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Abstract

A method of parameter estimation using only specified moments of the observed
data is described. It is radically different from the classical method of moments
(MoM) introduced at the end of the 19th Century and shows promise for being com-
petitive. The alternative method uses estimates of posterior PDF values of the un-
known parameters — estimates that are constrained to be linear combinations of
specified nonlinear transformations of the observed data. These estimates are the
solutions to linear equations specified in terms of first- and second-order moments
from a probabilistic model of the nonlinearly transformed data. For polynomial non-
linearities up to the order n, these are equivalent to moments of the observed random
variables up to the order 2n, revealing that this general method includes an alterna-
tive MoM as a special case; however, in place of the sample moments of the data used
along with the probabilistic moments in the Classical MoM, more general weighted
averages of products of the data with itself are used, and the weighting functions
are optimized according to a Bayesian minimum-risk criterion. The solution for the
posterior PDF estimate is studied analytically. Results are encouraging.

Keywords: Parameter estimation, Multivariate Model Fitting, Methods of Moments, Bayesian
Inference
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1 Introduction

The traditional Method of Moments is said to have been introduced by Pearson (1936) and

also by Chebyshev in 1887 (see Wikipedia (2022)). This method, when applied to either

multivariate or time-series data, consists of equating sample moments measured from the

data with theoretical moments obtained from a probabilistic model of the time series, and

then solving for the unknown values of parameters in the theoretical moment expressions.

The theoretical moments can be interpreted as unconditional moments depending on un-

known parameters, or moments conditioned on unknown values of random parameters.

The choice of interpretation has no impact on the method. However, the latter interpreta-

tion can be used to formulate a radically new approach to parameter estimation based on

concepts from Bayesian Inference.

The classical MoM is a mainstay of parameter estimation for probabilistic models of

data in econometrics and other fields for which knowledge of the likelihood function is often

unavailable or complexity of the known likelihood function prevents its use for maximum-

likelihood estimation.

In the Method of Moments, one can use the mean and centralized moments or the mean

and non-centralized moments, and one can use as many moments as there are unknowns,

and there are other variations that have been devised. One such variation uses the fact

that the theoretical moments for an M-th order autoregressive time series model satisfy

a set of M + 1 linear equations in M + 1 unknowns involving only 2nd-order moments,

the autoregressive model coefficients, and these equations can be solved for these unknown

coefficients. This method is very common in data modeling and time-series prediction and

associated studies of causality. More generally, however, the Method of Moments requires

the solution of nonlinear equations.
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In the alternative approach, conditional moments are used and the objective is not to

match theoretical moments to samples moments but rather to estimate the posterior PDF

of the unknown parameters using the observed data, and then select the values of the

conditioning parameters that maximize the estimated posterior PDF, thereby obtaining

the maximally “probable” solution for the parameter values, where the quotation marks

denote the fact that the PDF used is only an estimated PDF.

In this alternative method, one can use moments of a linear combination of any user-

specified nonlinear functions of the observations; the equations to be solved are always

linear, regardless of the particular functional dependence of the theoretical conditional

moments on the parameters. But, when polynomial nonlinearities are used, the higher the

order of the polynomials, the higher the order of the moments required. The posterior PDF

estimator requires orders of moments up to twice the order of the polynomial.

The alternative method is optimal in the Bayesian sense that its estimate of the posterior

PDF is a minimum mean-squared-error estimate subject to the selected constraint on the

nonlinearities used.

This method requires calculating the sum of the moments, conditioned on the unknown

parameter values, weighted by a prior PDF for those parameters. But one can always

use a uniform PDF over a sufficiently large finite region of the domain if there is no

knowledge of a prior PDF. This is tantamount to switching from a Bayesian approach

to a Maximum-Likelihood (ML) approach, since the posterior PDF, as a function of the

unknown parameters, is proportional to the Likelihood Function over the admissible region

of the domain of the uniform prior PDF. However, the ML approach here is still only

Maximum-“Likelihood” because the likelihood function used is only an estimated likelihood

function.
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This alternative method can use a single sample of a stationary (or cyclostationary)

sequence of random variables, which favors applications to time-series analysis, or it can

use multiple samples of one or more random variables.

To provide the reader with a look ahead at what this new method offers in comparison

with the classical MoM, Table 1 summarizes the key characteristics of these two methods.

Expanding on Table 1, the Radically Different MoM produces more than just a single

estimate for each parameter; it produces an estimate of the posterior PDF of the un-

known parameters. This “PDF” can be used to calculate most “probable” estimates of the

unknown parameters (their posterior “PDF” modes) which equal maximum-“Likelihood”

estimates when the prior PDF is chosen to be uniform, or it can produce minimum-“mean”-

squared-error estimates (their posterior “means”) or minimum-“mean”-absolute-value of

error estimates (their posterior “median”) where, in all cases, the quotation marks denote

the fact that the posterior PDF used in the estimates is the MMSE estimate of the true

posterior PDF, subject to a user specified constraint on the structure (functional form) of

that estimator’s dependence on the observed data.

Prior to recognizing the applicability of this method to multivariate statistics, it was

devised and used to design linear and quadratic communications receivers for digitally

modulated signals and was found to have strong resemblances to statistically optimum

receivers that are linear or quadratic under the simplifying assumption (for the optimum

receiver) of additive Gaussian noise Gardner (1973)-Gardner (1976a).

The purpose of this article is to show that this method is promising for not only statisti-

cal inference based on single samples of time series data but also for multivariate statistical

inference based on multiple samples in general. The particular applications studied in the

original papers Gardner (1973)-Gardner (1976a), which focused on data communications
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Table 1: Advantages of the Radically Different MoM

# Comparison Basis

1. Functionals of Data Used

Classical Method of Moments
(MoM)

Uses sample moments

Probabilistic conditional (on 
the parameters) moments of 
the data

Radically Different MoM

Uses linear combinations of any
specified functionals of samples,
including for example optimally
weighted sample moments
Probabilistic conditional 1st
and 2nd order moments of
specified functionals of the data

Always linear
Generally nonlinear, except for
Auto Regressive models

Produces different solutions
4. Breadth of Optimality Criteria with no optimality for different choices

properties in general of optimality criteria
Converges to Bayesian

Has no general relationship Min-Risk estimate (when
5. Convergence to ML to ML or Min-Risk estimates, prior PDF is known) or ML

or Min-Risk Estimate except asymptotically as the estimate of parameters
amount of data grows as order of polynomial
without bound estimator increases for any

fixed finite amount of data.

6. Use of Prior Information Does not use prior information Uses prior information in an
optimal manner when available

7. Number of Samples Used Typically, as many as possible One (e.g., for long time series)
for Each Random Variable or many

8. Philosophy of Approach Purely ad hoc Disciplined application
of Bayesian methodology

9. Ability to Address Dynamic Is not convenient for tracking Is inherently amenable to
as Well as Static Models rapid changes in parameters tracking rapidly changing

of interest parameters
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2a. Model Used

2b. Model Restrictions

Must use only moments for
which the equations are
solvable

Requires a data model in which 
the unknown parameters appear 
explicitly; the equations will 
always be solvable

3. Nature of Equations to
be Solved

Produces a single solution
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system design, demonstrated that the new method is analytically tractable and can in-

deed produce useful parameter estimates. But, the applicability to multivariate statistical 

inference using multiple samples has not been recognized or pursued. The theoretical ad-

vantages of the alternative method identified in Table 1 provides strong motivation for 

showing how to apply the new method to multivariate statistics in general.

The Radically Different MoM is no less different from the much newer Generalized MoM 

introduced by L. P. Hanson in 1982 Wikipedia (2022) than it is from the Classical MoM 

from a century earlier, and the Generalized MoM is equivalent to several other methods 

introduced 20-to-30 years earlier Wikipedia (2022).

There is a limitation to the applicability of this new method. As stated in row 2b of 

Table 1, the user must be able to calculate the moments specified in row 2a of this 

table, as explicit functions of the unknown parameters. This typically requires a model 

in which the unknown parameters appear explicitly in the data model. For example, if 

the unknown parameter is the variance of one random variable for which multiple 

samples are available, the expected values of any nonlinear functionals to be used for 

estimation (e.g. the squaring function), conditioned on knowledge of the variance, are 

not defined; e.g., the fourth moment conditioned on knowledge of the variance is 

undefined, except in very unique cases like jointly Gaussian variables. 

Because there is much distracting detail in the following presentation of the derivation of 

the new MoM, a streamlined summary of this derivation is provided in the Appendix. 

Readers may prefer to read the Appendix first in order to know in advance where the 

derivation is heading as it proceeds through the following sections of this paper.

2 Classical method of moments

Assume we have R observations (samples) {xk,r : k = 1, 2, . . . , K, r = 1, 2, . . . , R} of  



or

3. a formulaic probabilistic model of X is available and enables the calculation of the

joint moments of {Xk}

Cases 1) and 2) are quickly dispensed with here because resorting to ad hoc methods

in these cases is generally not necessary unless issues of complexity arise. To be more

specific, we consider the well-known relationship among prior (before data observation)

and posterior (after data observation) probabilities

p(θ|x) =
p(x|θ)p(θ)

p(x)
(2)

where p(θ) is the prior PDF of the parameters, p(θ|x) is the posterior PDF, p(x|θ) is the

Likelihood Function and p(x) is the unconditional data PDF, which can be decomposed

into conditional PDFs (likelihood functions) as follows:

p(x) =

∫
p(x|θ)p(θ)dθ (3)

or, for discrete-valued parameters,

p(x) =
∑

θ

p(x|θ)p(θ)

In the abbreviated notation used here, the particular PDF function is denoted by the 
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(1)Xk = fk(θ;Z)

We briefly consider three alternative assumptions and then down-select to one:

1. the joint PDF of {Xk} is known, or

2. the joint PDF of {Zl} is known and this enables calculation of the joint PDF of {Xk},

variables on Q unknown parameters θ = {θq : q = 1, 2, . . . , Q} and L random variables

Z = {Zl : l = 1, 2, . . . , L}

K random variables {Xk} and a model of the functional dependence of these random 



(1) equateM ≥ Q calculated joint probabilistic moments of {Xk} to theM corresponding

sample moments of {xk,r : k = 1, 2, . . . , K; r = 1, 2, . . . , R}. For example, some subset

M of the (K2 + 1)/2 unique moments from the set of K2 2nd-order moments can be

used:

E{XjXk|θ} =
1

R

R∑

r=1

xj,kxk,r for j, k = 1, 2, . . . , K (4)

Then,

(2) try to solve this set of simultaneous equations.

3 Radically different method of moments

In preparation for introducing the alternative MoM, we briefly expand the above discussion

of Cases 1) and 2). It follows from (2) that any difference between the ML estimate and the

MAP estimate is completely determined by the prior PDF. In the event that the prior PDF

is uniform over the region where the likelihood function reaches its maximum value, then

the ML and MAP estimates are equal. In situations where knowledge of a non-uniform

prior PDF is not available, it is common to assume it is uniform over a sufficiently large

finite region A in the prior-PDF domain, Q-dimensional Euclidean space:
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Given knowledge of the functions p(θ) and p(x|θ), the other two functions in (2) can be 

calculated, and one can choose to use an ML estimate or any Minimum-Bayes’-Risk estimate 

of the parameter vector θ.

Consequently, resorting to the ad hoc MoM is generally not necessary for parameter 

estimation unless these functions are not known or are exceedingly difficult to calculate, 

particularly the Likelihood Function.

For case 3), the classical MoM for estimating the values of {θq} is to:

symbol used for its arguments.



It follows that the maxima of the likelihood function and the posterior PDF coincide, and

these two alternative methods become one and the same:

argmax
θ∈A

{p(θ|x)} = argmax
θ∈A

{p(x|θ)}

Unfortunately, whether or not the prior PDF is known, if either the likelihood function or 

the posterior probability is unknown, neither the ML nor Min-Risk methods can be used, 

and the MoM is likely to be resorted to. However, the interpretation of θ as a vector of 

random variables instead of unknown constants enables a radically different alternative to 

the MoM to be derived. In the original formulation of this method for time series analysis, 

the name Structurally Constrained Bayesian Methodology (SCBM) Gardner (1976b) was 

introduced. This descriptive name is also appropriate in the more general setting of multi-

variate statistics based on multiple samples; however, it has the disadvantage of suggesting 

that a full probabilistic model for the data is available, as it must be in classical Bayesian 

statistics. For this reason, the alternative name Structurally Constrained Bayesian Method 

of Moments is suggested here. The same acronym can be used. The substantive advantages 

of the SCBM over the classical MoM are described in Table 1 (entries 1, 3-6, 8, 9 in Table 

1).
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p(θ) =





1
|A|

, θ ∈ A

0, θ ∈/ A

where |A| denotes the volume of A. In this case, (2) reduces to

p(θ|x) =





p(x; θ)

p(θ)
, θ ∈ A

0, θ ∈/ A

and (3) reduces to

p(x) =
1

|A|

∫

A

p(x|θ)dθ



multivariate statistics for which the classical MoM was devised. This discussion is not a

necessary part of the Radically Different MoM when applied to the classical MoM data

model. But it does lead to an understanding of why the SCBM is able to address dynamic

and as well as static MOM problems and produce tracking parameter estimates.

T
1

T
2
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When more than one sample of the vector of observed random variables is avail-

able, say R as in (1)), each sample can be interpreted as originating from a dis-

tinct K-dimensional vector Xr, all R of which are identically distributed and are 

concatenated to form the composite RK-dimensional column-vector of observations 

X = [X X . . . XT
R]. In this case, each Xr can contain as few as K = 1 random 

variable, Xr. This enables the SCBM to accommodate scalar-valued time-series of ob-

servations — for which the r-th observed random variable Xr is the r-th time sample 

of a scalar-valued stochastic process — as well as the classical MoM setup involving 

multiple statistical samples {xr} of a single vector xr of observations, each sample 

vector θ depending on the same unknown parameter vector in which time may play 

no role. The SCBM was originally proposed for time-series analysis for communi-

The following discussion explains the extension of the original work on the SCBM to

In the SCBM, knowledge of the posterior PDF required by the MAP and other Bayesian 

methods is replaced with the requirement of knowledge of moments of X conditioned on θ, 

as in the classical MoM. Such moments can often, in practice, be calculated from the model 

(1), even when the posterior PDF and the likelihood function cannot be calculated.

The SCBM specifies (1) a constraint that the estimator be confined to some linear space 

derived from the observations X, and (2) a performance criterion for optimizing an estimate 

of the posterior PDF.



the models originally addressed with the SCBM, the sequence of R random Q-vector

parameters {Θr} is stationary whereas, for the classical MoM model, reinterpreted

as a scalar-valued time series model, the Q-vector is fixed from one period to another

{θr = θ} and is not treated as a realization of a random vector. Therefore, instead

of estimating a time-sequence of Q-vectors, as in the typical communications system

application, there is only one Q-vector for all blocks of K time samples.

However, this reveals that the SCBM allows for the MoM data model to be generalized

to allow for some evolution of parameter values as more samples are collected. This

would be done by allowing the parameter vector to become dependent on the data-block

index r so that the otherwise Static SCBM-based MoM becomes Dynamic and tracks

evolving parameters. The case in which such changes occur slowly is accommodated by

including high correlation in the stationary sequence of random vectors. For the other

extreme of maximally rapid changes in the parameter vector, the parameter sequence

can be modeled as independent and identically distributed. For this Dynamic MoM
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reindexing and re-interpreting, it becomes apparent that the methodology applies 

as well to the classic multivariate statistics problem for which the MoM was created. 

The stochastic process model with a single scalar-valued sample path of length KR 

that is equivalent to the K-variate model with R sample vectors has a special temporal 

structure because the sequence of RK times samples has a block structure in which 

the joint PDF of any subset of time samples depends periodically on the time shift 

parameter with a period of K. That is, the process is Cyclostationary Gardner (2022), 

Gardner et al. (2006). And this is precisely the type of stochastic process for which

cations systems, i.e., for statistical signal processing. But, with this simple device of 



The set of values of p̂(θ|X) for each specified value of θ generated by all component linear

functionals {Hj(θ)} of the specified set of nonlinear functions {gj(·)} of X is a linear vector

space Λ of random variables. For example, one can choose

g1(X) = X

g2(X) = XXT

(6)

in which case (5) reduces to

p̂(θ|X) =
∑

k

hk(θ)Xk +
∑

k,l

hk,l(θ)XkXl (7)

which is a multivariate polynomial of order 2. Of course, this linear-plus-quadratic form is

easily generalized to higher order polynomials. In (7), {hk(θ)} is a representation (kernel)

of the functional H1(θ) and {hk,l(θ)} is a representation of the functionalH2(θ). In general,

the functions {gj(X)} are each tensors of various dimensions, as illustrated in (6), and the

functionals {Hj(θ)} each map these tensors into scalars.

For applications in which the observed data is a continuous-time stochastic process,

{X(t) : t ∈ {a, b} ⊂ (−∞,+∞)}, (7) becomes
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3.1 Structural Constraint

The estimator must be some linear functional of some set of specified nonlinear functions

{gj(X)} of the random variables X modeling the observations. A sufficiently general linear

functional for many applications has the form

p̂(θ|X) =
∑

j

Hj(θ) · [gj(X)] (5)

problem, the original time-series formulation Gardner (1973) and Gardner (1976b)

is preferred to the classical MoM problem formulation.



RHS of (7) and (8) the constant term h0(θ). These modifications are illustrated in

Gardner (1976a), and they are made in some of the examples below. In addition, the

quantity p(θ|X) can be replaced with p(θ|X)− E{p(θ|X)} = p(θ|X)− p(θ), which

is done in the examples below. Observe that p(θ|X) = p(θ|X).

This completes the explanation of the types of structural constraints imposed by the

SCBM method. We now move on to a description of the optimality criterion.

3.2 Optimality Criterion

The performance criterion for optimizing the structurally constrained estimator of the

posterior PDF arises from selecting squared error as a cost function. Then the Bayes Risk

to be minimized, which is the expected value of the cost, is the Mean Squared Error (MSE):

MSE = E{[p̂(θ|X)− p(θ|X)]2} (9)
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p̂(θ|X) =

∫ b

a

h(t; θ)X(t)dt+

∫ b

a

∫ b

a

h(t, u; θ)X(t)X(u)dtdu (8)

which is a 2nd-order Volterra-like counterpart of a 2nd-order polynomial. In this case,

{gj(X)} and {Hj(θ)} are continuous counterparts of the discrete tensors and functionals

described above.

This choice to constrain the estimator to be in a specified linear vector space facilitates

the analytical optimization of the estimator.

In the above example, the solution uses non-centralized moments. A recommended

alternative is to replace X with X = X−E{X}. Also, the term g0(X) = 1 for which

H0(θ) · g0(X) = h(θ), a constant vector, can be included in (6). This adds to the



A technical detail here is that, in order to apply the classical orthogonal projection

theorem, the linear space must be an inner-product space, and this in turn requires that

the vectors in the space all have finite norms; in this application, this means the probability

model of the nonlinearly transformed observed random variables {gj(X)} must have finite-

mean-squared values. This puts constraints on both the nonlinearities used, {gj(·)}, and

the probabilistic model of the original observations {p(X|θ) : θ ∈ A}. These constraints

are to be expected: one cannot use mean-squared error if random variables of interest do

not have finite mean-squared values. Nevertheless, even if X does not have finite-mean-

squared values, the nonlinearities {gj(·)} can be chosen such that {gj(X)} do have finite

mean-squared values.

3.3 Solution for Optimum Posterior PDF Estimate

The necessary and sufficient condition that characterizes the orthogonal projection solution

described above is the following Orthogonality Condition:
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This may seem strange at first glance because probabilities are not random variables.

However, when a random variable X is substituted in place of a sample observation x,

inside the function p(θ|·), the function value becomes a random variable. For the parameter

estimation problems of interest here, we have a set of multiple random variables indexed

by the parameter vector θ.

The optimization problem before us is to find the estimator p̂(θ|X) for each value of θ 

that minimizes the above MSE subject to the constraint that the random variable p̂(θ|X) is 

contained in the specified linear vector space Λ of all admissible estimates, which we denote

by p̃(θ|X). The solution to this optimization problem is well-known to be the orthogonal 

projection of the vector p(θ|X) , generally outside of Λ, onto the hyperplane Λ contained

in the linear space of (loosely speaking) all functions of the observables.



As a final step in simplifying these equations, we use the magic relationship:

E {p(θ|X)gk(X)} = E

{
p(X|θ)p(θ)gk(X)

p(X)

}

=

∫
p(x|θ)p(θ)gk(x)

p(x)
p(x)dx

=

∫
p(x|θ)gk(x)dx p(θ)

= E {gk(X|θ)} p(θ) (13)

in which the unknown posterior PDF vanishes and the assumed-known prior PDF (possibly

a uniform PDF when it is not known) appears. Substituting (13) into (12) produces

∑

j

Hj(θ) · E {[gj(X)]gk(X)} = E {gk(X)|θ} p(θ) ∀{k} (14)

The unconditional moments in the left member of this set of linear equations can be re-

expressed in terms of conditional moments as follows:

∑

j

Hj(θ) ·

∫
E

{
[gj(X)]gk(X)|θ̃

}
p(θ̃)dθ̃ = E {gk(X)|θ} p(θ) ∀{k} (15)

This is a set of linear equations in the unknown linear functionals {Hj(θ)}. Thus,

regardless of the nonlinear functions (tensors) selected in the structural constraint, the
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E{[p̂(θ|X)− p(θ|X)]p̃(θ|X)} = 0 ∀p̃(θ|X) ∈ Λ (10)

By using the estimator characterization (5), this condition can be re-expressed as

E

{[
∑

j

Hj(θ) · [gj(X)]− p(θ|X)

]
gk(X)

}
= 0 ∀{k} (11)

which is equivalent to

∑

j

Hj(θ) · E {[gj(X)]gk(X)} = E {p(θ|X)gk(X)} ∀{k} (12)

where (because E{·} is linear) Hj(θ) operates on the quantity in square brackets after the

expectation is executed.



conditioned on the parameter values—is replaced with the required knowledge of the 1st

and 2nd order moments of prescribed nonlinear functions of the data which, for up-to-

nth-order polynomial functions of the data, are 1st through 2nth order moments of the

data. So, the required knowledge of likelihood functions—the data PDFs conditioned

on parameter values—is replaced with the required knowledge of a finite set of data

moments conditioned on parameter values.

As mentioned in a previous section, when the prior PDF is known, this is additional

information the SCBM uses, which the classical MoM does not use. And, in addition, when

the prior PDF is not known, it can be assumed to be uniform over a user specified region

of parameter space which the user can specify according to any relevant prior information.

To illustrate the design equation whose solution fully specifies the posterior PDF es-

timate for each set of parameter values θ of interest, we consider here the example (6),

modified by inclusion of the k = 0 term and replacement of X by X as discussed in section

1. Using (12), modified by replacement of p(θ|X) with p(θ|X)− p(θ), we obtain
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equations to be solved are always linear. In addition, when {gj(X)} are comprised of

homogeneous polynomials, as in the examples above, the linear equations are fully specified

by moments of X conditioned on the parameters θ.

This latter observation reveals that the SCBM is a method of moments in the special

case for which polynomial nonlinearities {gj(·)} are selected, and the radical difference

between the details of the SCBM and those of the classical MoM explains why this

method is called a radically different MoM.

Another interesting observation that can be made from (15) is the fact that by using

the SCBM, the otherwise required knowledge of the likelihood function—the data PDF



which can be more explicitly expressed as

H0(θ) · E {[1]}+H1(θ) · E
{
[X]

}
+H2(θ) · E

{
[XX

T
]
}
= (E{1|θ} − E{1}) p(θ)

H0(θ) · E
{
[1]X

}
+H1(θ) · E

{
[X]X

}
+H2(θ) · E

{
[XX

T
]X

}

=
(
E{X|θ} − E{X}

)
p(θ)

H0(θ) · E
{
[1]XX

T
}
+H1(θ) · E

{
[X]XX

T
}
+H2(θ) · E

{
[XX

T
]XX

T
}

=
(
E{XX

T
|θ} − E{XX

T
}
)
p(θ)

(18)

Using (7), we can now re-express the above set of linear equations more explicitly as

follows:

h(θ) +
∑

k,l hk,l(θ)E{XkX l} = 0

∑
k hk(θ)E{XkXj}+

∑
k,l hk,l(θ)E{XkX lXj} = E{Xj |θ}p(θ) ∀j

h(θ)E{XjXi}+
∑

k hk(θ)E{XkXjX i}+
∑

k,l hk,l(θ)E{XkX lXjX i}

=
(
E{XjX i|θ} − E{XjX i}

)
p(θ) ∀i, j

(19)
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H0(θ) · E
{
[g0(X)]gk(X)

}
+H1(θ) · E

{
[g1(X)]gk(X)

}
+H2(θ) · E

{
[g2(X)]gk(X)

}

( )
p(θ) for k = 0, 1, 2

(16)

= E{gk(X)|θ} − E{gk(X)}

which, using modified (6), is equivalent to

H0(θ) · E
{
[1]gk(X)

}
+H1(θ) · E

{
[X]gk(X)

}
+H2(θ) · E

{
[XX

T
]gk(X)

}

(
= E{gk(X)|θ} − E{gk(X)}

)
p(θ) for k = 0, 1, 2

(17)

To illustrate the design equation whose solution fully specifies the posterior PDF es-

timate for each set of parameter values θ of interest, we consider here the example (6),

modified by inclusion of the k = 0 term and replacement of X by X as discussed in section

1. Using (12), modified by replacement of p(θ|X) with p(θ|X) − p(θ), we obtain



estimator of the posterior PDF, the design equation (18) reduces to

h(θ) +
∑

k hk(θ)E{Xk} = 0

h(θ)E{Xj}+
∑

k hk(θ)E{XkXj} = E{Xj|θ}p(θ) ∀j

(22)

which has the explicit solution

h(θ) = 0

h(θ) =
[
E{XX

T
}
]−1

E{X|θ}p(θ)

(23)

Consequently, the posterior PDF estimator, given by the modified version of (7), reduces

to

p̂(θ|X) = (1 + hT (θ)X)p(θ) (24)

Substituting (23) into (24) yields

p̂(θ|X) = p(θ)

(
1 + E{X

T
|θ}

[
E{XX

T
}
]−1

X

)
(25)
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The unconditional moments in (19) can be characterized in terms of conditional mo-

ments using (3) as follows for example:

E{XkXlXjXi} =

∫
E{XkXlXjXi|θ}p(θ)dθ (20)

If no prior information is available for specifying a prior PDF, a uniform PDF can be

used to obtain

∫
E{XkXlXjXi|θ}p(θ)dθ =

1

|A|

∫

A

E{XkXlXjXi|θ}dθ (21)

The solutions to (19) are used in the estimator formula (7), modified by replacement of

p̂(θ|X) with p̂(θ|X)− p(θ).

Example 1: Linear Estimator In the case of a constant-plus-linearly-constrained



posterior PDF estimate (26) without focusing on a particular function of the parameters

s(θ). For example, for the special case of a sinusoidal signal with unknown phase, θ, the

mode of the estimated posterior PDF can be analytically shown to converge to the true

value of the phase as the SNR increases, for any fixed data set (Gardner 1976b, p. 590).

For a pseudo-MAP estimator of θ, (25) yields

θ̂MAP = argmax
θ

{
p(θ)

(
1 + E{X

T
|θ}

[
E{XX

T
}
]−1

x

)}
(27)

which can be re-expressed using (26) as

θ̂MAP = argmax
θ

{
p(θ)

(
1 + E{Y T |θ}y

)}
(28)

Similarly, the pseudo-MMSE estimator, which is the pseudo-posterior mean, is given by

θ̂MMSE =

∫
p(θ)

(
1 + E{Y T |θ}y

)
θdθ (29)
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Denoting the square root of the inverse of the covariance matrix in (25) byW , and denoting

the decorrelated vector of observations by Y = WX , we can re-express (25) for a particular

sample of data x as

p̂(θ|x) = p(θ)
(
1 + E{Y T |θ}y

)
(26)

In words, the constant plus linear estimator probabilistically centers the data and

probabilistically decorrelates it and then empirically correlates it with its probabilistic

mean conditioned on the parameter vector.

In the special case for which the data consists of a known function of unknown parame-

ters (call it a signal) in additive self-correlated zero-mean noise, X = s(Θ)+N , with noise

covariance RN , that is uncorrelated with the signal whose covariance is Rs(Θ), we obtain

W =
[
RN +Rs(Θ)

]−1/2
and X = X − E{s(Θ)}. One cannot say much more about the



value. Also, if the norm is strongly dependent on the parameter value, the peak might

be shifted away from the true value and toward the value for which the norm is relatively

large. Previous studies have shown that the pseudo posterior mean can outperform the

pseudo posterior mode in some such cases.

Example 2: Linear Plus Quadratic Estimator In the case of a constant-plus-

linearly-plus-quadratically constrained estimator of the posterior PDF, for the special case

in which the odd-order unconditional moments of the observed data are zero, the design

equations (19) reduce to the following equations:

h(θ) +
∑

k,l hk,l(θ)E{XkX l} = 0

∑
k hk(θ)E{XkXj} = E{Xj|θ}p(θ) ∀j

h(θ)E{XjX i}+
∑

k,l hk,l(θ)E{XkX lXjX i} =
(
E{XjX i|θ}−E{XjX i}

)
p(θ) ∀i, j

(31)
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where dθ = dθ1dθ2 . . .dθQ.

One way to investigate the utility of any of these estimators is to seek to determine

the conditions under which the parameter estimate equals the true value of the parameter

when the additive noise in the data is zero. In the case of zero noise, N = 0 and therefore

RN = 0. Assuming also that the signal covariance matrix has full rank, the posterior PDF

estimate (26) reduces to

p̂(θ|x) = p(θ)
(
1 + E{Y T |θ}y

)
= p(θ)

(
1 + [s(θ)− µs]

T
R−1

s
[s(θo)− µs]

)
(30)

One example, for which the behavior of this zero-noise PDF estimate is transparent is

that for which the norm of the deviation s(θ)−µs of the signal from its mean is independent

of the value of the parameter vector θ. In this case, the maximum of the factor multiplying

the prior p(θ) occurs at the true value θ = θo. Nevertheless, if the prior PDF is non-

uniform, it is possible for that factor in (30) to shift the peak in θ away from the true



{gj(X)} are rank-1 tensors (vectors) in one linear design equation for 1st order polynomials,

then rank-1 and rank-2 tensors (vectors and matrices) in two simultaneous linear design

equations for 2nd order polynomials, then rank-1, rank-2, and (by extrapolating) rank-3

tensors in three linear design equations for 3rd order polynomials, etc; and the conditional

moments of the modeled data defining these linear equations are rank-1 and rank-2 tensors

for 1st-order polynomials, then rank-1 through rank-4 tensors for 2nd order polynomials,

and then rank-1 through rank-6 tensors for 3rd order polynomials, etc.

This pattern enables one to simply write down the tensor design equations for any

order polynomial estimator of the posterior PDF. All the analytical work has been

done here, leaving for the user only the computational challenge of inverting tensors

or otherwise solving explicit linear tensor equations.
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which can be solved to obtain

h(θ) = −
∑

k,l hk,l(θ)E{XkX l}

hk(θ) =
∑

j

[
E{XkXj}

]−1
E{Xj|θ}p(θ) ∀k

hk,l(θ)=
∑

j,i

[
E{XkX lXjX i}

]−1
·
[(
E{XjXi|θ}−E{XjX i}

)
p(θ)−h(θ)E{XkX l}

]
∀k,l

(32)

Finally, the third equation in (32) can be substituted into the first equation in (32) and

the scalar h(θ) can be solved for and substituted back into the third equation to obtain

the desired 3 explicit solutions for the unknown scalar, vector, and matrix defining the

estimator. As can be seen, the third equation above requires the inversion of a rank-4

tensor. A standard approach to doing this is to represent the tensor in terms of matrices

and use existing software to invert the matrices, and then convert those back to the desired

inverse tensor. See, for example, the article Bu et al. (2014), and references therein, and

Kisil et al. (2022).

Example 3: Higher-Order Polynomial Estimators Observe from (19) that the

representations of the linear functionals {Hj(θ)} for homogeneous polynomial nonlinearities



or . . ., or n up to the point of specifying the particular algorithms to be used to invert

the tensors of various ranks each corresponding to one of the various homogeneous

polynomial terms used.
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In this conclusion above, the various functional kernels need not be of different dimen-

sions. For example, if the nonlinearities of interest produce the data {Xj } and {Xj
2} to be 

linearly combined, the two corresponding kernels are both of dimension 1. The only

requirement is that the set of nonlinearly transformed data sets be linearly independent,

which guarantees that the specified tensor inverses exist. Other simplifications of the general

It is worthy of note that the quadratic-plus-linear-plus-constant estimator of the pos-

terior PDF obtained from the SCBM, specified by (19), is consistent with the linear-plus-

constant estimator obtained from the SCBM, specified by (22), in the sense that the latter

is included as a special case of the more general former. That is, the solution for the

constant and linear parts of the former obtained by equating to zero the quadratic ker-

nel and eliminating the highest-order (3rd) equation is identical to the solution for the

constant-plus-linear estimator from the latter.

In conclusion, there is one unique SCBM solution formula for the structurally con-

strained posterior PDF estimate comprised of a linear combination of any set of

finite-mean square non-linear functions of the data.

Moreover, for each natural number n, there is one single algorithm that solves all

SCBM problems for polynomial-type nonlinearities of any order m = 1, or 2, or 3,



in which the nonlinear functions (tensors) {gj(x)} are specified by the user (e.g., (7)

or (8)).

• The linear functionals {Hj} in this formula are the solutions to the set of simultaneous

linear equations

∑

j

Hj ·

∫
E

{
[gj(X)] gk(X)|θ̃

}
p(θ̃)dθ̃ = E{gk(X)|θ}p(θ) ∀{k}

(e.g., (19)). If the prior PDF is unknown, it is approximated with a uniform PDF

over a user specified region of the parameter space (e.g., (21)).
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• The Pseudo Min-Risk Estimate of a parameter vector is calculated from the struc-

turally constrained Min-MSE estimate of the random posterior PDF in the same

manner that the true Min-Risk parameter estimate would be computed from the true

posterior PDF, were it available.

• The Min-MSE Posterior PDF Estimate is calculated from the structurally constrained

formula

p̂(θ|x) =
∑

j

Hj[gj(x)]

solution can be obtained by orthogonalizing the nonlinearly transformed data sets prior to

forming their linear combinations. This does not change the linear space Λ, but it does affect

the form of the solution. In particular, it renders the off-diagonal (j 6= k) terms, in the

summary in Section 4 below, zero.

4   Summing up the Radically Different MoM

The SCBM can be summed up as follows:



5 Options for SCBM Solutions for Parameter Esti-

mates

Once we have the optimum estimate of the posterior PDF, we can proceed to choose a 

particular Bayesian Minimum-Risk performance criterion for estimating the parameters θ. 

For example, we can choose the posterior mode (MAP) criterion described above which, for 

the assumption of uniform prior PDF, is equivalent to ML; or we can choose the posterior 

median, which derives from using the absolute value of the error in each element of the 

estimate of the vector θ for the risk function. We also can use the posterior mean, which 

results from using the squared error of each element of the estimate of the vector θ. Some 

comparisons have been made between the pseudo posterior mode and pseudo posterior
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• If the user specified nonlinear functions are multivariate polynomials, then all ex-

pected values in these linear equations are conditional moments obtained from a

probabilistic model of the observations, justifying this as a method of moments (e.g.,

(19) - (21)).

• Moreover, for homogeneous polynomial nonlinearities, the linear design equations

can be explicitly written down in terms of linear tensor equations, knowing nothing

more than the specified order of the polynomial to be used. Similarly, the estimator

formula can be explicitly written down as a polynomial in the observed data. The

only work a user needs to do is solve the known simultaneous linear tensor equations

and implement the polynomial posterior PDF estimator.

• As explained below in Section 7, the estimated posterior PDFs satisfy all but one of

the 3 traditional axioms of probability



hypothesis. The hypothesis that is decided to be the correct one minimizes the risk, given

the particular observed data. Consequently, the SCBM described in this paper applies as

well to decision making as it does to parameter estimation. This has been pursued in the

early work reported in Gardner (1973), Gardner (1976b), Gardner (1981). The Author does

not know of any formalism that has been formulated for a decision-making counterpart to

the classical MoM formulated for parameter estimation. (However, one would expect that

some work on this concept has been done.) Consequently, no complement to Table 1 that

applies to decision making is included herein. Nevertheless, it seems likely that Table 1

applies, as is, to both parameter estimation and decision making.
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mean estimates in Gardner (1973), Gardner (1976b), and especially Gardner (1981). The

results of these comparisons depend on the particular structural constraints chosen.

Consequently, there may be low likelihood of obtaining any general comparative results on

performance dependence on the selected type of risk. Nevertheless, the results in Gardner

(1981) establish some conditions under which the estimated posterior mean is superior to the

estimated posterior mode for the decision problem of classifying observed data into one of a

finite number of specified classes. This is interesting since the mode seems like a more natural

choice and actually is when the posterior probability is not just an estimate.

6 Application of SCBM to Decision Making

The Bayesian approach to minimum-risk decision making uses the same performance crite-

rion as that it uses for parameter estimation. The primary difference is that the parameters

for decision making are discrete-valued, and each discrete value corresponds to a particular
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7 Properties of the SCBM Posterior PDF Estimator

It is shown in the original contribution Gardner (1976b) that the posterior PDF (and dis-

crete probability mass function) estimates provided by the SCBM satisfy the traditional 

axioms of probability, regardless of the specific structural constraints chosen by the user, 

except for the positivity axiom. Another property of interest is revealed by the general so-

lution (26) for a constant-plus-linear constraint, and this is that the posterior PDF estimate 

is explicitly specified in terms of the prior PDF and the conditional mean of the centered and 

decorrelated data. In all cases of essentially arbitrary nonlinearities in the structural 

constraints, the solution is fully specified in terms of the prior PDF and conditional first-and 

second-order moments of the nonlinearly transformed data. And for polynomial non-

linearities, these are equivalent to higher-order conditional moments of the model for the 

original random data, guaranteeing this is indeed a method of moments; however, in place of 

the sample moments of the data used in the Classical MoM, more general weighted averages 

of the data and products of the data with itself are used, and the weighting functions are 

optimized according to a Bayesian minimum-risk criterion.

8 Applications

To illustrate a nontraditional type of application of this alternative MoM, previously pub-

lished work is referred to here. In Gardner (1973), Gardner (1976b) the problem of op-

timizing a digital communications system receiver is addressed. One of the models used for 

this is a continuous-time cyclostationary process defined for all time, and the unknown 

parameters in this process comprise an infinite sequence of discrete values from a finite 

alphabet of encoded symbols representing the information-bearing data being transmitted 

on a stream of pulses. Thus, this is an ongoing decision problem in which a decision as to



transmitted signal.

Another application, addressed in Gardner (1976a), considers parameter estimation and

decision making for marked and filtered Poisson processes, used to model optical communi-

cations signals transmitted over optical fibers. Results obtained for a linearly constrained

receiver strongly paralleling those obtained in Gardner (1973), Gardner (1976b).

Yet another application to communications receiver design is addressed in Gardner

(1976b), where a linear-plus-quadratically constrained receiver for noncoherent decision

making for sinewave-carrier modulated signals is considered. Again, results obtained are

similar to optimum receivers for signals in Gaussian noise.
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which symbol was transmitted is made every symbol interval (after some delay required to

process date following each symbol interval) . The data received for each symbol extends

over multiple symbol intervals, creating what is called inter-symbol interference. As shown

in Gardner (1973), Gardner (1976b), the solution for a constant-plus-linearly-constrained

receiver has much in common with the min-risk receiver for additive Gaussian noise: It is

comprised of a parallel bank of matched filters, each filter matched to one of the finite set of

transmitted pulse shapes, followed by a symbol-rate time sampler and a multi-input/multi-

output sampled-data filter which produces SCBM estimates of the posterior probabilities of

the transmitted symbols. This portion of the receiver structure that follows the bank of

matched filters is known as a Fractionally Spaced Equalizer, which attempts to remove the

intersymbol interference; however, its function is seen here to be much more than a

traditional channel equalizer. In fact, it is more akin to a discrete-time Wiener filter. These

probability estimates can be used for making decisions on which of the symbols from the

finite alphabet were transmitted or for estimating symbol values or estimating the entire



at first glance, by comparing (12) and (13), to be solvable under only one condition

and this is that u(x) is proportional to the ratio p(x|θ)/p(x) of the likelihood function

to the unconditional PDF of the data, an example of which is the posterior PDF

in which case the proportionality factor is the prior PDF p(θ). This condition is

responsible for the disappearance of the unknown function u(X) = p(θ|X) in the

RHS of the design equation (12) as per (13). However, a deeper look reveals that u(X)

and p(θ|X)a for any scalar a can differ by any random variable that is orthogonal

to gk(X) for all k. A good example is u(X) equal to the event indicator function,

u(X) = 1 for all samples X = x for which the event Θ = θ occurs and u(X) = 0

for all other X = x. It is easily shown that (12) reduces to (14) with this choice for
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1. The infrequently used concept that the posterior probability, with the conditioning

quantity — which is normally a sample of a set of observed random variables —

replaced with the observable random variables (not their samples), is itself a random

variable and can be subjected to classical random variable estimation theory; though,

it is uncommon to apply such theory to the problem of estimating an unknown

deterministic function u(X) of the observations, which is exactly what the posterior

probability is. In fact, such a problem is generally unsolvable because it generally

requires knowledge of the unknown function, even when the estimates are constrained

to belong to a linear space derived from the observations, such as Λ herein. It appears,

9 Reflection

Some of the concepts used to formulate the SCBM parameter estimation method could be

said to be twisted—they are quite unconventional. Seeking a new MoM within the Bayesian

framework seems unmotivated and, at first glance, unlikely to succeed. Yet the Bayesian

formulation is logical, and it leads to a tractable genuine MoM for two reasons:



implementation, namely linear equation solvers and multivariate polynomial functionals of

the observations, it should be highly amenable to efficient algorithmic implementations in

terms of either software computer applications or special purpose digital signal processing

hardware.

As a final remark, it is mentioned that, unlike the Radically Different MoM, the Classical

MoM does not appear to be nearly as convenient a starting point for developing a tracking

parameter estimator, regardless of how the memory of the sample moments calculator is

adjusted, because every change in the sample moments requires the solution of a new set of

generally nonlinear equations.
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function onto the space of all finite mean-square functions of X (see (Gardner 1989,

pp. 427-428)). Therefore, the orthogonal projection of this indicator function onto

the linear sub-space Λ is identical to the orthogonal projection of p(θ|X) onto Λ.

2. The adoption of minimum-mean-squared error as an optimality criterion for estimat-

ing the function u(X), together with the constraint on the estimator to a hyperplane

in the space of all functions g(X) of the data. These two choices of formulation are

responsible for the design equation (12) being a set of linear equations.

The observation above reveals that this alternative MoM could have been formulated

in terms of estimating either any scaled version of the event indicator function or the ratio

p(x|θ)/p(x) instead of the posterior PDF p(θ|x). In these cases, the prior PDF p(θ)

disappears (with the appropriate scalar a) from the RHS of the general design equation

(15), but not the LHS.

Because this methodology is so highly structured in terms of the algorithms required for

u(X). The reason for this is that p(θ|X) is the orthogonal projection of this indicator



The Classical Method of Moments

• The number of moments M needed is equal to the number of unknown parameters a

in these moment models (formulas); e.g.,

M12 = E{X1X2} = f(a1, a2, a3) a1, a2 = variances, a3 = covariance

M2 = E{(X2)
2} = g(a2)

M1 = E{(X1)
2} = h(a1)

for which f , g, h are known functions

• The statistics that are computed from the data consist of the sample moments cor-

responding to the theoretical moment models, e.g.,

m12 =
1

n

n∑

j=1

xj
1x

j
2

m2 =
1

n

n∑

j=1

(xj
2)

2

m1 =
1

n

n∑

j=1

(xj
1)

2
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• The Method of Moments (MoM) is a classical statistical technique for estimating the

parameters of a probabilistic data model

• The MoM was introduced just prior to the turn of the 19th Century by K. Pearson

and P. Chebyshev, independently

• It is designed for statistical inference where the available data consists of multiple

samples of a set of random variables, with a partially specified probabilistic model

• The partial model needed is a set of joint moments of various orders for the

random variables, showing explicit dependence on unknown parameters

APPENDIX: Outline of Derivation of New MoM

Background



time series, consisting of concatenated time-series segments equal to a first sample

of the ordered set of random variables, followed by a 2nd sample of the same random

variables, and so on until all samples have been included, e.g.,

{yk}
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1 = {x1

1, x
1
2, x

2
1, x

2
2, x

3
1, x

3
2, x

4
1, x

4
2, x

5
1, x

5
2, x

6
1, x

6
2, x

7
1, x

7
2, x

8
1, x

8
2}

1
1

1
2

2
1

2
2

• The theoretical model for this time series is a single sample path of a cyclostationary

stochastic process {Yk}, with period equal to the number of random variables and

with the time sequence of this set of random variables being i.i.d. from one period to

the next: e.g., {x , x } and {x , x } are i.i.d.

• This is a special cyclostationary process because it contains the same unknown pa-

rameters in every period

• I generalized this model to allow the parameter values to change from one period to

the next and modeled them as samples of a stationary sequence of random variables,

which preserves the cyclostationarity
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• The inference procedure is to equate the computed sample moments to

the theoretical moment formulas and attempt to solve these equations

m12 = f(a1, a2, a3)

m2 = g(a2)

m1 = h(a1)

• The tractability of this MoM depends on the particular nonlinear equations

An Alternative Approach

• I recently observed that every multivariate statistical inference problem based

on multiple samples can be reformulated as a problem of statistical infer-

ence for a single times series of data based on one sample path of the



• Finally, I formulated an inference problem for estimating these posterior probabilities

using structurally constrained minimum-MSE estimators: optimum linear combina-

tions of any appropriate specified nonlinear transformation of the data samples

ˆ̂ai = max
ai

P̂ (ai|{yk})

• This particular formulation ensures the posterior probability estimates are always the

solutions to sets of simultaneous linear equations

• By choosing polynomial nonlinearities, the equations are fully specified by weighted

sample moments of the data; this makes it a MoM

• The weights are optimal in the sense of producing structurally constrained minimum-

MSE estimates of the posterior probabilities

• In actuality, the reformulation process described above was performed in reverse order

for the purpose of showing that the original work on time series was equivalent

to a radically new MoM.

32

âi = max
ai

P (ai|{yk})

• Then I invoked an unusual methodology I had introduced in the early 1970s for 

this type of cyclostationary process model which I used for commonly encountered 

digital pulse-modulated signals used in communications transmission systems

• The unusual methodology uses Bayesian concepts to formulate the problem of 

estimating the parameter values (transmitted digits {ai}) in terms of the 

sequence of posterior probabilities, which can be used to compute various minimum-

risk parameter estimates, such as maximum-posterior-probability estimates and 

minimum-mean-squared-error estimates, e.g.,



What’s Unusual About this Application of Bayes Minimum Risk Methodol-ogy?

• The quantities to be estimated, the posterior probabilities of parameters, are deter-

ministic functions of the observed data.

• So, why do we need to estimate them?

• For the same reason we would choose to use the MoM: we do not know the complete

probabilistic model for the data

• The particular way I set up the problem for estimating the unknown function

P (a|{yk})

of the known data requires knowledge of only moments of orders determined

by the orders of the polynomial nonlinearities selected for the structural

constraint
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Summary

• We now have two radically different Methods of Moments

• The numerous advantages of the new method are fully described in the Table 1 in

Section 1

• The utility of the new method was studied back in the 1970s for estimating digital

symbols in digital transmission systems developed by Bell Telephone Labs

• But more diverse applications to various specific multivariate parameter

estimation problems, and comparison with the classical MoM, has not yet

been pursued
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• This was not foreseen, but rather was discovered during my open-ended investigation

as a young näıve investigator in my first year as an assistant professor
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