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Abstract—The popular class of synchronizers that consist of a
quadratic nonlinearity followed by a phase-lock loop is investigated, and
it is shown that the optimum design of the quadratic transformation is
characterized in terms of a spectral correlation function for the signal to
be synchronized to. It is also shown that the SNR performance of this
quadratic transformation, and the mean-square phase jitter of the phase-
lock loop are both characterized in terms of spectral correlation
functions. The conditions under which the optimum quadratic transfor-
mations, for symbol synchronization of BPSK, QPSK, SQPSK, and
MSK, and for carrier synchronization of BPSK, reduce to the well-known
matched-filter-squarer are identified. In addition, the well-known zero-
mean-square-phase-jitter condition is generalized from PAM to all
synchronizable signals, and is characterized in terms of the spectral
correlation function. The low-SNR maximum-likelihood synchronizer for
all quadratically synchronizable signals is characterized in terms of a
multiplicity of maximum-SNR quadratic spectral-line generators. A
closed form implementation in terms of a matched filter, squarer, and
symbol-rate-synchronized averager is obtained for BPSK and QPSK
signals.

I. INTRODUCTION

HE problem of synchronizing the phase and frequency of
an analog oscillator or a digital clock to periodicity
contained in a time series is a fundamental problem in many
areas of time-series analysis for periodic phenomena, and is
especially important for the purposes of sampling, demodulat-
ing, demultiplexing, and decoding in communication systems.
Because of its crucial role in the proper operation of all
coherent communication systems, the synchronization prob-
lem has been the subject of considerable research and
development for several decades, and especially in recent
years with the increasing demands on system performance.
A popular approach to synchronization is to interpret the
synchronization problem as consisting of two tasks as illus-
trated by the block-diagram shown in Fig. 1: i) the task of
regenerating a spectral line (which has been annihilated by
modulation with random data) by using a nonlinear transfor-
mation of the time series to be synchronized to, say x(¢), into a
timing wave, say w(f); and ii) the task of locking the oscillator
or clock frequency and phase to that of the sinewave contained
in the timing wave w(¥) by using a phase-lock loop (PLL) or
other similar device such as a bandpass filter and zero-crossing
detector. The purpose of this paper is to show that both design
and performance analysis of such synchronizers can be
characterized in terms of a spectral correlation function.
In Section II, the spectral correlation function for signals
that exhibit cyclostationarity is introduced. Then in Section
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Fig. 1. A general structural form for synchronizers.

II1, it is shown that the maximum-SNR quadratic transforma-
tion for generation of a spectral line is specified in terms of the
spectral correlation function for the signal to be synchronized
to and the power spectral density (PSD) of the additive noise.
This general solution is studied for various signal types
including BPSK, QPSK, SQPSK, and MSK. In Section IV, it
is shown that the mean-square phase-jitter of the PLL is
characterized in terms of the power in the spectral line from
the timing wave w(?), and the spectral correlation function and
PSD for the residual timing wave denoted by n(f). Then it is
shown that the condition for zero mean-square phase jitter can
be specified in terms of a balance between the spectral
correlation function and the PSD of n(). Finally, in Section V,
the low-SNR maximum-likelihood synchronizer for all quad-
ratically synchronizable signals is characterized in terms of
spectral correlation. It is shown that this synchronizer can be
interpreted as a multiplicity of maximum-SNR spectral-line
generators. A closed form implementation in terms of a
matched filter, squarer, and symbol-rate-synchronized avera-
ger is obtained for BPSK and QPSK signals.

The contribution of this paper is not the derivation of new
synchronizer designs, nor new evaluations of synchronizer
performance, but rather the development of a unifying
conceptual framework for the study of synchronization.

II. SPECTRAL CORRELATION'!

A time series x(¥) is said to exhibit cyclostationarity (in the
wide sense) with cycle frequency o if and only if the statistical
function

R 1 r722
Re() 2 lim — | x(+7/2)x(t—r/2)e 2 dr, (1)
T-w T Jd-112

which represents the coefficient of the complex sine wave
component of frequency « contained in the lag-product
waveform x(¢ + 7/2)x(t — 7/2) for each lag value 7, is not
identically zero (as a function of the lag variable 7). A time-
variant autocorrelation function for such a time series can
be defined by

R(t, N=RY"+ Y, [Rt, 7; T)-RAM] ()
T

! The definitions, terminology, and results presented in this background
section are taken from [1] and [2].
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where

R.(t, 7; A lim
o T) £ lim SN

N

S, x(t+nT+7/2)x(t+nT—1/2) (2b)

n= -’N

and the sum in (2a) extends over all incommensurate periods 7'
for which (2b) is not identical to 1?2(7). Furthermore, this
autocorrelation function can be expanded in a Fourier series,
and the Fourier coefficients (which depend on 7) turn out to be
the statistical function R 2(7) for « equal to the harmonics
(integer multiples) of the varlous fundamental frequencies 1/
T,

R, 1)= Ry(n)e’ ™. €)

The statistical function R () is called the cyclic autocorrela-
tion function. For « = 0, it reduces to the conventional
autocorrelation function denoted by R.(),

R(r) = RY(). “

If x(¢) exhibits no cyclostationarity, then (3) contains only the
a = 0 term. If x(¢) exhibits cyclostationarity with only one
period 7, then the sum in (2a) contains only one term, and the
sum in (3) extends over only the harmonics of 1/7.

The Fourier transform of R¢(7) is the conventional PSD,

Sn=\"_ Rune-r ar, )

which is the density (in f) of time-averaged power (or
temporal mean square) of the spectral components of x(7). The
Fourier transform of R (7).

Se(n=\" Rae 2 dr, (©)
is called the cyclic spectral density. It can be shown that this
statistical function is a spectral correlation function. That is,
S%(f) is the density (in f) of correlation between spectral
components of x(#) at frequencies f + «/2 and f — «/2.
Specifically,

S“ =i li af
(f)=lim " lim —=

" Xas pramxt @ f-ar2) de )

—At/2

where

11281 )
x(u)e 27 duy. (8)

1-1287

Xas(t, = |

The limit A¢ — oo provides the idealized temporal correlation
of the two spectral components, and the limit Af — 0 provides
infinitesimal spectral resolution for these two components. For
o = 0, (7) reduces to the well-known result that the PSD can
be obtained from the formula

S 1 | Af a2 i
)=, A,TLX;S ) | Xap(t, N2 dr )

and this is consistent with the fact that 5\,(f) is a mean square
measure of spectral content, and correlation reduces to mean
square when the quantities being correlated are identical (f +
a/2 = f— a/2 « a = 0).

The spectral correlation function can be converted to a
complex-valued spectral correlation coefficient (for each
value of f and «) by normalization with the mean square values
of the spectral components (the mean values are zero),

fr Se(f)
= [S(f+a/2)S(f—a/2))? (a0

It can be verified that

|Ca(N)] < 1. (11)

The time series x(¢) is said to be completely coherent with
cycle frequency « and spectrum frequency f if

|Cx () =1. (12)

Although the probabilistic counterpart [2] to the theory from
[1] summarized here is more in line with the conventional
approach to analysis of random signals, this theory based on
time-averages is, in the author’s opinion, more appropriate for
the study of synchronization, where, for example, one would
like mean-square phase jitter to correspond to the amount of
phase jitter over time, not over an ensemble.

Examples of explicit formulas for the spectral correlation
function for BPSK, QPSK, SQPSK, and MSK are given in the
Appendix, and their graphs are shown in Figs. 2-5.

I1I. OPTIMUM SPECTRAL-LINE GENERATION

The general input-output relation for a quadratic time-
invariant (QTI) transformation is

wa(t) = S: S: k() v)x(t—u)x(t—v) du dv (13)

where k, is a weighting function (kernel) analogous to thc
impulse-response function for a linear time-invariant transfor-
mation. The subscript « denotes the frequency at which it is
desired to generate a spectral line (e.g.. for BPSK, the symbol
rate or twice the carrier frequency). The strength of the
spectral line at frequency o in w,(¢) is given by?

1

T/2 i 2
P« 11m — S w,(H)e™ 27 dt
~T/2

W

(14)

Substitution of (13) into (14), and use of definitions (1) and (5)
and Parseval’s relation for Fourier transforms. yields the
formula

pa= S“’ K.(f+a/2, f—a/2)S(f a#0

(15)

where K, is the double Fourier transform of k, (analogous to
the transfer function for a linear time-invariant transforma-
tion),

Ko u, u)zr r k. (u, v)eFw) dy dy. (16)

In obtaining (15), it was assumed that x(¢) consists of a signal s
plus additive stationary noise m,
x(t)=s(t)+ m(t), 17)

in which case Sf\?(f) = §f“(f) for ¢ # 0.
The power spectral density of the timing wave w,(¢) at the

* Strictly speaking, this requires temporal mean square (obtained by
replacing 7 with 7 + u in (14) and averaging over all u) convergence in (14):
cf. [3].
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output of the QTI transformation, when there is only station-
ary Gaussian noise x(f) = m(¢) at the input, can be obtained
from (13) with the use of definitions (1), (4), and (9). The
result is [2]

SuN=2 | 1K 04172, v=f 1280+ 1/2)

. §m(v—f/2) dv, f+0. (18)
A measure of SNR for the timing wave w,(?) is
SNRe=—" (19)

" BS,(a)

where B is the output bandwidth of the quadratic device.
Although this measure is easiest to justify for low SNR
applications, such as satellite communications and spread-
spectrum signal-interception (because it ignores the signal
component in w,(f) that has continuous PSD, and it ignores
the signal-cross-noise terms—all of which are negligible for
sufficiently low SNR), it is more generally appropriate for
purposes of design, but not necessarily for performance
evaluation.?

After substitution of (15) and (18) into (19), the Cauchy-
Schwarz inequality can be used to show that SNR® is
maximized if and only if

cSs(f)*
Sn(f+a/2)S,(f—a/2)

for any nonzero constant c¢. The resultant maximum value of
SNR¢® is given by the formula

K.(f+a/2, f-a/2)= (20)

Ly S22
2B -= S, (f+a/2)S,(f—a/2)

It follows from (20) and (21) that the optimum quadratic
transformation for maximum-SNR generation of a spectral
line at frequency « is completely specified by the spectral
correlation function S* for the signal and the PSD S, for the
noise. Explicit formulas for the spectral correlation function
have been calculated for general models of various - digital
signal formats, including BPSK, QPSK, SQPSK, and MSK
[1]-[3], and simplified versions for specific models are
summarized in the Appendix. The formulas for § % reveal how
the optimum QTI transformation depends on the particular
modulation format as well as the pulse-shape and data
correlation. For example, for the simplest case in which the
data are uncorrelated (white), it can be shown [using the
factorization (A2b), (A2c)] that for BPSK [given by (A1)] the
optimum QTI transformation, as specified by (13), (16), (20),
and the formula (A2a) for .§;’( f), is exactly implemented by a
matched filter (matched to the carrier burst) followed by a
squarer, and this is true for both « equal to twice the carrier
frequency 2f. and « equal to the symbol rate f;. In fact, the
same device is optimum for o« = kf;and o = 2f. + kf, for all
integers k. The transfer function of the matched filter is given
by

SNRZ, = df. QU

1

5o [QUHSIe et

H.(f)=

+Q(f e it o0]

where Q( f) is the sinc function (A2b), and ¢, and ¢, are the
symbol timing and carrier phase parameters [cf. (A1)]. For

3 This same measure of performance is used in [4] for prefilter design for
the delay-and-multiply quadratic synchronizer.
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Fig. 2. Spectral correlation magnitude for BPSK.
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Fig. 5. Spectral correlation magnitude for MSK.

example, for white noise (S,(f) = Np), the impulse response
is given by

ha(t) =1% COS(ZT.fC(t— [t0+ ¢0/.fc])7 lt| g 7;/2,

0

a delayed causal version of which can be implemented, except
for the unknown phase parameter #, + ¢¢/f.. The timing
parameter estimates can be obtained from the timing parame-
ters (pulse-timing and carrier phase) of the timing wave w, (7).
Use of an arbitrary phase in place of #, + ¢o/f. will not
degrade the SNR performance. For QPSK (with in-phase and
quadrature data that are both white and uncorrelated with each
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other), it can be shown [using the factorization (A4b), (A4c),
and (A2c¢)] that the optimum QTI transformation is exactly
implemented by a pair of in-phase and quadrature matched
filters, each followed by a squarer, the outputs of which are
summed. In fact, this same device is optimum for o = kf; for
all integers k. For SQPSK, the device that is optimum for
BPSK is optimum for SQPSK for o = 2f, + kf; for only odd
integers k, and the device that is optimum for QPSK is
optimum for SQPSK for o = kf; for only even integers k. No
other spectral lines can be generated (with a QTI transforma-
tion) from balanced SQPSK. The same synchronizer is
optimum for MSK, except that the filter is matched to the
carrier burst with the modified (half cosine) envelope used for
MSK.

IV. PLL PERFORMANCE

The phase-tracking performance of a PLL following any
nonlinear spectral line generating device is explicitly charac-
terized in terms of the spectral correlation and PSD of the
timing wave w(?), including the power P of the spectral line.
Specifically, consider the decomposition of the timing wave
into the spectral line of interest and a residual, say n(?),

w(t)=Q2P)"? cosQmat—¢)+ n(t). 22)
The reference waveform in the PLL shown in Fig. 1 is
r(f)=sin27pBt—0— Ky ()] (23)

where K is the VCO gain, and (¢) is the output of the phase-
detector/loop-filter

vO={" @) ® hw) du (24)

(where & denotes convolution). Since the loop filter, with
impulse-response function A(#), has bandwidth B [not the same
as B in (19)] less than «, say (ideally)

H(f)=0, |f| > B<a, (25)

then the sum-frequency (o + () term in (24) is negligible, and
(24) yields

dy()/dt={(P/2)"? sin[e(?)]

+n()sinR2rat— ¢ —e(?)]} ® h(2), (26)
where e(?) is the loop tracking error
e(t) 2 2n(a—P)t+0+Ky(f)—o. 27

If it is assumed that the loop is tracking so that |e()] < 1 [in
which case sin [e(?)] = e(?) and sin27rat — ¢ — e()] =
sin2rat — ¢)], and if it is assumed that the product of the
power P and the VCO gain K is sufficiently large that

H(/) _
NP2 H(f)-i2nf/K NP2’

is a close approximation, then (26) and (27) yield the close
approximation

lfI<B  (28)

e()=(2/P)"2{n(t)sinRrat— ¢)} & hy(t)

+2m(a—B)/ K(P/2)1? (29)

where A, is the impulse-response function of an ideal LPF with
bandwidth B. If it is assumed that the constant term in (29) is
negligible, then it follows from the formula for the PSD of a
cyclostationary AM waveform put through a filter [1], [2] that
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the mean (time-averaged) squared value of this phase error is
given by*

MSE = (1/2P) SBB [S,(/+ @)+ S,(f—a)

- 8% (f)e®—S-2(f)e~2] df. (30)

Thus, the only factors that determine how small this MSE is
are

i) the power P of the generated spectral line in the timing
wave w(f), and

i) the imbalance, within the passband of the loop filter,
between the frequency-shifted spectrum and the phase-shifted
spectral correlation function of the residual n(7) in the timing
wave,

[S,(f+ @)+ Su(f— a)] — [S2(f)ei 2+ S 2(f)e~ 4],
|fI<B<a.

It can be shown [2], by using Rice’s representation
n(t)=c(tf)cosQmat—¢) — s(t)sinRrat— )

for the residual n(r), that

€2))

(32

[§c(f)+gs(f)]=§n(f+a)+§n(f_a)$ |f|<B<O(

N =

(33a)

[S:(/) = S (/) =S (f)e2 + §-2e( fye -2,

[N T

|fl<B<a. (33b)

This reveals that the expression in (31), the integrand of (30), {
is simply the PSD S;( f) of the quadrature component of the °
residual. This corroborates the known fact that the synchroni-
zation error is due only to the quadrature component s(¢) in
(32). An alternative approach to interpreting expression (31) is
developed in the following.

The effect on MSE of an imbalance between the two terms
in (31) cannot be reduced simply by reduction of the filter
bandwidth B because this degrades acquisition and dynamic
tracking performance. The significance of the condition of a
balance between the two terms in (31), which yields zero
MSE, can be understood both statistically and deterministi-
cally. Specifically, consider the condition that the residual n(r)
have zero-crossings that coincide with those of the sinewave
component of w(z),

nkTy+1)=0 (34a)

for all integers k, where
Ty 2 1/2« (34b)
th 2 1/da+ ¢/ 2ma. (34¢)

We shall see that if n(¢) is band limited to f € [-2«, 2a],
then (34) is sufficient (but not necessary) for a balance
between the terms in (31), and furthermore, that (34) is
sufficient for n(¢) to be completely coherent [ef. (12)] for | f]

* This result corroborates that in [6], except that §f§ is not recognized as the
spectral correlation function in [6]. It is worth noting that when n(f) is
stationary (S;j( f) = Oforall o # 0) and the loop bandwidth B is small, then
MSE is proportional to the reciprocal of SNR, with proportionality constant
determined by the ratio of bandwidths in (19) and (30).
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< «, because (34) is necessary and sufficient for a band-
limited n(¢) to be an AM waveform, which is known to be
completely coherent [1], [2].

The condition (34) is equivalent to

y() = n(t) 2 8(t—1to—kTy) = 0 (35)
B

which is equivalent (by the Poisson sum formula [7]) to

y(t)=n(t) E e127rm(r~r0)/T0 = 0.

n

(36)

It follows that S}(f) = 0, from which (36) (using the formula
for the PSD of generalized AM [1], [2]) yields

E gi,p_'")/TO(f+(p+m)/ZTo)eiZW(p"")to/TO =0 (37)

p.m

which is necessary, but not sufficient, for (34). In practice, the
timing wave w(¢), and therefore its residual n(f), is band
limited to f € [—2«, 2a]. Consequently, (37) reduces to a
balance between the terms in (31), which is necessary and
sufficient for MSE = 0. However, (34) guarantees that the
zero-crossings of the timing wave are precisely periodic, and
that the so-called phase jitter is therefore zero in a determinis-
tic sense, which we see is sufficient but not necessary for the
mean square phase jitter to be zero. To obtain a spectral
characterization of the zero-phase-jitter condition (34),
which is both necessary and sufficient, the fact that Y( f), the
Fourier transform of y(¢) (treated as a finite-energy function)
in (36), is identically zero,

Y(f)=>, N(f—m/Tye 2m0/To = 0,

m

(38

can be used. If n(¢) is band limited to f € [—1/T,, 1/Ty].
then only the m = =+ 1 terms in (38) are nonzero, and (38) can
therefore be reexpressed as the following necessary and
sufficient condition:

N()+N(f—1/Tp)e *0'To
+N(f+1/Ty)e* 0’ To

0, Sl <UT
which in turn can be expressed as o

sin 27t/Ty)

{n@®)+2n(t)cos2m(t— 1)/ Tol} ® 27t/ T,

(39)

Substitution of Rice’s representation (32), with o = 1/27,,
¢ = wity/ Ty, and c(?) and s(¢) band limited to f € (—1/2Ty,
1/27Ty), into (39) yields ¢(#) = 0, in which case (32) becomes

n(t)= —s@)sin[x(t— 1)/ Tp]
which can be reexpressed as [using (34b) and (34¢)]

n(t)=s()cosQRmat —¢). (40)
Thus, a timing wave band limited to f € [ —2«, 2«] satisfies
the zero-phase-jitter condition if and only if it is an AM
waveform, in which the quadrature component is identically
zero. It can be shown that such an AM waveform satisfies the
zero-mean-square-phase-jitter condition [which is a balance
between the two terms in (31)], but other types of waveforms
also can satisfy this condition, e.g., any waveform that differs
from the AM waveform (40) by any waveform with zero
average power (power averaged over all time).
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Application of these results to a PAM time series reveals
that the known symmetry condition, on the prefilter of a
synchronizer, that guarantees zero phase jitter [8] guarantees
that the PAM waveform is transformed into an AM waveform.
Similarly, the known symmetry condition on the postfilter
guarantees that the AM property is preserved (no AM-to-PM
conversion).

V. Low-SNR MAXIMUM-LIKELIHOOD SYNCHRONIZERS
It is well known that a monotonic function of the likelihood

' ratio, for a weak zero-mean signal in additive white Gaussian

noise on the time interval [¢ — 7/2, t + 77/2], is closely
approximated by the quadratic form [9]

() :% ST/Z Sr/z

-T7/2 Y -T/2

R(t—[u+v]/2, u—v)

x(f—uw)x(@—v) du dv (41)
where R,(¢, 7) is the time-variant autocorrelation function (2)-
(3) for the signal (cf. [3]). Consequently, the low-SNR
maximum-likelihood (ML) estimates of any unknown timing
parameters, on which R;(¢, 7) is dependent, can be determined
from maximization of y(#) with respect to these parameters.
To relate this low-SNR ML synchronizer to the maximum-
SNR spectral-line generator, the representation (3) can be
substituted into (41), and the result can be manipulated into the
form [2]

yo=3 |7 s:nrsi, ) ar “2)

where SﬁT is the cyclic periodogram [cf. (7), (8)] defined by

1
Sirlty D=7 Xurlt, S+ /DX, f=al/2). (43)

If the maximum-SNR spectral-line-generating QTI transfor-
mation, specified by (13), (16), and (20), for white noise
S,.(f) = Ny, is modified by the addition of an output narrow
bandpass filter centered at frequency «, with bandwidth 1/7,
then it can be shown?® [5] that the output of the spectral line
generator is closely approximated by

Yu()=2 Re {S:ﬁf(f)*Si’T(t, 1) df e"zw} N

It follows that the low-SNR ML synchronizer (42) is simply a
multiplicity of real maximum-SNR spectral-line generators,
with outputs down-converted to baseband and summed. For
example, for BPSK each spectral-line generator is a matched-
filter-squarer followed by a narrow bandpass filter. Although
this characterization of the low-SNR ML synchronizer is
conceptually valuable, it does not necessarily suggest a useful
approach to implementation. For example, for BPSK the
outputs of the matched filter-squarers must be phase-compen-
sated [a consequence of the factor e~ in (A2b)] before
down-conversion, and the timing parameter f, required for this
is unknown. Furthermore, for the signals considered so far,
namely BPSK, QPSK, SQPSK, MSK, and APK, the closed-
form formula (41) leads directly to potentially attractive
implementations. For example, for BPSK with carrier fre-
quency f., carrier phase ¢, symbol rate f;, symbol timing #,

* 1t should be pointed out that the synchronization problem is not considered
in [5], but the QTI transformations that are optimum for low-SNR
synchronization [as specified by (20) and (42)] are also optimum for low-SNR
detection, which is the topic investigated in [5].
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and with white data [cf. (A1)], we have [2]
Ry(t—[u+v]/2, u—v)=cos[2nf.(t— u)+ bo]
- cos[2mf.(t —v) + ¢l

> qt—to—u—nTy)

“qt—ty—v—nTy). (45)
Substitution of (45) into (41) yields

o t+T/2
o=y [S au—to=nT))

=
n=—o

© cosQRmfou+ ¢o)x(u) du] ’ (46)

N

=y [Sm gk T,~nT))

n= -

© cosQafou+ dg)x(u) a’u] ’ 47)

where £, is the closest integer to (f — fy)/ 7T, and N is the
closest integer to (1/2)(7/7s — 1). It follows from (47) that
the ML synchronizer can be implemented (to a close approxi-
mation for 77> Ty) as a synchronous product demodulator,
followed by a filter matched to the symbol envelope q(r),
followed by a square-law device and a sliding symbol-rate-
synchronized averaging device that superposes 2N + 1
adjacent waveform segments of length 75, and adds them
together; finally, the averaged waveform is sampled at
precisely the right time k,7;, which does not slide along
continuously with ¢, but rather jumps by an amount 7 once
every 75 units of time. Since the clock timing ¢y and carrier
phase ¢, are not known, then the synchronous product
demodulator, matched filter, and sampler cannot be imple-
mented. However, use of some value other than f¢;, in the
matched filter only shifts the location &, 7 of the periodically
occurring peak in the output waveform y(¢), but ¢, must be
adaptively adjusted via some feedback mechanism operating
on the timing wave y(f).

It should be clarified that if the received signal x(¢) is band
limited to twice the Nyquist (zero intersymbol interference)
bandwidth for BPSK (i.e., 100 percent excess bandwidth),
then only the terms in (42) corresponding to the symbol rate
and twice the carrier frequency are nonzero. None of the
harmonics of the symbol rate remain. In this case, the symbol-
synchronized averaging device can be replaced with a narrow
bandpass filter at either 2/, for carrier synchronization or at f;
for symbol synchronization. Thus, the low-SNR ML synchro-
nizers for signals with less than 100 percent excess bandwidth
are identical to the maximum-SNR spectral line generators
described in Section III. This is in agreement with the ML
synchronizers derived in [10].

VI. CONCLUSIONS

It has been shown that wide-sense cyclostationarity is
characterized by a spectral correlation function, and it has
been shown that the design of quadratic synchronizers is
conveniently characterized by the spectral correlation func-
tion. This applies to both the maximum-SNR design criterion
and the ML design criterion for weak signals. It has also been
shown that the SNR-performances of quadratic spectral-line
gencrators and the mean-square phase-jitter performance for
phase-lock loops arc conveniently characterized by the spec-

tral correlation function. Consequently, the theory of spectral
correlation for time series that exhibit cyclostationarity [1]-[3]
provides a unifying framework for the study of synchroniza-
tion.

APPENDIX
SPECTRAL CORRELATION FUNCTIONS
BPSK: A BPSK signal can be modeled by
x(t)=a(t)cosQmf.t + ¢q) (Ala)
where

o

a()= 3 aq(t—to-nT) (Alb)

n=—oo

in which g(7) is a rectangle pulse with height of unity and
width of 75, and {a,} is a binary (+ 1) sequence. If {a,} is
modeled as a sequence of independent variables with equi-
probable values, then it can be shown [2], [3] that the spectral
correlation function is given by

5 1
Sﬁ(f)zﬁ [QUf+ St a/2)Q(f+f—al/2)
+O(f~fo+a/2)Q(f—f.— a/2)]e iZrato
1
+4—Ts [QUf+fetar/2)

CQ(f—fo—a/2)e@rlat2felig+2¢0)

+Q(f—fetal2)

©Q(f+fo—a/2)eiCrla=2clio-260)] (A22)
fora = *£2f. + k/T;and o = k/T, for all integers k, and

S_‘\‘_(f) = O for all other values of «. In (A2a), Q(f) is the sinc
function

sin (mfTy)
wf '

Equation (A2a) can be factored into the form

Q)=

S (N)=K(f+a/2)K(a/2—f)e im0, (A2b)

where

K(f) = QU+ e kool
+O(f = fo)etiCrlens o0, (A2c)
OPSK: A QPSK signal can be modeled by
x(1)=c()cosQmfot+ ¢g) — s(t)sinufot+do) (A3a)
in which

o

ct)= 3, cuqt—1o—nT,)

n=—o

=

s)= Y, s.q(t—ty—nT,). (A3b)

n= —o

If the two binary (+ 1) sequences {c,} and {s,} are modeled
as independent of each other, and consisting of independent
variables with equiprobable values, then it can be shown [2],
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[3] that the spectral correlation function is given by
N 1
S,‘i(f)=ﬁ [QUf+fe+a/2)Q(f+fec—a/2)

+O(f~feta/2)Q(f—fe—a/2)]e” ™0 (Ada)

for « = k/T; for all integers k, and §fj(f) = 0 for all other
values of «.
Equation (A4a) can be manipulated into the factored form

S« (f) =K (f+a/DK(@/2~f)
+L(f+a/2)L(a/2—f)]e 20

where K(f) is given by (A2c) (with ¢, replaced with an
arbitrary phase) and

L(f) =

(Adb)

IQ(f+ o) e~ e)
—iQ(f—f)eriETki o)

in which ¢, can be replaced with an arbitrary phase.
SOPSK: An SQPSK signal can be modeled the same as
QPSK, except for the modification

(Adc)

(=3 cuq(t—ty—Ty/2—nTy)

n=—oo

(A5)

(s(?) remains unmodified). It can be shown [3] that the spectral
correlation function is given by (A4) for o = k/ T for all even
integers &, and it is given by

- 1
« =— . /2
SH(S) T [Q(f+fc+a/2)

' Q(f+fc—Oé/Z)e—"(27r[a+2f(\]10+2¢0)

+Q(f—fe+a/2)
CQ(f—fo—a/2)e@ma=elio=290) ]

for« = +2f. + k/T; for all odd integers k, and Sif(f) =0
for all other values of «.

MSK: An MSK signal can be modeled the same as an
SQPSK signal except that the rectangle pulse g(7) is replaced
with the positive half cycle of a cosine wave with period 2 7.
It can be shown [3] that the spectral correlation function is the
same as it is for SQPSK, except that Q( f) is replaced with

(A6)
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P(f) given by

1
P(f)=z [QUHI12TH+Q(f-1/2T)). (A7)
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