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ABSTRACT

Analog and digital carrier modulated signals, such as AM,
digital QAM, PSK, and FSK, exhibit correlation among spectral
components separated by multiples of the keying rate and
separated by the doubled carrier frequency plus multiples of the
keying rate. This spectral redundancy can be exploited to
facilitate rejection of cochannel interference, while maintaining
minimal signal distortion. It also can be exploited to miti gate the
effects of frequency-selective fading with minimal noise
amplification. The spectral redundancy is exploited by filtering
and adding frequency-shifted versions of the corrupted data.
This paper presents the results of a study to evaluate the
performance capabilities of optimum and adaptive frequency-
shift filters for severely corrupted carrier-modulated signals
including AM, BPSK, and QPSK.

I. INTRODUCTION

Modulated signals encountered in most communication and
telemetry systems are appropriately modeled as cyclostationary
random signals, and as such are inherently spectrally redundant.
That is, spectral components in some bands are hi ghly correlated
with those in other bands. This spectral redundancy can be
exploited by employing frequency-shifting operations, as well as
the usual frequency-weighting and phase-shifting operations
performed by conventional filters, to obtain substantial
reductions in interference with minimal signal distortion. It can
be shown theoretically that pairs of some signals, such as AM,
ASK, PSK, and digital QAM can in many cases be perfectly
separated from each other in spite of severe spectral overlap
(exceeding 50%). The theory of spectral correlation and
optimum frequency-shift filtering is presented in [1] and [2], and
it is explained in [2] how some receiving systems currently in
use in digital communication systems, namely the matched-filter/
periodic-sampler/sampled-data-filter and the fractionally-spaced
equalizer, inherently exploit spectral redundancy, although this
is often not recognized.

In this paper, we present the results of a study to evaluate
the performance capabilities of optimum and adaptive frequency-
shift filters for digital communication. In Section II, the design
equation and performance formula for optimum frequency-shift
filtering are briefly reviewed. Then in Section III, the results of
numerically solving the design equation and substituting the
solution into the performance formula to numerically evaluate the
minimum-mean-squared-error performance for separation of
cochannel BPSK, QPSK, and AM signals are presented. The
results cover a wide variety of operating conditions including
small and large excess bandwidths of the BPSK and QPSK
signals and interferences, equal and unequal carrier frequencies
and baud rates of the signals and interferences, differing
amounts of spectral overlap (ranging from 50 percent to 100
percent) between the signals and the interferences, and various
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numbers of frequency shifts used in the receiving filter. These
results demonstrate the ability of frequency-shift filtering to
obtain excellent performance from an othérwise inoperative
system.

In Section IV, two specific scenarios of cochannel
interference, namely strong independent partial-band interference
and self-interference from multipath propagation resulting in a
deep partial-band fade, are considered. The mean-squared-
errors and bit-error rates after convergence of LMS-adaptive
frequency-shift filters of various lengths, which are implemented
as fractionally-spaced equalizers, and LMS-adaptive baud-
spaced equalizers are presented. These results demonstrate that
the frequency-shift filter can obtain substantial improvements in
performance relative to the baud-spaced equalizer which cannot
exploit spectral redundancy.

II. OPTIMUM FRESH FILTERING

It is well known that optimum filters for stationary signals
are time-invariant. Similarly, optimum filters for signals that
exhibit cyclostationarity with a single period (or multiple
incommensurate periods) are singly (multiply) periodically time-
variant [1] - [4]. A multiply-periodic time-variant (MPTV) linear
filter, with input-output relation

oo

y® = [ h(t, wx(u)du , (1)

—oo

has impulse-response function h(t,u) that can be expanded in a
Fourier series

h(t,u) = Y hy(t-u) exp(i2rnu)
n
)

hn(‘t) = <(h(t+1,t) exp(-i2mnt) > ,

where <-> denotes average over all t, and where the sum ranges
over all integer multiples of each fundamental frequency 1/T
corresponding to each period T. Substituting (2) into (1) yields
the general input-output relation for MPTV linear filters:

oo

y®) = ¥ | hy(t-u) [x(u) exp(i2mmu)] du .
N —oo

2hy08x,(1) (32)
n

]



where ® denotes convolution and Xq(t) 4 x(t) exp(i2nnt) is a
frequency-shifted version of x(t). Considering for the moment
finite-energy signals, which are Fourier transformable, we can
equate the Fourier transforms of both sides of (3a) to obtain

Y(f) = Y Hy(f) X(E-m) . (3b)
n

Thus, the input is subjected to a number of frequency-shifting
(by amount m) operations, each followed by a linear time-
invariant filtering operation (with impulse-response function
hn(-) and transfer function Hy(-)), and the results are added
together. Consequently, filtering is equivalent to the
FREquency-SHift (FRESH) filtering discussed in Section 1.
From this, we see that the periodic time variations in an optimum
filter for a signal that exhibits cyclostationarity provide the
means (viz., frequency shifting) by which the spectral
redundancy of such signals can be exploited.

It is well known that linear time-invariant filtering of a real
signal is equivalent to linear time-invariant filtering of its analytic
signal which in turn is equivalent to linear time-invariant filtering
of its complex envelope. But, this is not true for time-variant
filtering. In general, linear time-variant filtering of a real signal
is equivalent to distinct linear time-variant filtering of each of the
complex envelope (or analytic signal) and its complex conjugate.
Consequently, if complex signals are to be used, then the
problems of optimum and adaptive time-variant (MPTV) filtering
must be approached as bivariate filtering problems, where a
signal and its conjugate are jointly filtered to produce another
signal (and its conjugate) [5]. This is referred to as linear-

conjugate-linear (LCL) filtering [6], [7].
The general form for the LCL-MPTV filtering of a

complex signal x(t) to produce an estimate d(t) of some desired
signal d(t) is then (cf. (3a))

M N
d() = Y a,(H®x, (1) + zbn(t)®x:Bn(t), @)
n=1

m=]

where (-)* denotes complex conjugation, and where M and N
can be infinite. The filter is completely specified by the numbers
M and N, the values {a,,} and {B,) of the periodicity

frequencies (or frequency-shift parameters), and the impulse-
response functions {a, ()} and {b,(t)}, or their Fourier

transforms—the transfer functions—{Am(f)} and {B_()}.

For specified M, N, {oy}, and (B}, the optimum LCL-
MPTV filtering problem is equivalent to the multivariate
(dimension = M + N) Wiener filtering problem [1].

Using the vector concatenations,

B() = [2,(1), ., ay®, bj®), .., by

*

(1) [xg ®, o, Xgy, (O xiBI(t), . X-BN(t)]”

I

where [-]” denotes matrix transposition, (4) can be reexpressed
as d(t) = h'(t) ® z(t), and the vector of transfer functions
that minimizes the time-averaged squared error between
d(t) and d(t) is given by the solution to the N + M
simultaneous linear equations

S, O HE = S,.() )
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where S_(f) and S, (f) are the auto- and cross-spectral

Rt -/ . dz ; . h
density matrices obtained by Fourier transforming the
correlations

R, (@& z(t+1/2) z'(t-1/2) )

R, (D & d(t+1/2) 2 (t-1/2) ) ,

where () denotes matrix transposition and conjugation.
Substituting the definition of z(t) in terms of x(t) into (5) yields
the equivalent optimum LCL-MPTV filtering equations:

M
> S (f St 2*““) An(f)
m=1

N *
ﬂn_(" B +ak
(- s n
n=1
= s"‘k( _“_kJ ,
dx 2
M
> s o (f— Om By B“J Am()
m=1 ™ 2
N
+ ZSEk-Bn(_ f+ Bn +Bk) Bn(f)
n=1 2

= gB [ Bx
o (r-),
which are fully specified in terms of the spectral correlation
density functions for x(t) and d(t), which are defined by

k=12..,M, (62

k=12,..,N, (6b)

sgy(f)é Jim TEXp( f+a/2) Ypt, £ -0 /2> ()

oo

= |RE (1) exp(-i2nfr)de @)
where
1 t+T/2
X (t, V) 4 T j x(u)exp(-i2mvu)du , ©)
t-T/2
and

R (T) & < x(t+7T/2) y*(t-1/2) exp(—i2mat) > ~(10)

The spectrum of the error e(t) A a(t)—d(t) whose mean
squared value is minimized by the multivariate Wiener filter is

[1]
Se(f) = Sq(f)-SL,(OHI) ,

which can be expressed more explicitly as

*

.. a
S.(F) = S,(f)- Zdem[f— 7’“) A ()

m=]

N *
_ ZSBn‘( - _le] B (). 1

n=1 dx



The problem of selecting the best finite sets of frequency-
shift parameters {c,} and {B,} is an important one in practice,
as illustrated in Section III, but is not easy to characterize
mathematically.

It follows from the derivation of the optimum FRESH
filtering equations (6), in terms of multivariate Wiener filtering,
that adaptive implementations of FRESH filters can easily be
obtained from conventional multivariate adaptive filters. Thus, a
basic adaptively adjustable structure is simply a parallel bank of
N + M frequency-shifting product-modulators each followed by
an FIR filter, the outputs of which are summed. The N + M
FIR filters can be jointly adapted using standard algorithms such
as the LMS, as demonstrated in Section V.

III. OPTIMUM PERFORMANCE FOR
SEPARATION OF COCHANNEL
AM, BPSK, AND QPSK

In this section, we present the results of numerically
solving the design equation (6) and using the solution to
numerically evaluate the performance formula for the MSE
which is given by the integral of (11). We consider sums of two
or three real AM signals, or two complex BPSK signals, or two
complex QPSK signals, in additive white Gaussian noise. We
consider one of the two or three spectrally overlapping signals to
be the signal of interest (SOI), and we consider the remaining
one or two signals to be signals not of interest (SNOI). All
signals for each scenario considered have the same power
spectral density, which is either triangle-shaped (for AM and
BPSK/QPSK with 300% excess bandwidth), or raised-cosine-
shaped (for BPSK/QPSK with 25% and 100% excess

bandwidth)®, the same excess bandwidth (EBW) of either 25
percent, 100 percent, or 300 percent, and the same SNR of 20
dB. However, the absolute bandwidths, as determined by the
baud rates, are the same in some cases and different in others.
The same is true of the carrier frequencies.

In Figures 1 — 3, we show the minimum Mean-Squared-
Error (MSE) in dB versus the number of frequency shifts used
in the complex LCL FRESH filter for the case of one SOI and
one SNOI, both of which are either complex BPSK or complex
QPSK. The values of the frequency-shifts used are specified in
Table I for Figure 1, Table II for Figure 2, and Table III for
Figure 3. In these tables, the frequency shift having value 0
corresponds to the linear time-invariant (LTI) path for QPSK
and it corresponds to both the LTI and LCLTI paths for BPSK.
Similarly, for BPSK, each frequency-shift value listed is used in
both the conjugate and nonconjugate paths. There are no
conjugate paths for QPSK. Thus, in terms of the number-of-
shifts parameter N in Figures 1 — 3, the number of actual filter
paths for QPSK is N+1, but for BPSK it is 2(N+1) for all N >
1, and it is N+1 for N < 1. However, since both the phases and
frequencies of the carriers are equal in Figure 3, the conjugate
path is of no use for BPSK. The order of frequency shifts has
been chosen to maximize the rate of decrease of MSE with an
increase in N. The carrier frequency and baud rate of the SOI
are f, = 0and f; = 1/(1+e), where e = 1/4, 1, 3 for excess
bandwidths of 25%, 100%, and 300%, respectively. The two-
sided bandwidth of the SOI is unity. In cases where the carrier

frequency or baud rate of the SNOI are different from those of
the SOI, their values are fo = 0.2257 and f, = 0.753/(1+e),

For BPSK and QPSK, these shapes are the squared
magnitudes of the pulse transforms (keying-envelope
transforms) since the digital data sequence is white. These
particular shapes result in zero intersymbol interference at the
output of a matched filter.
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respectively, where 0.753 is the two-sided bandwidth of the
SNOL

The best performance is attainable when the two carrier
frequencies are different regardless of whether the baud rates are
the same or different. The performance for these two cases is
shown in Figures 1 and 2 where it can be seen that very little
improvement relative to the LTI filter is available for QPSK with
25% EBW (since there is no spectral redundancy associated with
the carriers and little associated with the baud rates because of
the low EBW), but substantial improvement (14 dB — 16 dB) is
available for QPSK with 100% EBW. For BPSK with 25%
EBW, about 17 dB — 18 dB improvement is available, and this
increases to about 20 dB for 100% EBW, and about 22 dB -- 23
dB for 300% EBW. Since the SNR is 20 dB, this reveals that
the SNOI is essentially eliminated for all EBWs for BPSK, but
only for EBW > 100% for QPSK.

The performance is not quite as good when the two carrier
frequencies are the same unless the EBW exceeds 100%, but
substantial improvement relative to the LTI filter is still attainable
for EBWs on the order of 100%. The performance for this case
is shown in Figure 3, where it can be seen that there is little
improvement relative to the LTI filter for either BPSK or QPSK
when the EBW is low (25%). But, when the EBW is increased
to 100%, an improvement of 6 dB — 7 dB is available, and this
increases to 16 dB — 19 dB for EBW = 300%, in which case the
SNOI is very nearly eliminated.

In Figure 4, we show the minimum MSE versus the
number of frequency shifts used in a real FRESH filter for one
real AM SNOI and three cases of one or two real AM SNOIs.
For cases 1 and 2, the first SNOI spectrally overlaps the real AM
SOI and the second SNOI overlaps the first SNOI, but not the
SOI. The amount of overlap of the SOI and first SNOI is 77
percent and the overlap of the first and second SNOIs is 16
percent for case 1. For case 2, the SOI and first SNOI overlap
20 percent and the first and second SNOIs overlap 65 percent.
For case 3, there is only one SNOI and it overlaps the SOI by 77
percent. The bandwidths of all three AM signals are unity, the
carrier frequency of the SOI is f; = 0.75, and the carrier
frequencies of the SNOI are denoted by f, and f;. The particular

values of frequency shifts used in Figure 4 are shown in Table
IvV.

As can be seen from Figure 4, excellent performance is
attainable when there is only one SNOI, which overlaps the SOI
by 77 percent. In this case (case 3) the SNOI is very nearly
eliminated with the use of only 3 frequency shifts (o = 0 and o
+2f;). However, when two SNOI are present, about 9
frequency shifts are needed to approach the best attainable
performances, but the SNOI is essentially eliminated in case 2,
whereas it is not suppressed nearly as well for case 1, although
the improvement relative to the LTI filter is still 13 dB in case 1.
The reason for this is that although the two SNOI in case 1
substantially overlap each other in the frequency domain, the one
that overlaps the SOI overlaps it only 20 percent, whereas in
case 1 the overlap of the two SNOI is minimal, but the one that
overlaps the SOI overlaps it 77 percent. Similar results have
been obtained for complex LCL FRESH filtering of complex
AM signals. Specifically, with f; =0, f, = 0.5, f; = 0.75, and
unity bandwidths (i.e., 50% overlap between first SNOI and
SOI, and 75% overlap between the two SNOI), frequency shifts
of 0, £2f, in both linear and conjugate linear filters yields MSE
=-21.5 dB. But, with f, = 0.2257 and f; = 1.0 (i.e., 77%
overlap between first SNOI and SOI, and 23% overlap between
the two SNOI), it takes nine frequency shifts (including
combinations of both f, and f3) in both linear and conjugate
linear filters to obtain MSE = —18.8 dB.



IV. ADAPTIVE FILTERING PERFORMANCE FOR
COCHANNEL INTERFERENCE AND FADING

In this section, we consider a BPSK SOI with a carrier
offset frequency of zero and a raised-cosine-shaped pulse
transform with 100% EBW in additive complex Gaussian noise
and partial-band interference, or fading, and a complex FRESH
filter that exploits the spectral correlation among only those
spectral components that are separated by integer multiples of the
baud rate of the SOI. Since this corresponds to all the
exploitable spectral correlation in QPSK and other digital QAM
signals, and since the spectral correlation characteristics of all
these signals are identical when their pulse shapes (keying
envelopes) are identical, then the results reported here for BPSK
can be qualitatively extrapolated to these other signals.

Since the ultimate goal in combatting cochannel
interference and fading for digital data signals is to reliably
extract the digital data sequence, only this sequence rather than
the entire waveform needs to be estimated. This means that the
FRESH filter will be followed by a baud-rate sampler. This fact
coupled with the preceding decision to use only frequency shifts
that are harmonics of the baud rate results in a simplification of
the FRESH filter, as explained next.

Because no spectral correlation associated with the carrier
is to be exploited, linear filtering rather than LCL filtering is
adequate. Furthermore, since the absolute bandwidth of the
BPSK signal is finite, both the bandwidth and number of
frequency shifts in the linear FRESH filter are finite. In this
case, it is shown in [2] that the FRESH filter followed by a
baud-rate sampler is exactly equivalent to what is called a
Fractionally-Spaced Equalizer (FSE), cf. [8]. Since the EBW of
the BPSK signal is 100 percent, the sampling rate at the input to
the FSE is twice that at the output, and the output rate equals the
baud rate f,. This is equivalent to a FRESH filter with
frequency shifts of 0, +f}, followed by a baud-rate sampler.

Because of this equivalence, the FSE structure was used
for simulating the adaptive FRESH filter in this study. In order
to illustrate the degree of improvement in performance obtainable
by exploiting spectral correlation, a conventional adaptive baud-
spaced equalizer (BSE) was also simulated in this study. The
BSE is preceded by an antialiasing filter and a baud-rate
sampler.

The filter memory length in units of baud intervals is
denoted by N. This means that the FSE has 2N adaptive
weights, whereas the BSE has N adaptive weights. The LMS
algorithm for adaptation of these weights was used. An ideal
replica of the digital data sequence was used as the training data
in order to remove the effects of imperfect training data on the
performance.

The LMS algorithm was iterated for 2,048 bauds and the
MSE (between the symbol sequence and the baud-rate samples)
and bit-error-rate (BER) were computed over the subsequent
6,144 bauds.

In the first case considered, the partial-band interference is
an AM signal with center frequency fo = 0.1247f; and
bandwidths A = f,/4 and f,/8, where f| is the baud rate of the
BPSK SOI. The SNR is 20 dB and the Signal-to-Interference
Ratio (SIR) is 0 dB. The results obtained are shown in Table v,
where it can be seen that the FSE outperforms the BSE by a
substantial margin.

In the second case considered, we have self interference
caused from multipath propagation and resulting in an infinitely
deep fade throughout the same band where the AM interference
was present in the first case. The SNR is again 20 dB.
Essentially, the same performance as in the first case was
obtained.
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V. CONCLUSIONS

It has been shown by both thorough numerical
performance evaluation of optimized frequency-shift filters and
by limited simulations of adaptive frequency-shift filters that
severe cochannel interference can be removed from a signal
without introducing substantial distortion, and that severe
frequency-selective fading can be mitigated without substantial
noise amplification. The signal corruption that is so effectively
removed by frequency-shift filters, which exploit spectral
redundancy, can render inoperable systems that use only
conventional filters, which cannot exploit spectral redundancy.

More specifically, it has been shown that effective
separation of two BPSK or QPSK signals is possible regardless
of the relationships between their carrier frequencies and baud
rates provided that for QPSK the excess bandwidths are at least
100% [although if both their carrier frequencies and baud rates
are identical—a case not considered in this paper—and their
pulse shapes or keying envelopes are also identical, then either
their carrier phases (for BPSK) or their keying phases must be
distinct]. It is also easily proved that L individual PSK or digital
QAM signals with equal baud rates, but arbitrary carrier
frequencies, can be separated if their excess bandwidth is at least
(L-1)100%. The proof follows immediately from the fact that
by considering infinitesimal bands separated by integer multiples
of the baud rate, we can obtain L linear equations in L
unknowns, since the infinitesimally narrowband components
from each signal in the L infinitesimal bands are perfectly
correlated (cf. [1]) and are, therefore, just scaled versions of
each other. (If the carrier frequencies are equal, then it is
required that the L signal pulses be distinct; e.g., they could
have distinct timing offsets.)
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Figure 1: Minimum MSEs for complex BPSK and QPSK
signals with EBWs of 25%, 100%, and 300%, versus the
number of frequency shifts used. The SOI and SNOI have
different baud rates and different carrier frequencies. SNOI
overlaps the SOI 60%

0 T T T T T T
BPSK 100% <—
-5 QPSK 100% =— -
M BPSK 300% &—
I 10 QPSK 300% >
N BPSK 25% “—
M 15 L QPSK 25% —— _|
S l
E T
220 N
dB AR
-25 - 1]
_30 1 I 1 1 I 1
0 2 4 6 8 10 12 14

Number of frequency shifts, N

Figure 2: Same as Figure 1 except the baud rates are equal.
SNOI overlaps the SOI 87%
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Figure 3: Same as Figure 1 except the carrier frequencies
are equal. SNOI overlaps the SOI 75%
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Figure 4: Minimum MSE for real AM SOI and AM SNOIs
versus the number of frequency shifts used. Case 1: f2=
0.975,f3 = 1.81. Case 2: f, = 1.55,f; = 1.9. Case 3:
f2 =0.975.

Table I: Frequency-shift values in the order they appear in
Figure 1. Frequencies f; and f, are the baud rates and 0 and fo
are the carrier frequencies of the SOI and SNOI, respectively.

OPSK 25%: 0, #fy, #fy, +(f,~f,), 2(f, +f,), £(2f,-1,),

+(f,-2f,), £(2f,-2f,)

BPSK 25%: 0, #f;, +f,, $2fy, H(26y+f,), +(26,y-£,),

+H2eg+f,), $(2fg—1,), HE-f,)

OPSK 100%: 0, ), +f,, +(f;—f,), H(f; +£,), +(2f,~f,),
H(f;-26)), 22(f,-£,), 22(f,+£,)

BPSK 100%: 0, #f), +f,, +(f,~f,), $2fy, +(2f,f,),
+(2fg+£)), 2(2fg—£,), H(26y+£,)

QPSK 300%: 0, #f;, #f,, £2fy, 2(f,~f,), +(£,+1,),
£(26)—f,), H(-2f,), 22(f-f,), £2(F+£,),
+(3f,-2f,), +(2f,-3,), £3f,

BPSK 300%: 0, £f), f,, $2fy, +(2fy+f,), +(26,-f,),
+(2f,-£,), $2f}, $2f,, 13f,, 3,




Table II: Frequency-shift values in the order they appear in
Figure 2. Frequency f; is the baud rate for both SOI and SNOJ,

and 0 and f, are the carrier frequencies of the SOI and SNOI,
respectively.

QPSK 25%:

, £fy, £2f), £3f,, +4f,

BPSK 25%: 0, +f;, +2fo, +(2fy—f,), (2f,+1,), £2f,, +3f,

Table V: MSE and BER after convergence of LMS algorithm
for BPSK signal plus AM interference (SIR = 0 dB) and noise
(SNR =20 dB). A = AM bandwidth, f; = BPSK baud rate,
N = filter length in bauds. * indicates no bit error in 6,144 bits
(BER < 1.6 x 10‘4). The value in parenthesis is the minimum
attainable MSE (for N = o),

0
0
QPSK 100%: 0, fy, +2f,, £3f, +4f,, +2f,, £(2f,—f,),
+(2fy+f,)

BPSK 100%: 0, *f), £2fy, +(26(f,), +(2fy+1;), $2f,, £3f,,
+4f
=2

QPSK 300%: 0, +f,, #2f;, +3f,, +4f;, +2fo, +(2f,—f)),
+(2fy+1))

BPSK 300%: 0, +f), +2f}, $3f,, +4f;, 226y, +(2f,-f,),
+(2fy+f))

Table III: Frequency-shift values in the order they appear in
Figure 3. Frequencies f, and f, are the baud rates of the SOI

and SNOI, respectively, and the carrier frequencies of both the
SOI and SNOI are zero.

A N=4| 8 12 16 20
F BER * * * L 3 *
S| MSE |-9.8] —11 | 11 | =11 | -11
£ [E] c1n
4 24x[63x|23x | 13x
B | BER 102 ] 103 | 103 | 103
S | MSE 4.6 | =54 | —-6.1 | -6.3
E | (-6.3)
F BER * k %* * *
S| MSE | -11]| =13 | =13 | =13 | -13
£ |E] 19
8 1.7x | 1.8x | 6.5x | 3.3x
B | BER 102 | 103 | 104 | 104
S | MSE -52 | -74 | -80 | -8.2
E | (-8.9)

OPSK 25%: 0, #fy, £y, +(f,~f,), #(2f,~f,), £(f,~2f,),
22(f)-f,), £(f,+5,), £2(f,+£,)
BPSK 25%: 0, #, #f,, +(f—f,), #(2f;~f,), (f,~2,),

12(f,-1f,), 1(f,+1£,), 12(f, +1,)

QPSK 100%: 0, #f), 26y, £(f~f,), +(2f,~f,), +(f,~2f,),
12(f)-f,), *(f,+£,), 12(f, +£,)

BPSK 100%: 0, #f), #f,, +(ff,), #(2f;-f,), +(f,-2t,),
£2(£1-F)), £(,+£,), +2(F,+1,)

QPSK 300%: 0, #), £f,, +(f,~f,), +(f,+1,), +2f,,
(2 1-1)), #(f1-2f,), £2(F—f,), £2(f,+1,),
£(f1-26)), H(2f,-3f,), £3f;, 136, +2f,

BPSK 300%: 0, ), +f, #(f,~f,), +(f, +1,), +2f,,
(26 1-Fy), #(f1-28,), £2(£,~f,), £2(£,+1,),
£(f1-26), +(2f,-3f,), 43f,, $3f,, +2f,

Table IV: Frequency-shift values in the order they appear in
Figure 4. Frequency f) is the carrier frequency of the SOI and
f, and f3 are the carrier frequencies of the two SNOL

Two SNOL Cases L. 2: 0, +2fy, +2f), #2(f,—f), +2(,f),

$2(6—5)

QOne SNOL Case 3: 0, $2f), £2f,, +2(f,f), +2(£,-2f,),

£2(26-£;), +4(6,-£,), 22(26,-31,)
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