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Abstract

In wireless communications, including cellular com-
munication systems, spread spectrum overlay sys-
tems, and signals intelligence applications, the degra-
dation caused by rapidly time-varying multipath and
unknown co-channel interference can be reduced by
adaptive spatial filtering using adaptive antenna ar-
rays. In this paper we propose a flexible framework
for adapting a spatial filter without using a training
signal, array calibration data, or knowledge of spa-
tial characteristics of the desired or interfering signals.
The framework exploits one or more user-selected sta-
tistical properties to adapt the array. Simulation re-
sults illustrate the performance of algorithms devel-
oped within the new framework.

I Introduction

In such application areas as communication sys-
tems, signals intelligence, radar, sonar, commercial
communications monitoring, biomedical signal pro-
cessing, and geophysical exploration, signals of in-
terest (SOIs) are often corrupted by channel distor-
tion, interfering signals, and noise. To mitigate these
sources of corruption and thus enable the receiver to
obtain high-quality estimates of the SOI, it is often
necessary to use adaptive spatial filtering. Conven-
tional methods of adaptive filtering typically require
prior knowledge of the SOI and/or of the corruption,
such as a training signal, channel transfer function,
or interference covariance matrix (cf. [1]). However,
this prior knowledge can be difficult or impossible to
obtain in some applications.

For example, in cellular communication systems
that use time division multiple access (TDMA) (i.e.,
each SOl is active during only a short periodically oc-
curring time slot) and must operate in the presence
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of rapidly changing multipath propagation, the char-
acteristics of the corruption are time-varying and un-
known, and periodic retransmission of a sufficiently
long training signal during each time slot can decrease
prohibitively the time that remains to communicate
the message. Furthermore, many conventional adap-
tive methods are derived without regard for the sta-
tistical structure that uniquely identifies the SOIs.

The primary goal of this paper is to present a
flexible framework, called Programmable Canonical
Correlation Analysis (PCCA), for use in designing
blind adaptive spatial filtering algorithms. The PCCA
framework admits two interpretations: one is based on
canonical correlation analysis (CCA), which is well-
known in multivariate statistics (cf. [2]), and the other
is based on a constrained conditional maximum like-
lihood problem (cf. [3]). The first interpretation is
emphasized in this paper. In both interpretations, the
adaptive processor contains a reference path, analo-
gous to the path that carries the known training signal
in a conventional adaptive processor; however, this ref-
erence path is derived directly from the received data
by means of a user-selectable transformation. The no-
tion of data-derived training signals is also explored in
[4] for very specific signal classes. It is shown here that
suitable choices of the reference-path transformation
in the PCCA can allow the receiver to blindly adapt
its spatial filter to separate multiple SOIs, reject in-
terfering signals, and mitigate the effects of multipath
distortion.

A more elaborate exposition of these ideas is given
in [5, 6).

II Notation

In this paper, () 5 denotes the time-average over N
time samples. Superscripts *, T, and H denote con-
jugation, transposition, and conjugate transposition,
respectively. Symbols * and ® denote convolution
and the Kronecker product operation, respectively.



Scalars, vectors, and matrices are denoted by lower
case italic letters, lower case bold-face letters, and up-
per case bold-face letters, respectively. The estimate
of the cross-correlation matrix between x(n) and y(n)
is defined by Ryy £ (x(n)y”(n))N o Ryy.

For simplicity of exposition, the compol:zx envelope
of the received data is assumed to follow the narrow-
band model:

L

x(n) =) a(8)si(n) +i(n) = As(n) +i(n).

=1

(1)

where x(n), s(n), and i(n) denote the complex en-
velopes of the received data, the signals, and the noise,
respectively, and a() is the vector of gains and phases
that describes the response of the sensor array to a
plane-wave signal arriving from angle 6. In general,
a(f) is a frequency-dependent function, and the ideas
conveyed in this paper can be extended to this gen-
eral case; an example of this extension for a particular
realization of the PCCA is given in [7].

In practice, the categorization of components of
x(n) into signals of interest (SOIs) s(n) and inter-
ference and noise i(n) is application dependent. In
this paper, the SOIs are usually defined as those sig-
nals that exhibit the statistical property or proper-
ties targeted by the user-programmable reference-path
transformation. However, in some cases some post-
processing of the multiple signal estimates provided
by the new method may be needed in order to deter-
mine which signal estimates correspond to SOIs and
which to signals not of interest (SNOIs).

A class of signal transformations that is useful
in this paper is referred to as the class of linear-
conjugate-linear polyperiodically time-variant (LCL-
PTV) transformations. In general, the output y(n)
of such a transformation with input x(n) can be ex-
pressed as

{x(n) x hy(n)} eitrein ]

{x(n) % hy(n)} ef2resn

V=W () x hasa () eresern

» (2)

{x(n) x hy(n)}* e?raxn |
where W can be fixed at W = I if desired, and h, (n),
.+ hg(n) are the impulse responses of linear time-
invariant (LTI) filters, and o, ..., ax are values of
frequency shifts. It is noted that the class of LTI
transformations is a special subclass of the class of
LCL-PTV transformations.
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IIT The New Framework

In this section, the first of the two alternative ap-
proaches to the problem, canonical correlation analy-
sis and constrained conditional maximum likelihood,
is discussed. This approach (as well as the other)
allows substantial programmability in choosing the
reference-path transformations, hence the name Pro-
grammable Canonical Correlation Analysis. Several
possible reference-path transformations are discussed
in Section III.B.

ITII.LA Canonical Correlation Analysis

In the canonical correlation analysis (CCA) (cf. 12])
of two data sets x(n) and y(n) that are believed to
share some number L of additive components (e.g.,
signals) jointly denoted by s(n), it is desired to min-
imize the mean-squared error between the estimates
of s(n) linearly obtained from each of x(n) and y(n).
Denoting §(n) = W¥#x(n) and d(n) = Why(n) and
constraining R;;(0) = I and R44(0) = I, this can be
accomplished by minimizing

MSE(,d) = ([Wix() - Wiym)|*) ()

subject to the constraints WffixxW, = I and
WHR, W, =1

The resulting weight matrices W, and W, are
given by the L most dominant eigenvectors of

Tyy = ﬁ;::f‘xyﬁ;;ﬁyx (4)
and

Ty: = R;leyxR;lexyv (5)
respectively.

In this paper, since y(n) is a user-programmable
transformation of x(n) rather than being simply an-
other measured data set, this approach to blind adap-
tation is referred to as Programmable CCA (PCCA).
A general block diagram of the processor is shown in
Figure 1.

A
t
Whx(1) 0,

Ix

x(1)

Minimize
{;7 < Wlx(t) — Why(1)i2>
Reference-Path (")
Transformation = W;’ y(1) 2(’)

Figure 1: Generic block diagram of the PCCA adap-
tive processor.



III.B Reference-Path Transformations
Here a restriction on the choice of y(n) is discussed,
and it is noted that the PCCA framework can exploit
a wider variety of signal properties than just those
related to cyclostationarity.
From (3) it can be seen that y(n) should not contain
x(n) as a literal element, since any solution of the form

L
e [¥]

where W is arbitrary, would minimize (3). This ob-
servation implies that this PCCA framework cannot
directly yield a blind adaptive Cyclic Wiener spatio-
temporal filter, which is the optimum LCL-PTYV pro-
cessor (in the MSE sense) for cyclostationary signals
(8]-

Subject to this constraint, the objective for any par-
ticular application is to select a transformation that
decorrelates the SNOI-related components in x from
the SNOI-related components in y, while maintaining
the highest correlation between the SOI-related com-
ponents in x and the SOI-related components in y.

Thus, the reference-path transformation is entirely
up to the user, provided that the objective (subject
to the restriction) is met. To emphasize this flexibil-
ity, the programmable canonical correlation analyzer
(PCCA) is proposed, wherein the transformation used
to obtain y(n) is completely programmable by the
user. Thus, the PCCA can use many types of signal
properties to distinguish between desired signals and
interference. A non-exhaustive list of transformations
is proposed here:

1. y(n)is a frequency-shifted (by a) and delayed (by
) version of x(n) or x*(n), which yield the Cross-
SCORE and conjugate Cross-SCORE algorithms,
respectively [9]; this defines as SOIs those signals
that exhibit cyclostationarity or conjugate cyclo-
stationarity with cycle frequency «, and can be
generalized to multiple frequency shifts, multiple
delays, and pre-filtering.

2. y(n) is the output of a band-stop (or band-pass)
LTI filter applied to x(n); this defines as SOIs
those signals that have spectral support outside
(or inside) the stop-band (or pass-band), and can
be generalized to more complicated regions of
spectral support.

3. y(n) is a delayed version of x(n); this defines as
SOIs those signals for which the coherence time
is greater than or equal to 7.

4. y(n) is the output of a temporal interval-stop
(gating) device applied to x(n); this defines as
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SOIs those signals that are active outside the stop
intervals.

5. y(n) is the narrowband (or wideband) output
of an adaptive spectral-line enhancer applied to
x(n); this defines as SOIs those signals that are
relatively narrowband (or wideband).

6. y(n) is the enhanced (or degraded) output of a
spectral-correlation enhancer (a blind adaptive
LCL-PTYV filter) applied to x(n); this defines as
SOIs those signals that exhibit (or don’t exhibit)
cyclostationarity at a specified cycle frequency a.

7. y(n) is the constant modulus (or non-constant
modulus) output of an LTI filter (or LTI can-
celler) adapted by the constant modulus algo-
rithm (CMA) (cf. [10]); this defines as SOIs those
signals that have (or do not have) constant mod-
ulus.

8. y(n) is the output of a demodulation-remodula-
tion device that is applied to x(n) and is struc-
tured to select FM, PM, FSK, or PSK signals.

9. y(n) is the output of a nonlinear transformation
such as x(n) @ x(n) © x(n), x(n) © x(n) ® x*(n),
x(n) ® x(n) ® x(n), x(n) @ x(n) ®x*(n), or time-
variant non-memoryless generalizations thereof,
where © denotes the elementwise product and
® denotes the Kronecker product; this defines as
SOlIs those signals that have the higher-order sta-
tionarity or higher-order cyclostationarity prop-
erties selected for by the chosen transformation.

Examples of the first three transformations, which
are specific examples of the general LCL-PTV trans-
formation (2), are used in the computer simulations of
the PCCA described in Section IV.

IV Simulation Results

Here the performance attributes of four different re-
alizations of the PCCA spatial filter are briefly illus-
trated via computer simulations. In the first, second,
and fourth examples, the PCCA is applied to problems
in which two independent signals arrive at the sensor
array, and the objective is to separate them from each
other. In the third example, the PCCA is applied to
a multipath mitigation problem.

In the first example, the PCCA structure is used to
accelerate the convergence of the Cross-SCORE algo-
rithm as it extracts an estimate of one BPSK signal
in the presence of an interfering BPSK signal having a
different baud rate. In the second example, one of the
signals is replaced by a narrowband Gaussian inter-
ferer, and the reference-path transformation is simply
a unit-delay. In the third example, a single SOI arrives



at the array and a delayed version of the SOI arrives
from a different direction; in this example, the ob-
Jective is to separate the signals corresponding to the
two propagation paths, and the reference-path trans-
formation is again simply a delay. In the fourth exam-
ple, the BPSK SOI and narrowband Gaussian inter-
ferer of the second example are considered again, but
the reference-path transformation is simply a band-
stop filter, where the stop band coincides with the
spectral support of the Gaussian signal. In all of
the examples, a 4-element uniform linear array having
half-wavelength sensor-spacing is used, and the aver-
age output SINR is obtained by averaging the output
SINRs from one hundred independent trials.

IV.A Cyclostationarity Exploitation

As shown in (3], the convergence of the Cross-
SCORE algorithm (which exploits the cyclostationar-
ity exhibited by almost all man-made communication
signals) [9] can be greatly accelerated (by up to a fac-
tor of 8) by using the PCCA framework to exploit
multiple cyclostationarity properties.

IV.B Delay: Signal Separation

In this simulation, the array receives a BPSK signal
and a narrowband Gaussian signal. The BPSK signal
has a baud rate of 0.25, zero carrier offset, 10 dB SNR,
and direction of arrival of 0 degrees. The narrow-
band Gaussian signal consists of white Gaussian noise
passed through a filter with passband [0,0.1], and ar-
rives from 20 degrees. In the PCCA, the reference-
path transformation is simply a unit-sample delay.
The corresponding results are shown in Figures 2 and
3. In this simulation, the most dominant eigenvector
found by PCCA extracts the Gaussian signal (because
it has the longest coherence time), the next-most dom-
inant eigenvector extracts the BPSK signal, and the
least dominant eigenvectors reject the signals in fa-
vor of the noise (which, being white, is uncorrelated
with the delayed version of itself, resulting in two zero
eigenvalues in T,,). '

IV.C Delay: Multipath Mitigation

In this simulation, a single BPSK SOI having baud
rate 0.25 arrives at the array from two different di-
rections, simulating a two-ray multipath propagation
environment. Each arrival is given a random carrier
phase that is uniformly distributed on [0,27) radians
(i.e., the phase is fixed in time but randomly chosen
at each trial). The first arrival has 10 dB SNR; the
second arrival has an SNR that is randomly chosen
at each trial from the range 5 to 15 dB, and it is de-
layed by a fixed positive amount relative to the first
path. The range of delays is 0.5 to 3 samples in incre-
ments of one-half sample. The reference-path trans-
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formation used by PCCA is simply a unit-sample ad-
vance, which causes the most dominant eigenvector
to select the first path, whereas a unit-sample delay
would cause the most dominant eigenvector to select
the second (delayed) path. The output SINR for the
most dominant eigenvector is shown in Figure 4, and
a typical antenna pattern (obtained for multipath de-
lay equal to one sample) shown in Figure 5 confirms
that the second path is being rejected, rather than co-
herently combined with the first path (which would
result in multipath distortion and thus adaptive post-
processing would be required). As the multipath de-
lay increases beyond the advance value used in the
reference-path transformation, the output SINR de-
creases, which suggests that a reasonable estimate of
the range of multipath delays is needed for this method
to work well.

IV.D Bandstop Filtering

In this simulation, the signals are exactly the same
as in Section IV.B, In the PCCA, the reference-path
transformation is simply a bandstop filter that rejects
the passband of the Gaussian signal. Since this also
causes irreparable damage to the BPSK signal, the
bandstop filter is unsuitable as the sole interference
rejection device. However, it does allow the PCCA to
distinguish between the signals, and thereby to reject
either signal by spatial filtering alone, as demonstrated
in Figures 6 and 7, which show the output SINR ob-
tained by PCCA as a function of the number of data
samples and the SNR of the Gaussian signal (which
ranges from 10 dB to 50 dB). For both signals, the
output SINR converges to the maximum attainable
during the adaptation period considered.

Of the four spatial filters found by PCCA for this
array, the two obtained from the most dominant eigen-
vectors reject both signals, and the least dominant
eigenvector extracts the Gaussian signal, and the next-
to-least dominant eigenvector extracts the BPSK sig-
nal. This ordering of the eigenvectors is predicted an-
alytically in [6].

V Conclusions

In this paper we describe the PCCA framework and
demonstrate via analysis and simulations that it is a
flexible and useful framework for blind adaptive spa-
tial filtering. In particular, the user-programmable
reference-path transformation can be chosen to select
signals of interest according to one or more statistical
properties, such as their correlation or cyclic correla-
tion properties, spectral support, and several others.
In many cases of interest, a well-chosen reference-path
transformation can enable the PCCA to converge to
the same output SINR as the MMSE processor that



uses a known training signal, even though the PCCA
does not use known training signals, array calibration
data, or knowledge of the spatial characteristics of the
interference and noise. Also, when multiple signal
properties are exploited in the reference-path trans-
formation of the PCCA, significant increases in con-
vergence rate relative to the existing Cross-SCORE
method can be obtained.

Thus, PCCA gives designers of wireless commu-
nication systems and signal acquisition systems the
flexibility to use other types of prior knowledge that
might be more easily known in some cases, such as
baud rates, carrier frequencies, temporal correlation
properties, regions of temporal and/or spectral sup-
port, and so forth. In turn, the resulting capability
of the PCCA to separate multiple signals of interest
from each other and from interfering signals can be ex-
ploited, for example, to increase the capacity of wire-
less communication systems (e.g., see [11]) or to per-
form the blind copy operations often needed in signals
intelligence operations.
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Figure 2: Output SINR for BPSK signal obtained us-
ing unit-delay reference-path transformation.
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Figure 4: Output SINR for most dominant eigenvec-
tor of PCCA using a unit-sample advance to reject a
multipath reflection from 20 degrees.
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Figure 5: Typical antenna pattern showing the rejec-
tion of the multipath reflection that arrives from 20
degrees.
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