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Abstract

Results of analysis and computer simulations are
used to compare two methods of estimating the cyclic
polyspectrum. The computational requirements of the
two methods are determined and compared. A cycle
leakage phenomenon is explained and it is shown that,
for a given amount of data, only one of the two meth-
ods can be modified to reduce this leakage, but at the
cost of increased computations. Numerical ezamples
of measurements of fourth-order cyclic polyspectra are
provided to tllustrate the leakage problem.

1 Introduction

There has been a large effort in recent years to de-
velop the theory of higher-order statistics of station-
ary random processes and to apply it to certain signal
processing problems. There has also been a smaller,
but persistent, effort during the last twenty years to
develop and apply the theory of second-order cyclo-
stationary (CS) time-series. Elements of both theories
can be found in the study of the higher-order statis-
tics of CS signals, which shows potential for use in
signal detection and parameter estimation. To realize
this potential, however, the large computational cost of
estimating the parameters of the theory must be mini-
mized, and the statistical behavior of these estimators
must be understood.

In this paper, two methods of computing estimates
of the cyclic polyspectrum (CP) are evaluated and
compared in terms of accuracy and computational
cost. The CP is the generalization of the polyspec-
trum (1, 6] from stationary to CS signals, and is the
generalization of the cyclic spectrum [2] to higher or-
ders. The CP is the central frequency-domain pa-
rameter in the study of higher-order cyclostationarity
(HOCS), which is the study of higher-order temporal
and spectral moments and cumulants of CS signals
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[8, 10]. The CP can be estimated by using a time-
domain method, in which the nth-order cyclic tem-
poral cumulant is estimated, windowed, and Fourier
transformed, or by using a frequency-domain method,
in which the nth-order cyclic periodogram is multiplied
by a special masking function, and then convolved with
a multidimensional window function. The former can
be thought of as a generalization of the Blackman-
Tukey method of spectrum estimation to higher-orders,
whereas the latter can be thought of as a generalization
of the Wiener-Daniell method [2]. The generalization
of the Bartlett-Welch method of spectrum estimation
— time-averaging the nth-order cyclic periodogram —
is not considered because of limited space (see (7, §]).

The analysis framework used herein is the non-
stochastic time-average framework, which is explained
in detail in [2] and in relation to HOCS in (7, 8, 9]. This
framework obviates the concept of (cyclo)ergodicity,
and thereby avoids certain mathematical difficulties as-
sociated with the estimation of the CP ([8], Chapter
6).
The reader may wonder why the subject of HOCS is
of interest at all, much less the details of measuring its
parameters such as the CP. There are several reasons
for studying HOCS: (i) it is essential to understanding
the behavior of nonlinearly transformed communica-
tion signals which are CS [2], (ii) it can be used to
construct algorithms for signal detection, time-delay
estimation, modulation recognition [8, 9], and system
identification [3, 5] and, (iif) it can be useful in ana-
lytical performance evaluations of estimators that op-
erate on CS signals. HOCS is being studied by the
authors within the nonstochastic time-average frame-
work, as well as by Giannakis and his group, who use
the stochastic process framework.

It is shown that each of the two methods for CP
estimation has advantages over the other that depend
on the extent of the domain over which the parameter
estimate is needed. However, the frequency-domain
method can have a serious leakage problem that can-
not be fixed, whereas the time-domain method can be
modified to substantially reduce leakage at the cost



of increased computation. Also, in the case of mea-
suring the CP over a large portion of its domain, the
frequency-domain method is much more computation-
ally costly than the time-domain method.

The parameters of HOCS are defined in Section
2. Estimators of the CP, their approximate compu-
tational costs, and the leakage problem are discussed
in Section 3. In Section 4 numerical examples are pro-
vided to illustrate the properties of the estimators, and
a discussion of the relative merits of the estimators for
various situations is contained in Section 5.

2 Higher-Order Cyclostationarity

Let z(t) denote a time-series defined for all ¢ such
that the parameters in this section exist!. The nth-
order lag product is defined by
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and its Fourier coeflicient is called the cyclic temporal
moment function (CTMF),
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because it is also the Fourier coefficient of the temporal
moment function defined by
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where the sum is over all cycle frequencies a for which
the CTMF is not identically zero, and (-) denotes the
multiple-sine-wave (polyperiodic) component extrac-
tion operation, which can be interpreted as a temporal
expectation operation [2, 4]. The cyclic temporal cum-
ulant function (CTCF),
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is the Fourier coeflicient of the temporal cumulant
function

Cet,T)n =
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where P is the set of distinct partitions {{;}%_;} of
the index set {1,2,---,n}, k(p) £ (-1)P"Y(p — 1)},

!For example, analog amplitude modulated or digital phase-
shift-keyed signals [8].
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T,; is the vector of lags with indices in the partition-
element set vj, and |v;| is the number of elements in v;
(6, 8]. The CTCF can therefore be expressed in terms
of lower-order CTMF's:
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where 1 £ [1---1] and @ = [a; -+~ @p). The reduced-
dimension (RD) CTCF C2(u), is simply the CTCF
with ; = u; fori=1,2,---,n—-1and 7, = 0.

In the frequency domain, nth-order moments and
cumulants are defined in terms of n narrowband time-
series with center frequencies f; --- fa] = f:
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The spectral moment is defined by
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and the spectral cumulant is given by the usual com-
bination of lower-order moments (cf. (5)):
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The spectral moment and cumulant can be represented
in the following ways:
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where the weighting functions in the spectral cumulant
are the cyclic polyspectra given by
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3 Cyclic Polyspectrum Estimators

For a given segment of z(v) with length T and center
t, the estimator for the CTMF is given by

/Hz(v+‘r e 2"V dy, (16)

where t; =t — T/2 — min{7;}, ty = t + T/2 - max{r;},
and t, > ¢, If t, < t; the estimate is defined to be
zero. The estimator for the CTCF is given by the
combination of | wer-order CTMF estimates
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as in (6). The CTMF estimator (16) converges point-
wise in ¢t to the CTMF (2) and, therefore, the CTCF
estimator (17) converges pointwise to the CTCF (4)
(7, 8].

As explained in (7, 8], the CP can be estimated by
Fourier transforming a windowed estimate of the RD-

CTCF:
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where rect(:) is a rectangle that is centered at the ori-
gin with unity height and width.

The CP can also be estimated by first constructing
the nth-order cyclic periodogram

I2.(tf)n 2 =Xr(t,8 —11f") H Xr(t £5),

j=1

T
masking it by a special function Zg(f'), and then con-
volving with a multidimensional smoothing window:

PP (t, f")ar = WE(£) ® [I2,(t, ) Zs(5)], (19)

where Z#(f') is zero for all augmented frequency vec-

tors
(fiee fac1 (B—115")

that lie on a (-submanifold. The vector [g;--- g,]
lies on a [-submanifold if there is at least one par-
tition {v;}%_, in P with p > 1 such that each sum
ag = Zkeu gk is a |vj|th-order cycle frequency of z(t).
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These [-submanifolds must be avoided in the convo-
lution because the smoothed nth-order cyclic period-
ogram converges to the function S?(f'),, which can
contain multiple impulsive factors for values of f’ that
lie on B-submanifolds, but which, for all other f’, is
equal to the nonimpulsive function P2(f'),. These im-
pulses are avoided in the method (18) because the addi-
tive sine-wave components in the u variables of the RD-
CTMF estimate R?_(t,u), are removed in forming the
RD-CTCEF estimate C' r(t, u)n, and it is these additive
sine waves that give rise to the (smoothed) spectral
lines in the transform I2_(t, f')n of RZ_(t,u)n.
Submanifolds

The definition of the B-submanifolds can be under-
stood by reexpressing the RD-CTMF in terms of the
RD-CTCF and lower-order CTMFs,
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where it is assumed that the partition elements are
ordered such that v, always contains 7, (= 0) in (20),
and where

/ RS (T

is used to transform each of the CTMFs in the products
in the sum over P in (20), except for the one with
reduced dimension, for which (15) is used.

It is clear that S?(f'), equals P2(f'), only if the
transform of the sum over P is zero, which will happen
if one or more of the impulse functions in (21) is zero.
The B-submanifolds are simply the f’ vectors for which
there is at least one partition for which there is at
least one a such that the argument of each associated
impulse function is zero, in which case that impulse
is nonzero. It is important to note that the function
SB(f')n is not impulsive at a value of f' that lies on
a (-submanifold unless all the lower-order coefficients
Sz7(£,,)1v;) of the impulses are nonzero.

Thus, by using (19), the CP is estimated without ac-
tually estimating a cumulant, but instead by avoiding

e~ F'T 47 = 52(£)ab(2'f - @)



the parts of the spectral moment estimate that corre-
spond to the products of lower-order spectral moment
estimates that are subtracted in (21).

Leakage From Submanifolds

A leakage effect exists in the method (19) that is due to
the smearing of the impulses from the S-submanifolds
to neighboring regions off the 3-submanifolds. To see
this, the temporal mean of (19) is computed. From (8],

I2.(t, f")n = F*HRE (t, u)a),
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Using this result, it is easy to show that the temporal
mean of (19) is given by the convolution

War(£) ® [(S2(fNa @ V(F) Za(£)] ,

where V(f') is the n-1 dimensional Fourier transform
of v(u). The effect of the convolution with V(f') is to
smear the impulses in $2(f'),,, thus producing spectral
leakage into nearby regions, which is not removed by
the masking function Zg(f').

The method (18) also exhibits leakage when the
CTMFs (2) are computed using an FFT algorithm,
and the cycle frequencies are not “on bin center.” This
leakage can be substantially reduced by computing
each CTMF by evaluating the FST (the Fourier series
transform, which is like the DFT, but is a function of
a continuous frequency variable), but this will increase
the computational cost of the method, as noted in the
next section.

Computational Costs

The computational requirements of of the CP estima-
tors (18) and (19) are derived in (8] and presented here.
The operations count for (18) is derived by assuming
that an FFT algorithm is used to compute the trans-
forms in (18) and (2), and the count for (19) is de-
rived by assuming that the FFT is used to compute
the transforms (7).

To compute the CP for all values of the dis-
crete normalized-frequency vector f' on the hyper-

cube [—0.5,0.5]" "1, the estimator (18) requires approx-
imately

(Ne/Ng)" " Hn =1+ (nAn/2 + 1)N log N+ (22)
(Ne/Np)" "' log(Ny/Np)™ ! + (No/Np)™
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operations, and the estimator (19) requires approxi-
mately

[(n=1)+ N1+ nAn/Q] NP4 Nolog Ny (23)

operations, where A, denotes the total number of a
such that at1 = B. For both methods, T = N,T,. For
the method (18), the width of the tapering window in
samples is Ny /Ny, which yields a spectral resolution of
Af = N¢/(NiT,), and for the method (19), T = NT,,
and the width of the spectral smoothing window in
samples is Ny, which yields a spectral resolution of
Af = Ny [(NT,).

The computational cost of the frequency-domain es-
timator (19) is reduced if only a portion of the CP is
needed. For example, if a single frequency in the vector
f' is held constant, the computations (23) are reduced
by a factor of approximately N;. The cost (22) can
also be reduced in this case by computing the FST in-
stead of using a multidimensional FFT to transform
the RD-CTCF estimate, but the size of this reduction
depends on N;.

Both methods become costlier as the frequency reso-
lution is increased, but at different rates. For example,
Figure 1 shows the logarithm of the ratio of the cost
(23) to the cost (22) for n = 4, N, = 1024, A, = 0,6,
and various Ny. Figure 2 shows the same quantity for
the case of Ny = 64, n = 4, A, = 0,6, and various N;.
Observe that the method (19) is always more costly
than the method (18).

4 Numerical Examples

In this section the errors in several fourth-order CP
measurements of the type (19) are displayed graphi-
cally for the purpose of illustrating the leakage phe-
nomenon discussed in Section 3.

The signal of interest is a binary pulse-amplitude-
modulated signal with symbol-interval length Tp = 7
(T, = 1 here), rectangular pulses rect(t/To), and inde-
pendent identically distributed symbols. It is shown in
(8] that the nth-order CTCF for this signal exists and
is well-behaved, and has cycle frequencies equal to all
harmonics of the symbol rate k/Ty, but for the pur-
poses of the simulations, only the second-order cycle
frequencies for |k| < 3 were used to compute the lower-
order CTMFs and to find the S-submanifolds because
the higher harmonics produce relatively weak cyclic
features and can, therefore, be neglected. This signal
has no cycle frequencies for n odd.

A 1024-point segment of the signal was simulated
and the fourth-order CP for # = 0 and 8 = 1/Tp
were computed using the frequency-smoothing (FS)



method (19), (18) with FFTs, and (18) using the FST
for estimating the lower-order CTMFs (16). For the
time-domain methods, the RD-CTCF was estimated
on the cubic grid of integers u = [u; u; u3] € [-8, 1"
and then transformed. In the F'S method, the spectral
smoothing window width was set equal to 64 samples.
Thus, each method uses approximately the same N,
and N; parameters, and can therefore be compared
fairly.

Because computing the entire CP using (19) is pro-
hibitively costly, only two “slices” of the CP were es-
timated. The slices correspond to f’ = (f1 f2 0] and
F'=1h £ 1/T5). The same slices were extracted from
the time-domain CP estimates as well, yielding four
sets with three slices each. The ideal CP was com-
puted by evaluating the formula given in (8], and then
the error in the magnitude of each slice was computed
by subtracting measured from ideal. The total error in
each slice is determined by averaging the absolute er-
ror over all points in the slice, and is shown in Table 1
for the four sets of slices. The table indicates that the
time-domain method that uses the FST can outper-
form the FS method by almost an order of magnitude.
The peak error for each slice is shown in Table 2. Each
of the peak errors is at or adjacent to the origin.

f3 g=0 B=1/T,
FFT | FST [ FS | FFT [ FST [ FS
0 1.5 1.1 | 4.6 3.0 0.8 | 5.1
1/To 0.7 0.2 | 1.5 81 0.3 |20

Table 1: Averaged absolute errors of the CP estimates.

f3 B=0 B=1/Ty
FFT | FST [ FS | FFT | FST [ FS
0 101 101 | 363 42 7.5 | 122
I/To 5.9 2.6 38 16 4.2 72

Table 2: Peak absolute errors of the CP estimates.

The submanifolds and estimate-error slices for the
FS method for # = 0 are shown in Figures 3 and 4, and
for § = 1/Ty in Figures 5 and 6. (The submanifolds are
depicted in these figures by solid lines.) The strongest
leakage occurs around submanifolds that correspond
to strong second-order features, that is, to submani-
folds with relatively large 52 (f:,j )2 values. It can be
seen from these graphs that the errors are concentrated
around the submanifold lines corresponding to a; =0
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and a; = 1/Ty, especially around the intersection of
submanifold lines at the origin.

5 Discussion

Although the FS method (19) of estimating the
CP has serious drawbacks relative to the time-domain
method (18), there are some situations in which it
could be useful. For example, if it is desired to com-
pute a low-dimensional slice of the CP that is not near
submanifolds with a small spectral resolution width,
the FS method can require fewer computations.

If the signal of interest has no lower-order CS, then
the number of submanifold points is greatly reduced
relative to the example in this paper, and therefore
the computations involved in determining the subman-
ifolds can be greatly reduced (cf. Figures 1 and 2).
However, if there are CS signals with unknown cycle
frequencies corrupting the signal of interest, then there
will be other sets of submanifolds that will not only in-
crease the amount of leakage, but will give rise to very
large estimates at the submanifold points, which are
unknown a priori. This same problem occurs if the
signal of interest is modeled as stationary, but is actu-
ally CS. This can be the case, for example, if a phase-
randomizing variable is introduced into a stochastic
model of the signal in order to render it stationary
over the ensemble, because each sample path will still
be CS. If the conventional polyspectrum is estimated
from a sample path of such a noncycloergodic process,
the estimator will produce very large results on the
submanifolds, and leakage will be severe.

The time-domain method (18) also suffers when CS
signals with unknown parameters corrupt the signal
of interest. To circumvent this problem, an algorithm
initially developed to perform signal detection in com-
pletely unknown environments can be used to estimate
all cycle frequencies associated with the data for all or-
ders n less than some integer N. The estimated cycle
frequencies can then be used in the estimation proce-
dure to produce correct CP estimates (9]

6 Conclusions

Difficulties arising from measuring the cyclic poly-
spectrum using a frequency-smoothed higher-order cy-
clic periodogram are delineated and illustrated. The
first is a large computational cost, and the second is
an incurable leakage problem. These two difficulties
render the method less attractive than the alterna-
tive method of Fourier transforming the tapered cyclic
cumulant estimate. The leakage problem is less severe
when the signal has no lower-order cyclostationarity,



but is still present for cycle frequency equal to zero,
that is, it is present in the conventional polyspectrum
for stationary signals. Also, the computational cost
of the frequency-smoothing method is relatively high
even in the absence of lower-order cyclostationarity.
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