)?=
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_3) the supports of S, and S, are disjoint such that
S(fIS(f) = Oor

4) the waveforms c(¢) and s(¢) are completely cross coherent
at f such that

|Ces(NI=1  for [f]<fo

and either 1) or 2) (or both) is violated.

It follows from (70a) and (71) that for a time series x(¢) that
is completely coherent at |f| < fy, the cyclic spectrum
magnitude is characterized by the symmetry of the conven-
tional spectrum:

|S2(NN2=S(f-a/2)2=S(f~a/2)2,  |fl<|a|/2

for |a|=2f. (72)

When 4) holds, c(¢) and s(¢) are related (at least in the
temporal mean square sense) by an LTI transformation s(¢) =
h(t) ® c(t) (cf. [19]. [35]). But there do exist LTI transforma-
tions for which neither 1) nor 2) is violated, namely, those for
which the transfer functions are unity in magnitude and purely
imaginary with arbitrary signs at arbitrary frequencics f, that
is, H(f) = =*1.

Example (SSB, DSB, VSB): The Hilbert transform (for

which H(f) = +iforf < Oand H(f) = —iforf > 0),
which yields a single-sideband (SSB) signal x(t),
5\'(f):0’ |fl<f0’

results in a waveform that is completely incoherent for all £. In
contrast, a transfer function that is a real constant yields a
double-sideband (DSB) signal x(¢) that is completely coher-
ent for all | f| < fy. as established in Section IIl. Similarly a
vestigial-sideband (VSB) signal, which is obtained by sub-
jecting a DSB signal to a low-pass filtering operation with
bandwidth, say, B = f; + b, is completely coherent for | f| <
b and completely incoherent (for an ideal low-pass filter) for
|f] > b. For the DSB signal, there is no phase modulation,
¢(#) = constant. However, if the DSB signal is filtered and
the filter transfer function is asymmetric about the point f = f;
(for f > 0) and nonzero, then ¢(¢) in (65) is no longer
constant, but x(7) is still completely coherent for all | f] < fy
(since the autocoherence magnitude is invariant to linear time-
invariant transformations [19], [35]. provided that the transfer
function does not equal zero).

In order to determine what type of phase modulation
annihilates coherence, one can use the fact that the necessary
and sufficient conditions 1) and 2) for complete incoherence
for all f are equivalent to the pair of conditions

1 72
lim — S a(t+1/2)a(t—1/2)
2

T-o T J_71/
scos[d(t+7/2)+d(t—7/2)]dt = 0 (73a)

1 p72
lim - S a(t+7/2)a(t—1/2)
TY-12

T—o

s sinfop(t+7/2)+¢d(t—7/2)] dt = 0. (73b)
It follows from (73) that an equivalent condition is
1 p772
lim — g a(t+1/2)a(t—1/2)
- T J_1n2
: exp{i[¢>(t+7'/2)+¢(t—7/2)]} dt = 0. (74)

For example. if a(r) is statistically independent of ¢(¢) (e.g.,
a(t) = constant), then (74) reduces to
¥.(1, 1)=0,

—oo<T< ™

(75)
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for which ¥, is the joint characteristic function for the
variables ¢(¢f + 7/2) and ¢(¢ — 7/2) defined by (63). But (75)
is simply the condition under which the phase-modulated
waveform

x(t)=cos[2mfot + ¢ (1)]

is completely incoherent. This is discussed further in the next
section.

V. PHASE AND FREQUENCY CARRIER MODULATION
Consider the phase-modulated (PM) sine wave

x(t)y=cos[2mfot+ ¢ ()] (76)

for which ¢(#) contains no periodicity (of any order). It can be
shown by direct calculation that the cyclic autocorrelation for
x(t) is given by

(1/2) Re{ ¥,(1, — e}, =0
) 1/4)¥,(1, 1), a=2f,
RO=Yamv.a, a=-2f,
0, || #2fy, a#0
(77a)
and the cyclic mean of x(¢)
. 1 72
My = lim — | xe e a
is given by
(172)¥ (1), a=fy
Meo={(1/2)¥ (1)*, a=—f (78a)
0, Lol #fo

where ¥ is the joint characteristic function for ¢(¢ + 7/2) and
ot — 1/2)

1 pm2
Voo e) = lim = [ ewp{ilo(+7/2),

+¢(t=7/2)w,]} dt  (77b)

and ¥ is the characteristic function for ¢(r)

1 p122
Y@ 2 him — { explig(nw} dr.  (780)
T=o T J_12

Thus, x(¢) is purely cyclostationary with period 1/2f, except
when ¥, (1, 1) = O for all 7, and x(¢) exhibits spectral lines at
+ fo except when ¥(1) = 0. Neither ¥,(1, 1) = Onor ¥(1) =
0 can hold for a purely stationary Gaussian waveform ¢(¢) [cf.
(58) and (64)]. However, there are some waveforms ¢(¢) that
do satisfy ¥,(1, 1) = 0 and ¥(1) = 0. An example is the
balanced quaternary-valued waveform

o ()=tan"! [s(1)/c(2)]

for which ¢(7) and s(z) are statistically identical, uncorrelated,
binary-valued (+1) waveforms with stationary transition
times (e.g., a Poisson point processes [35]). Another example
is the balanced quaternary-valued PAM waveform ¢(¢), which
yields the QPSK signal discussed in [43]. However, since the
transition times in this ¢(¢) are periodic with period, say T,
then x(7) is purely cyclostationary with period 7, even though
it is not cyclostationary with period 1/2f;. Furthermore, both
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v, (1, 1) = 0 and ¥(1) = O are satisfied by some
nonstationary waveforms, such as those that arise from
frequency modulation. Specifically, let ¢(¢) be given by*

#(0)=| 2(u) du (792)

for which z(#) is a purely stationary waveform. Then
z(t)=d¢(1)/dt, >0 (79b)

and z(?) is the instantaneous frequency deviation (in radians
per unit of time) of the modulated sine wave (76). If the
spectrum S,( f) is not high pass (or bandpass) in the sense that
it does not approach zero faster than linearly in fas f — O,
then ¢(¢) can satisfy ¥, (1, 1) = 0 and ¥(1) = 0. For
example, if z(¢) is white (S;(f) = k), then @(f) is an
independent-increment waveform (a diffusion), for which it
is well known that x(¢) is stationary and contains no spectral
lines [37]. Thus, frequency-modulated (FM) sine waves with
low-pass (or all-pass) modulation are purely stationary,
whereas those with high-pass (or bandpass) modulation can be
purely cyclostationary. For example, if z(¢) is defined by (79b)
for a purely stationary ¢(¢), then x(f) can be purely cyclosta-
tionary. Thus, we see that some FM sine waves are purely
stationary, but most PM sine- waves of practical interest are
purely cyclostationary. Hence, there is a fundamental distinc-
tion to be made between the statistical properties of FM sine
waves and PM sine waves. This is often not recognized, since
it is common practice to use probabilistic models and to
introduce a random time-invariant phase variable to render all
modulated sine waves stochastically stationary (cf. [33] and
[38]), and to adopt relatively arbitrary conventions (e.g., [39]-
[40]) for distinguishing between phase modulation and fre-
quency modulation. It should be emphasized, however, that
even frequency-modulated sine waves that are stationary in the
long run can exhibit reliably measurable properties of cyclo-
stationarity locally in time.

It is also worth clarifying that the transformation (79a) from
z(?) to ¢(¢) is only marginally stable and can therefore be an
inappropriate model. For example, it can be shown that even
though z(¢) might have a zero temporal mean, the temporal
mean of ¢(¢) need not be zero. This is easily demonstrated for
the simple case z(¢) = cos (w¢ + 6). More importantly,
although the temporal covariance R (1) — (M )2 of z(¢#) may
approach zero as 7 — oo, the temporal covariance of ¢(¢) can
approach a positive constant, which can attenuate the spectral
correlation in the model of the FM signal x(¢) at « = *2fo.
For example, R¢(T) in (64), which must be replaced by the
covariance R,,, (1) — [Mﬂs]2 when M¢ # 0, can be expressed as
the sum of its constant asymptote

¢ & Ry()—[M,]? (80)
and its residual,
R(7) & Ry(7)— Ry(e). (81)

The exponential in (64) can then be factored to obtain

V. (1, D=exp{—c} exp{ - [R(OO+R(7)]}  (82)

for a purely stationary Gaussian waveform ¢(f). Thus, the
asymptote ¢ attenuates the cyclic autocorrelation R= () ata =
+2f, (77a). The fact that ¢ # O represents “anomalous
behavior can be seen from the fact that the strength of the
spectral line at f = O for such a time series is not [M,]?, but
rather it is ¢ + [M,]?. This nonphysical behavior can be
avoided by realizing that the integration operation in any

* For the one-sided (¢ > 0) model, all limit averages over |#| < oo must be
multiplied by 2 to produce the appropriate result.
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physical frequency modulator must be lossy and therefore
should be modeled as

$(1)= S; e -07(u) du (83)

for some appropriately small positive value of y. Unlike (79a),
(83) is indeed a stable transformation, and therefore R¢(00)
[M,]? if R, () = [M,)?, and M, = 0 if M, = 0.

If (83) is used as the model for FM, then the preceding
statements about the distinction between PM and FM need to
be modified. Specifically, FM modeled with (83) will, in
general, be purely cyclostationary regardless of the low-pass
spectral content of z(¢). However, the strength of the spectral
correlation will be weak when the spectrum of z(f) does not
approach zero faster than linearly in f, and the magnitude of
the spectral correlation will, in fact, approach zero as y — 0 in
(83). This can be seen by using (64) and showing that R, (0) —
o asy — 0.

Before concluding this discussion, let us consider the
relationship between the spectral density and the spectral
correlation for PM and FM. From (77a), we have

RX(T)=% Re{y,(1, —1)e?™/o7} (84)

where ¥, is given by (77b). For a zero-mean Gaussian
waveform, ¥, is given explicitly by [19]

¥,(1, — ) =exp{—[R4(0) — Ry(7)]}. (85)

Thus, it follows from (77a), (64), (84), and (85) that ﬁifO(T)
and R, (7) differ by only a cosine factor, a factor of 1/2, and a
sign. However, this sign difference is very significant.> For
example, it follows that although R, (7) reaches its maximum
value of 1/2 at 7 = 0, R;’%7) reaches its maximum value of

- 1 -
max R%o(7) = oXP {—R4(0)} (86a)

at 7 — oo for Ry(7) = 0 and R,() =
R¢(T) can be negative, then

0. Furthermore, if

. 1 ~ - -
max Rifo('r):Z exp { —[R4(0)+minR4(7)]}.  (86b)

Thus, for a nonoscillatory phase time series (R¢, (r) = 0), we
have
max R¥o(1)< <max R.(7) (87)

for R,(0) > > 1, but for an oscillatory or narrow-band time
series for which

R;(0)+minR, (7)< <R, (0)
(87) need not hold, even if R,(0) > > 1. In fact, R;/%(z) will
itself be highly oscillatory in this case, and this can result in a

highly oscillatory trz}nsform Szfo( f). Consequently, even
though the area of SHo( f), which is given by

R200)= expi{ ~2R,0)}

will be very small for ﬁ¢ (0) > > 1 compared to the area of
S.(f), its peaks can be comparable to the peaks of S,(f).

As an example to illustrate the difference between PM and

% Because of this sign difference, the technique used to develop Wood-
ward’s theorem (cf. [35]) for approximating the spectrum of FM for the case
of high modulation index cannot be used to approximate the spectral
correlation function.
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2.2,

2.2,

()

2.21,

2.21,

£

(d)

Fig. 3. Spectral correlation surfaces for a unity-power phase-modulated sine
wave. (a) Magnitude surface for f, = 9000, modulating-phase passband =
[300. 3300], rms phase = 1. (The spectral-line-pair power = 0.37.) (b)
Magnitude surface for f, = 36 000. modulating-phase passband = [300,
3300]. rms phase = 2.5. (The spectral-line-pair power = 0.082.) (c)
Magnitude surface for f, = 636 000, modulating-phase passband =
[30 300. 33 300], rms phase = 2.5. (The spectral-line-pair power =
0.082.) (d) Phase surface for f, = 636 000. modulating-phase passband =
[30 300. 33 300]. rms phase = 2.5 (range: 0-7).

FM and the dependence on mean-square phase deviation and
phase bandwidth, we begin by considering a model for the
modulating signal y () that is typical of speech, namely, y(f) is
a zero-mean purely stationary Gaussian waveform with
spectral density

S (= S 300 < |f] < 3300
)= {0, otherwise

and we consider a typical value of mean-square phase
deviation Iéo(O) = (2.5)>. We then consider a smaller value
R},(O) = 1 and a smaller relative bandwidth 30 300 < If] <
33 300. For PM, ¢(1) = y(¢), and for FM, ¢(¢) is given by
(83) with z(#) = y(f) and v < < 300. The spectral correlation
magnitude surfaces for these various cases are shown in Figs.
3 and 4.

VIII. CONCLUSIONS

A new characteristic of modulated signals, the spectral
correlation function, is calculated for a variety of analog
modulation types. The results clarify the ways in which
cyclostationarity is exhibited by different types of modulated
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2.2t

2.2f,

(d)

Fig. 4. Spectral correlation surfaces for a unity-power frequency-modulated
sine wave. (a) Magnitude surface for f, = 9000, modulating-frequency
passband = [300. 3300]. rms phase = 1. (The spectral-line-pair power =
0.37.) (b) Magnitude surface for f, = 36 000. modulating-frequency
passband = [300. 3300]. rms phase = 2.5. (The spectral-line-pair power
= 0.082.) (c) Magnitude surface for f, = 636 000, modulating-frequency
passband = [30 300. 33 300]. rms phase = 2.5. (The spectral-line-pair
power = 0.082.) (d) Phase surface for Jo = 636 000, modulating-
frequency passband = [30 300. 33 300], rms phase = 2.5 (range: 0-7).

signals. These differing spectral correlation characteristics can
be used to empirically classify modulated signals, even when
the signals are buried in noise, and they also can be exploited
for signal detection, synchronization, and extraction (cf. [10],
[19], [25]. [35]). A signal can be synchronized to using a
quadratic synchronizer if and only if it exhibits spectral
correlation. Similarly, the existence of spectral correlation in a
signal of interest makes it possible to reject noise and
interference for purposes of signal detection and extraction in
ways that would be impossible for signals without spectral
correlation. The results in this paper are essential for the
design and analysis of signal processing systems, such as
detectors, classifiers, synchronizers, and extractors, that
exploit spectral correlation since one of the first steps in such
design or analysis is to determine the spectral correlation
characteristics of the signals of interest.

Since the spectral correlation function reduces to the
conventional power spectral density function for a cycle
frequency of zero, o = 0, the spectral correlation formulas
derived here yield the well-known formulas for power spectral
density as a special case. In Part II [43], the spectral
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correlation function is calculated for a variety of digital
modulation types.
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