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Abstract

The recently discovered Cyclic MUSIC algorithm for
narrowband signal-selective direction finding using an-
tenna arrays circumvents many drawbacks of conven-
tional techniques by exploiting known spectral correla-
tion properties (namely, known cycle frequencies such as
the baud rate or carrier frequency) of the desired sig-
nals to reject undesired signals, interference, and noise.
In this paper, two recent advances in the capabilities of
Cyclic MUSIC are described. The first enables Cyclic
MUSIC to simultaneously estimate the directions of ar-
rival of signals having different cycle frequencies instead
of having to sequentially process each separate frequency
in a list of cycle frequencies (either known a priori or
measured). The second advance reduces the sensitivity
of Cyclic MUSIC to error in the knowledge of the cycle
frequency of interest by estimating the frequency of a
quadratically-regenerated sine wave and then using that
stimate as the cycle frequency parameter in the compu-
tation of the cyclic autocorrelation matrix, which is then
processed to estimate the directions of arrival.

1 Introduction

The need to estimate the directions of arrival (DOAs) of
propagating waves arises in many areas, including intel-
ligence, surveillance, commercial communications mon-
itoring, sonar, radar, astronomy, and geophysics [6].
Many techniques that use an array of sensors have been
proposed for solving this problem, and, recently, em-
phasis has been placed on high-resolution and super—
resolution DOA estimation techniques which exhibit
resolution much finer than that attainable by conven-
tional beamforming. One popular example of the super—
resolution techniques, the Multiple Signal Classification
(MUSIC) method [7], exhibits very desirable properties,
including asymptotic (as the number of data samples
goes to infinity) unbiasedness of the DOA estimates and
mean-square—error (MSE) comparable to the Cramer—
Rao Lower Bound (CRLB) in many signal environments
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However, the excellent performance of the MUSIC
method depends on several conditions being satisfied,
and this can be difficult or impossible in practice. First,
the number of signals impinging on the array must be less
than the number of sensors. Second, the spatial charac-
teristics of the noise must be known or exhibit a trans-
formational invariance. Third, since the DOAs of all
signals impinging on the array must be estimated, some
post—processing must typically be applied to determine
which DOA estimates, if any, correspond to the signals
of interest. Thus, computational effort is often wasted
in obtaining and processing the DOAs of undesired sig-
nals. An important consequence of the third condition
is that an undesired signal can arrive from a direction
that is very nearly the same as the direction from which
a desired signal arrives, and this can require that very
long data sets be collected to resolve the signals. Yet
another consequence is that the presence of undesired
signals that are fully correlated among themselves can
prevent the use of the MUSIC method even if the de-
sired signals are not fully correlated among themselves
or with the undesired signals.

One means of softening or eliminating the aforemen-
tioned constraints is to select only a subset of signals to
be processed. In particular, the cyclostationarity prop-
erties exhibited by most communication and telemetry
signals (2, 1, 3] can be exploited to select a desired subset
of signals and to discriminate against undesired signals,
interference, and noise. The Cyclic MUSIC direction—
finding (DF) method [5] can attain much better perfor-
mance in some environments than the MUSIC method
even when MUSIC is operating properly, and can ob-
tain the desired DOA estimates in some environments
in which MUSIC fails. For example, in order to re-
solve two signals arriving from nearly the same direction,
Cyclic MUSIC can require much less data than conven-
tional MUSIC does if the two signals have different cycle
frequencies. As another example, MUSIC fails if more
signals are received than there are sensors, but Cyclic
MUSIC can still estimate the DOAs of the signals hav-
ing known cycle frequencies provided that the number of
signals having any given cycle frequency is less than the
number of sensors. Furthermore, substantial savings in
computation can be achieved by using the Cyclic MUSIC
method because the DOAs of only the desired signals are
estimated.

One drawback of Cyclic MUSIC is, in fact, a result
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of its signal-selectivity. If the signals of interest do not
share a common cycle frequency, then Cyclic MUSIC
must be applied separately for each cycle frequency of
interest, which requires the estimation of the correspond-
ing cyclic autocorrelation matrix, computation of its sin-
gular values and vectors, and location of the minima in
the null spectrum. To minimize the extra computation,
an extension of Cyclic MUSIC which is called Multi-
Cyclic MUSIC can be applied instead. This extension is
introduced in this paper.

Another drawback in some applications is the need
to know a cycle frequency of the signal(s) of interest.
However, the true cycle frequency can differ from the
assumed cycle frequency due to symbol clock drift in
the transmitter, unknown and/or time-varying Doppler
shift, drift in the local oscillator, and other causes of
imprecise estimates of the true cycle frequency. In some
applications, knowledge of the true cycle frequency can
be completely unavailable, although the benefits of signal
selectivity are still desired. To address these issues, a
new method for adapting to unknown cycle frequencies
is introduced in this paper.

2 Cyclic MUSIC

The Cyclic MUSIC method exploits both the spatial
and spectral correlation properties of the received data,
which is assumed here to be accurately described by the
narrowband model

L

x(n) =) a(6) si(n) +i(n), 1)
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where x(n) is the Mx1 vector of sampled complex en-
velopes at the sensor outputs, a(6) is the array response
vector for a signal arriving from angle 6, sy(n), ..., s (n)
are the L sampled complex envelopes of the signals ar-
riving from angles 6,, ..., 0L, respectively, and i(n) is
interference and noise that is uncorrelated with the im-
pinging signals. It is also assumed that L, of the signals
have cycle frequency a, where L, < L. The Cyclic MU-
SIC method computes the M — L, left singular vectors
corresponding to zero—valued singular values of the cyclic
autocorrelation matrix R§x and searches for the angles
for which the array response vectors are orthogonal to
those singular vectors:

1. Measure R%y(7) = (x(n) xH(n-r1) e—j2ran>N’
where (-) - denotes the time average over N sam-
ples,

2. Compute the SVD Rgy(7) = USVH, where U
and V are unitary matrices whose columns are the
left and right singular vectors, respectively, and £
is the diagonal matrix of real, non-negative singu-
lar values,

3. Locate minima of " [upmr-z, ... up]? a(d) "2

3 Multi—-Cyclic MUSIC

Clearly, the time average in step 1 estimates the com-
plex coefficient of a single sine wave of frequency « in
the lag-product waveform x(n)x#(n — 7). Thus, re-
placing the single sine wave of frequency a in the time
average with a sum of sine waves at K different frequen-
cies A = {ay, ... ak} estimates the sum of the complex
coefficients of the corresponding sine waves in the lag
product, and the resulting multi-cyclic autocorrelation
matriz is the sum of the cyclic autocorrelation matrices
corresponding to those cycle frequencies:

K
<x(n) xH(n - 1) (Ze"’"‘"") > (2)

k=1 N
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K
D RE (7). (3)
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If the frequencies coincide with the cycle frequencies of
the signals of interest, then Ry (7) describes the spatial
characteristics of those signals, because each constituent
term Ry% describes the spatial characteristics of the sig-
nals having cycle frequency aj. Provided that the num-
ber of signals exhibiting spectral correlation at the K
cycle frequencies of interest is less than the number of
sensors, steps 2 and 3 of the conventional Cyclic MUSIC
algorithm can be performed on R£y(7) to estimate the
DOAs of those signals simultaneously.

Multi-Cyclic MUSIC exhibits all of the same bene-
fits of signal-selectivity as Cyclic MUSIC, such as the
ability to operate properly in the presence of noise and
interference having unknown spatial characteristics, in
the presence of more signals than sensors (provided that
the number of signal having the desired cycle frequency
or frequencies is less than the number of sensors), and
in the presence of undesired signals that are spaced too
closely to the desired signals for conventional MUSIC to
resolve them using a practical number of data samples.

Furthermore, substantial computational and hard-
ware savings can result from using Multi-Cyclic MU-
SIC instead of Cyclic MUSIC because only one cross—
correlation matrix is estimated, only one SVD is com-
puted, and only one search is performed.

However, some degradation in the performance of
Multi-Cyclic MUSIC as compared to Cyclic MUSIC can
occur when two closely—spaced desired signals having dif-
ferent cycle frequencies are received. Since Cyclic MU-
SIC estimates the DOAs of those two signals separately,
having resolved them first on the basis of differing cycle
frequencies, it can do better than Multi-Cyclic MUSIC,
which can resolve the desired signals only in the spatial
domain.

3.1 Multi-Cyclic MUSIC Simulations

The behavior of Multi-Cyclic MUSIC is illustrated here
by Monte Carlo simulations. It is shown that for envi-
ronments in which conventional MUSIC performs poorly




or fails, Multi-Cyclic MUSIC can still obtain good esti-
mates of the DOAs of the desired signals, although Cyclic
MUSIC can do better.

In all of the simulations presented here, a four-
element circular array having diameter equal to one half
of the carrier wavelength receives signals from sources
in the far—field. Two binary PAM signals, each having a
raised—cosine pulse-transform of 100% excess bandwidth
and an SNR of 10dB, arrive from 10 degrees and -15 de-
grees, respectively. The bit rates vary from environment
to environment, and are specified relative to the sampling
rate of unity. Spatially and temporally white complex
Gaussian noise is also present. Cyclic and Multi-Cyclic
MUSIC are given exact knowledge of the cycle frequen-
cies of the desired signals, and MUSIC is given exact
knowledge of the ideal spatial autocorrelation matrix of
the noise. All algorithms are given exact knowledge of
the appropriate number of signals. For each environ-
ment of interest, 1000 independent trials are conducted
for each of 64, 128, 256, ..., 8192 complex data samples.

In the first environment, the signal arriving from 10
degrees has bit rate 0.25, and the signal arriving from
-15 degrees has bit rate 0.1875. As shown in Figure 1,
Multi-Cyclic MUSIC obtains estimates having relatively
high RMSE when estimating both DOAs simultaneously,
whereas Cyclic MUSIC performs better because it first
resolves the signals on the basis of their cycle frequen-
cies. Finally, conventional MUSIC performs better here
than both cyclic methods, indicating that it is the best
choice of the three in this simple environment, primar-

y because only the desired signals and known noise are
present, and the quadratically regenerated spectral line
at zero frequency (see Figure 4 for an example) that MU-
SIC exploits is much stronger than that at a non-zero
cycle frequency which is exploited by Cyclic MUSIC.
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Figure 1: RMSE of DOA estimates for two signals from
10 degrees and -15 degrees having different baud rates.

In contrast, the cyclic methods do much better when
an additional, undesired signal is present. In addition
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to the two desired signals in the first environment, we
now consider a stationary SSB-AM signal having 10 dB
SNR and arriving from 0 degrees. As shown in Figure
2, both Multi-Cyclic MUSIC and Cyclic MUSIC out-
perform conventional MUSIC, for which the probability
of success is less than 1% even when using 8192 sam-
ples. It should be noted that results obtained here for
the four—element circular array should not be compared
with those that could be obtained for a uniform linear
array having four (or more) elements due to the differ-
ing physical apertures. Thus, although MUSIC is unable
to resolve the 3 signals arriving within a 25—degree sec-
tor using the circular array, it might well resolve them
using a linear array. However, these results do indi-
cate that Cyclic MUSIC can accommodate arrays with
smaller apertures, because the signal-selectivity exhib-
ited by both cyclic DF methods allows them to discrim-
inate against the undesired signal before computing the
SVD. In particular, it should be noted that the RMSEs of
the estimates obtained by the cyclic methods, shown in
Figure 3, are very close to those obtained in the previous
environment without the interference, shown in Figure 1.
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Figure 2: Probabilities of success for Cyclic MUSIC,
Multi-Cyclic MUSIC, and conventional MUSIC for two
signals arriving from 10 degrees and -15 degrees, having
different baud rates, and a stationary undesired signal
arriving from 0 degrees.

4 Adaptive-a Cyclic MUSIC

As mentioned in the Introduction, exact knowledge of the
cycle frequency of interest can be unavailable, in which
case the performance of Cyclic MUSIC falls off as the
averaging time exceeds (roughly) the reciprocal of the
error in the assumed cycle frequency. This phenomenon
can be illustrated by looking at the frequency response
H(f) of the rectangular averaging window of length N
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Figure 3: RMSE of DOA estimates obtained by Cyeclic
MUSIC and Multi-Cyclic MUSIC for two signals from
10 degrees and -15 degrees having different baud rates.
A stationary undesired signal arrives from 0 degrees.
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If the sine wave of interest in the frequency-shifted lag
product x(n) x# (n — ) e=72%an g not at zero but is in.
stead at Aa = a — aypy., then H(Aa) equals zero when
N = 1/Aa, at which point the sine wave of interest is
rejected. In fact, performance begins to degrade notice-
ably for N > 1/2Aa as the main lobe of H(f) shrinks
in width and the sine wave of interest is attenuated to a
greater degree.

One possible means of reducing this sensitivity to er-
ror in o is to use Multi-Cyclic MUSIC with the multi-
ple cycle frequencies ay, .. - @k being spread uniformly
across a specified band in which the true cycle frequency
is assumed to be. This scheme would seemingly perform
better than using only one a, because the error in o for
the constituent term R}, for which ay is closest to the
true value a;py.,, is as little as 1/(K — 1) times that in-
curred when using only one a. However, simulations in
which the a; are spread across a band of width 0.1%
of the true cycle frequency, and also across a band of
width 1%, show that the DF performance is not domi-
nated by the term for which the assumed cycle frequency
is closest to the true cycle frequency. In particular, sim-
ulations show performance degrades for K = 2 due to
cancellation between terms, and that the performance
improvement due to smaller error in one term for K > 2
(values of K up to 16 were tested) is offset by extra noise
and interference that is contributed by the other terms.

However, another approach can perform much bet-

er, albeit at the expense of increased computation, by
merely estimating the frequency of the sine wave in the
lag product and then using it in Cyclic MUSIC. For ex-

e=iT/(N=1)

H(f) = (4)
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Figure 4: Magnitude of FFT of z1(n) z3(n) for signal en-
vironment used in Figures 2 and 3. Regenerated spectral
lines are clearly visible at frequencies +0.1875 and +0.25,
corresponding to the bit rates of the two cyclostationary

signals.

ample, the magnitude of the FFT of the lag product of
the first element of x(n) from the second environment
in the Multi-Cyclic MUSIC simulations (which Figures
2 and 3 correspond to) is shown in Figure 4. In addition
to the line at & = 0, the sine waves at the bit rates of
the signals (and at their negatives) are clearly visible.
Thus, with essentially no prior knowledge of the cycle
frequencies present in the received data, either of these
frequencies can be estimated and then used to compute
the corresponding cyclic autocorrelation matrix for use
by Cyclic MUSIC.

Using the classical periodogram method, the fre-
quency estimates are taken to be the frequencies at which
local maxima occur in the magnitude of the FFT of the
lag-product waveform.

Depending upon the constraints on the amount of
available data and memory for storing that data, the
data sets used to estimate the cycle frequency and the
directions of arrival can be the same, or the data set used
to estimate the cycle frequency can precede the data set
used to estimate the directions of arrival. The former
implementation is used in the following simulations.

4.1 Adaptive—a Simulations

The same simulated environment as used in the second
Multi-Cyclic MUSIC simulation in Section 3.1 is used
here. However, the cycle frequency 0.1875 is known only
to lie in the band [0.15, 0.22], and the cycle frequency
0.25 is known only to lie in the band [0.22,0.5). Ef-
fectively, this implies that the error in the knowledge
of the cycle frequencies is 15% and 100%, respectively.
When the collect time is small, the estimates of the cy-
cle frequencies are corrupted by leakage from each other
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Figure 5: Probability of success of adaptive—a Cyclic
MUSIC compared with Cyclic MUSIC using exact
knowledge of a.

and from the feature at cycle frequency 0, in addition to
random effects. The resulting poor estimates of the cy-
cle frequencies yield correspondingly low probabilities of
success for the Cyclic MUSIC algorithm that uses them,
as shown in Figure 5. However, as the number of samples
becomes large, the probability of success rises, becoming
comparable to that obtained with exact knowledge of the
ycle frequencies. This behavior is also reflected in the
RMSE of the DOA estimates from the successful trials,
since the high—accuracy estimates of the cycle frequen-
cies obtained from using a large number of samples yield
correspondingly good estimates of the DOAs, as shown
in Figure 6. Thus, even though the cycle frequencies are
essentially unknown, Cyclic MUSIC can perform well in
this environment, whereas conventional MUSIC fails in
greater than 99% of the trials.

Simulations (the results of which are not shown here)
show that much better performance is obtained in the ab-
sence of the stationary interference. In fact, when using
more than 1024 samples, the algorithm obtains estimates
of the cycle frequencies that are exact. Thus, the RMSE
of the corresponding DOA estimates is exactly the same
had the cycle frequencies been known a priori.

5 Conclusion

Two extensions to the Cyclic MUSIC direction—finding
method are presented and shown to yield acceptable per-
formance while alleviating certain drawbacks of Cyclic
MUSIC, thus extending applicability. First, the Multi-
Cyclic MUSIC method is shown to perform DF simul-

neously on multiple signals having different cycle fre-
quencies , which reduces computational load at the ex-
pense of higher RMSE. Second, a technique for greatly
reducing the sensitivity of Cyclic MUSIC to error in the
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Figure 6: RMSE of 8 estimates computed by Cyclic MU-
SIC using estimated values of a compared with Cyclic
MUSIC using exact knowledge of a.

knowledge of the cycle frequency of interest is shown to
yield excellent performance for a sufficiently large num-
ber of samples, even when the cycle frequencies are es-
sentially unknown at the outset.
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