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Abstract

Signal-selective direction finding algorithms that overcome many
of the limitations of existing direction finding techniques are pre-
sented. The new algorithms automatically classify signals as de-
sired or undesired based on their known spectral correlation prop-
erties and estimate only the desired signals’ directions of arrival.
The signal-selective nature of the new techniques eliminates the
need for knowledge of the characteristics of the noise or interfer-
ence in the environment; furthermore, it enables the new tech-
niques to resolve a number of desired signals not exceeding the
number of sensors in the presence of arbitrary noise and a vir-
tually unlimited number of unknown interferers. For example,
the interferers can exhibit an arbitrarily high degree of correla-
tion amongst themselves and can arrive from directions arbitrarily
<lose to those of the desired signals.

1 Introduction

Currently popular methods of direction finding (DF) using
sensor arrays, such as MUSIC [1] and modified versions of
MUSIC [2], suffer from various drawbacks. These include:
(1), the requirement that the total number of signals imping-
ing on the array, including both signals of interest (SOIs) and
interference, be less than the number of sensors or that the
characteristics of interfering signals be known so that their
effects can be subtracted; (2), the inability to resolve two
signals spaced more closely than the resolution threshold of
the array when only one signal is a SOI; and (3), the require-
ment that the noise characteristics of the sensors and the
environment be known or that they be accurately modeled
as independent and identically distributed Gaussian random
processes [3].

The signal selective DF algorithms presented here effec-
tively circumvent these drawbacks in environments where
SOIs exhibit cyclostationarity (spectral correlation) [5]. This
is accomplished by exploiting the differing spectral correla-
tion characteristics of the different signals.

2 Cyclic MUSIC Algorithms

The fundamental difference between existing techniques and
the new techniques presented here is that all existing tech-
niques locate the signal sources using spatial coherence prop-
erties (e.g., as measured by the array covariance matrix),
whereas the new techniques locate the signals using their
spectral coherence properties as well. The theory of spec-
tral correlation is presented in [5] where it is shown that a
signal exhibits spectral correlation if it is correlated with a
frequency-shifted version of itself, that is, if the cyclic auto-
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correlation function, defined by

Ra(r) & (st +1/2) st = 7/2e™=}) (1)

is not identically zero for some cycle frequency a and some
lag parameter 7. For example, the frequency components in
stationary noise are not correlated with each other, so the
cyclic autocorrelation of that noise is identically zero for all
a # 0 and is equal to the conventional autocorrelation for
a = 0. Most communication signals exhibit nonzero spectral
correlation at one or more cycle frequencies. For example, a
PCM signal with a stationary baseband has nonzero cyclic
autocorrelation for a equal to its baud rate.

The spectral correlation concept yields interesting and
useful results when applied to analysis of antenna array sig-
nals. Consider an array having M sensors which receives
L, < M signals si(t),7 = 1,..., Ly, that exhibit spectral
correlation at a particular « of interest (i.e., they are signals
of interest) and an arbitrary number of interferers and arbi-
trary noise that do not exhibit spectral correlation at that
a. For example, the interferers can exhibit arbitrarily high
correlation amongst themselves. However, in the work pre-
sented here, the desired signals must not be fully correlated
amongst themselves and must be independent of the interfer-
ence. If the narrowband assumption holds (i.e., if the transit
time of the received wave across the array is much less than
the period of the carrier), then the received signal can be
approximated by

La
x(0) = 2 a(6)s() +i0) (2)
= A(®)s() +i(2), (3)

where a(6;) models the relative gains and phases of the sen-
sors acting on a signal impinging from angle 6;, and i(t) con-
tains the interference and noise. The direction vectors a(6;)
are assumed to linearly independent (i.e., A(©) has full col-
umn rank). The cyclic autocorrelation matrix of this received
signal is given by

R3(7) = A(O)R,(7) A%(0), (4)

where (-)# denotes conjugate transpose, and where R%,(7) is
the cyclic autocorrelation matrix of the transmitted signals,

Re(r) = (stt+ /2 {s(t =/ e=}") . (3)
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If the assumptions made above hold, then R, (7) has rank
Lo, the number of desired signals. In particular, if only
one signal exhibits spectral correlation at the chosen «, then
RZ,(7) is a rank-one matrix given by

Rix(r) = a(61)a™ (61)R3,, (1), for La=1,  (6)

AATE



with one non-zero eigenvalue whose eigenvector is equal to
the direction vector a(6;) of the signal s;(¢). From this eigen-
vector the angle 8, can be estimated as shown in [6].

In general the cyclic autocorrelation matrix has contribu-
tions from L, > 1 signals that exhibit spectral correlation at
the chosen a. For L, < M it has a null space spanned by the
columns of Ey 4, the eigenvectors corresponding to its zero
eigenvalues,

Rix(T)Ena = 0. (M
Since none of the signals s;(t) are perfectly correlated with
each other, then R%(7) has full rank equal to L. Further-
more since the columns of A(®) are linearly independent,
then (4) and (7) imply that the null space is orthogonal to
the direction vectors of the desired signals,

Ef.a(6:)=0,i=1,..., La. (8)

This fact can be used to form a measure of orthogonality
Pcpm(8) (also referred to as the spatial spectrum) similar to
that used by MUSIC and other algorithms:

a(9)|?
Poutt) = 2O @
[E%.20)]
Thus, the DF algorithm proposed here can be summarized
as follows:

1. Choose a to be a cycle frequency of the desired signals;
2. Find the null space, Ey o of R, (7), and its rank, Z,;
3. Determine the number of SOIs, L, = M — Z,;

4. Search over 6 for the L, highest peaks in Pcp(6).

This algorithm is referred to as the Cyclic MUSIC algorithm
since it can be thought of as a modified and simplified MU-
SIC algorithm that exploits cyclostationarity properties of
the desired signals. The function Pca(f) is referred to as
the Cyclic MUSIC spatial spectrum.

It is interesting to note here that the recently introduced
phase-SCORE algorithm for blind adaptive signal extraction
[7] yields a null space with the same orthogonality properties
as the Cyclic MUSIC algorithm (7)-(9). The phase-SCORE
algorithm finds weight vectors to perform signal extraction
that satisfy the phase-SCORE eigenvalue equation,

R (T)W = ARxx W. (10)

Whereas the nonzero eigenvalues’ eigenvectors perform ex-
traction, the generalized null space of (10) performs direction
finding:

R;)IKR;x(T)EN.a = 0, (11)
Ef.a(6) = 0, i=1,...,L,, (12)
9 2
Pom(8) = __H;aLU. (13)
|ES<a(6)]
Note that (11) can be written as
RSw(7)ENY =0, (14)
where
Ef) = Ru/’Ena, (15)
w(t) = Ra’x(t), (16)

which can be interpreted as the Cyclic MUSIC algorithm ap-
plied to spatially whitened data. This suggests that phase-
SCORE-based Cyclic MUSIC (11)-(13) can potentially out-
perform unwhitened Cyclic MUSIC (7)-(9) when the desired
signals are weaker than the interference. Furthermore, the
phase-SCORE algorithm (10) simultaneously performs sig-
nal extraction [7].

In practice, the use of measured correlation matrices in-
stead of ideal quantities in (7) and (11) reduces the equal-
ities in (7)-(8) and (11)-(12) to approximations. However,
as shown in the simulations, these approximations hold suf-
ficiently well after an adequate averaging time. Since the
smallest eigenvalues are not identically zero, a statistical test
must be applied to determine the rank of RZ,(7) if it is
unknown. Existing techniques for rank determination such
as Minimum Description Length (MDL) [4] apply directly
only to the conventional autocorrelation matrix Ryx (or to
the generalized eigenvalue equation RyxW = ARnnWw, where
Rnn is the autocorrelation of the noise and known interfer-
ers), which have positive, real eigenvalues grouped around a
positive value (the noise power). The cross-correlation ma-
trices used by the Cyclic MUSIC algorithms do not satisfy
these assumptions. This rank determination problem is left
as an open research topic. In the proof-of-concept results
presented in this paper, the number of desired signals, Lq, is
assumed to be known.

The Cyclic MUSIC algorithms circumvent all of the draw-
backs mentioned in the introduction because only the desired
signals contribute to R, (7). In particular, the number of
signal sources represented by i(t) is limited only by averaging
time and numerical accuracy. Also, regardless of how close
the direction of arrival (DOA) of a desired signal is to the
DOA of an undesired signal, the algorithms can accurately
estimate the direction of the desired signal. Furthermore, no
knowledge of the noise covariance or distribution is requiréd.

3 Simulations

3.1 Results

Four simulations supporting the theoretical claims made for
the Cyclic MUSIC algorithms are presented. The array con-
sists of four isotropic sensors spaced uniformly on a circle
having diameter equal to half of the carrier wavelength. The
receiver has a complex bandwidth of 10.24 MHz. Signal pow-
ers are given in dB SWNR (signal to white noise ratio). Un-
less otherwise specified, the noise is additive white Gaussian
noise (AWGN) that is uncorrelated from sensor to sensor
(i-e., the noise covariance matrix is equal to the identity ma-
trix). Unless specified otherwise, each received signal has a
power level of 10 dB SWNR. In the simulations presented
here, the SOI is a 4 Mb/s BPSK signal transmitted with
Nyquist-shaped pulses using a 100% excess bandwidth. The
Cyclic MUSIC algorithms are simulated with « = 4 MHz and
7 = 0. The MUSIC algorithm is simulated using the iden-
tity as the assumed noise covariance matrix. Unless stated
otherwise, MUSIC uses exact a priori knowledge of the total
number of signals in the environment. The averaging time
is equal to 20 ps (roughly 800 bauds of the 4 Mb/s BPSK
signal).

In the first simulation, the signal selectivity and accuracy
of Cyclic MUSIC are tested. The BPSK SOI arrives from 60°,
and an FM interferer of comparable bandwidth arrives from



—15°. The resulting spatial spectra are shown in Figure 1.
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Figure 1: Spatial spectra for environment containing one SOI
and one interferer.

In the second simulation, the Cyclic MUSIC algorithms
accurately estimate a SOI DOA in the presence of an inter-
ferer arriving from nearly the same direction. The 4 Mb/s
BPSK SOI arrives from 60°, and 2 3 Mb/s 16-QAM interferer
with 100% excess bandwidth arrives from 63°. The resulting
spatial spectra are shown in Figure 2.
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Figure 2: Spatial spectra for environment containing one SOI
with 60° DOA and one interferer with 63° DOA.

In the third simulation, the independence of Cyclic MU-
SIC from the noise characteristics is demonstrated. The
BPSK SOI has -5 dB SWNR and arrives from 60°. AWGN
is present but is correlated from sensor to sensor such that
noises on neighboring elements have a correlation coefficient
of 0.5, and noises on diametrically opposite elements have a
correlation coeficient of 0.25, yielding an actual noise covari-
ance matrix given by

1 5 256 .5
S o1 5 .25

Ran = 25 5 1 5 |° Y
S 2 5 1

The resulting spatial spectra are shown in Figure 3.

In the fourth simulation, the performance of Cyclic MU-
SIC for an overloaded array is illustrated. A total of five sig-
nals impinge on the four-element array. Two 4 Mb/s BPSK
SOIs arrive from 60° and 150°, and three interferers consist-
ing of FM, TV, and pulsed radar signals arrive from 10°, 20°,
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and 70° respectively. MUSIC is simulated under the assump-
tion that three signals impinge on the array, since any greater
number would not leave it a noise subspace with which to
form its spatial spectrum. The resulting spatial spectra are
shown in Figure 4.
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Figure 3: Spatial spectra for environment containing one SOI
and correlated AWGN.
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Figure 4: Spatial spectra for environment containing two
SOIs and three interferers.

3.2 Discussion

The first simulation verifies both the accuracy and the signal-
selective nature of the Cyclic MUSIC algorithms. Both Cyclic
MUSIC and MUSIC estimate the DOA of the BPSK SOI
to within 0.2° of the true value of 60°. Due to its signal-
selectivity, Cyclic MUSIC ignores the interference, whereas
MUSIC also estimates the DOA of the interferer. The bump
in the phase-SCORE Cyclic MUSIC spectrum near the in-
terference DOA appears to be due to the pre-whitener acting
on the residual measured spectral correlation of the interferer;
after a sufficiently long averaging time the measured spectral
correlation would be zero, and the bump should disappear.
Clearly, no post-processing of the output of the Cyclic MU-
SIC algorithm is necessary to determine which peak is due
to the SOL.

The second simulation illustrates the increase in effective
resolution afforded by signal selectivity. MUSIC is unable
to resolve the two signals, which are only 3° apart. Despite
its a prior: knowledge that two signals impinge on the ar-
ray, MUSIC yields a peak in the spatial spectrum halfway
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between the two true DOAs. In contrast, the Cyclic MUSIC
algorithms isolate the signal with cycle frequency equal to
the value used in the simulation and estimate its DOA to
within 0.2° of the true DOA of 60° while ignoring the inter-
ference. Note that if the desired cycle frequency used by the
algorithm were changed to 3 MHz, then the Cyclic MUSIC
algorithms would estimate the DOA of the 3 Mb/s signal and
ignore the 4 Mb/s signal.

The third simulation demonstrates the independence of
Cyclic MUSIC from the noise statistics. The correlated noise
is not accounted for in MUSIC’s assumed noise covariance
matrix, causing total failure at this low SNR. In contrast,
since the noise is stationary and thus is not spectrally cor-
related at the o of interest, Cyclic MUSIC ignores it. Con-
sequently, both Cyclic MUSIC algorithms yield a DOA esti-
mate of the SOI within 1.0° of the true DOA of 60°.

The fourth simulation illustrates the performance of Cyclic
MUSIC for an overloaded array. With five signals imping-
ing on a four-element array MUSIC does surprisingly well,
yielding four DOA estimates, three of which are within 4° of
the true DOAs; however, one estimate differs from the true
value by 50°, and one signal’s DOA is not estimated at all.
These errors reduce the significance of the estimates that are
within 4°. Cyclic MUSIC performs very well here, estimat-
ing the two SOI DOAs to within 0.2° and 0.1° of the true
values of 60° and 150°, respectively. Phase-SCORE Cyclic
MUSIC performs almost as well, yielding errors of 1.5° and
1.0° and a spurious bump at 24°. This slightly degraded
performance appears to be due to the inability of the pre-
whitener to equalize the power of five signals using a four
element antenna array.

4 Conclusions

Two signal-selective direction estimation algorithms, referred
to as Cyclic MUSIC algorithms, that overcome many limita-
tions of existing techniques by using spectral correlation to
select the desired signals and ignore interference have been
presented. By estimating DOAs of only the desired signals,
the number and characteristics of the interference can be ar-
bitrary and unknown. Also, the signal selectivity enables
Cyclic MUSIC to estimate DOAs of the desired signals re-
gardless of how closely spaced they are to the interferers.
Furthermore, the noise can be arbitrary and unknown. The
price paid for the improved performance of Cyclic MUSIC is
the requirement of an averaging time for estimation of the
cyclic correlation matrix that exceeds that required for the
MUSIC algorithm.

The two algorithms, Cyclic MUSIC and a whitened ver-
sion of it based on the phase-SCORE algorithm, performed
comparably in the simulations. They consistently outper-
formed MUSIC in environments for which MUSIC’s a prior:
knowledge was inaccurate or where its fundamental operat-
ing assumptions were violated. Although the whitened Cyclic
MUSIC algorithm yielded slightly larger errors than the un-
whitened version, its inherent signal extraction ability could
outweigh this drawback in some applications.

The similarity of Cyclic MUSIC to MUSIC suggests that
spatial smoothing or vector-space MUSIC techniques can be
applied to Cyclic MUSIC, extending its applicability to in-
clude fully correlated signals of interest. Also, various maxi-
mum likelihood methods such as the Alternating Projections
algorithm [3] might be modified to benefit from the signal

selectivity of Cyclic MUSIC.

In addition to the fully-correlated sources problem, top-
ics for further investigation include using the inherent signal
extraction ability of the phase-SCORE Cyclic MUSIC algo-
rithm to improve performance, and detecting optimally the
number of desired signals by analyzing the cyclic autocorre-
lation matrix.
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