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Consider the finite segment of data  ( ) : 0,1,2,..., 1z t t NT= − , and define the discrete-time Finite 

Synchronized Average by  
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for positive integers N and T . For 1N , the modulo operation has only a small impact in general, 

because it increases the data used by only the fraction   

 
/

,    for  / 1 1/
/

t T
t T T

N t T
 −

−
 (2) 

which is smaller than 1/ N  for 1N . But it is used here because it ensures that the same amount of 

data is used for every value of t , regardless of the overall segment length NT and because, for any T-

periodic component in ( )Tz t that is extended beyond t NT= , the mod( )NT operation has no effect.  

In general, N should be chosen to be the smallest positive integer such that the data-segment length 

W  is less than 1NT − , and the data samples strictly between the time points W and 1NT − are then 

defined to have values of zero.  

For discrete time, every candidate period T is an integer, and a function that is periodic with period 

1T T=  is also periodic with periods 2 12T T T= = , 3 1 23 (3 / 2)T T T T= = = , and so on. For an infinitely 

long data segment, the smallest of all these periods that produce the same result when the periodic 

component is extracted is the correct period. The others are redundant but work equally well for 

extracting the periodic component. However, for a finite-length data segment, the longer periods 

achieve less data averaging and produce less reliable results.  

Now, define the Periodic Extension of the function ( )Tz t by 
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The function ( )z t  is the T-periodic component of the finite segment ( )z t over  0,1,2,..., 1t NT − , 

extended to be periodic for all integer time. That is, if one uses (1) to calculate the periodic component 
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of the residual ( ) ( )z t z t−  over  0,1,2,..., 1t NT − , the result will be zero.  So, ( )z t is the entire T-

periodic component of ( )z t over  0,1,2,..., 1t NT − , and is extended over all integer values of t . 

Furthermore, the complex amplitude of the complex sine-wave component with frequency /q T = , 

for any integer q , of ( )z t over  0,1,2,..., 1t NT − is given by 
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and it is identical to the sine-wave component of ( )z t  over  0,1,2,..., 1t NT − ; therefore, the sine-

wave component of the residual ( ) ( )z t z t−  over  0,1,2,..., 1t NT −  is zero. In addition, each of 

these harmonically related sine-wave components is orthogonal to the others. 

It follows that this periodic-component extraction operation and the associated sine-wave-component 

extraction operation for a finite-segment of data share all same properties as those defined for a 

persistent function ( )z t specified for all integer time. And, when these components for a finite-segment 

of data are extended over all integers as described above, they provide the basic statistics needed for 

defining a Cyclostationary data model in terms of FOT-Probability theory that is identical to that already 

defined for infinitely long data segments. That is, the same definitions of Periodic Cumulative FOT 

Probability Distributions apply, and they possess the same properties, like the representation of the 

periodic CDF in terms of its sinusoidal complex CDFs. Similarly, we have the same Fundamental Theorem 

of Sine-Wave Component Extraction and Fundamental Theorem of Periodic Component Extraction. 

For continuous time, the time domain  0,1,2,..., 1t NT − for the data is replaced with [0, ]t NT , 

and the formulas in (1) and (3) are replaced with the following 
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and  

 
0

1
( )exp{ 2 }

NT

c z t i t dt
NT

 −  (6) 

The number N should here be chosen to be the smallest positive integer such that the data-segment 

length W  is less than NT , and the continuum of data samples between the time points W and NT are 

then defined to have values of zero. 

Now, sinusoid frequencies of interest  are no longer restricted to integer multiples of 1/ T . Sinusoids 

that are not harmonically related are not orthogonal (using an inner product defined to be the integral 

of the product of a function and the conjugate of another function, divided by the integration time) on 

any finite interval; they are only orthogonal over all real time. Therefore, the periodic extension of the 

periodic components to the whole real line is more important here than it is for harmonically related 
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sinusoids. Furthermore, the empirical complex strengths of non-harmonically related sinusoidal 

components will be nearly identical if the frequencies are close enough, relative to the reciprocal of the 

length of the data segment W . 

Unlike in the discrete-time case, here it is possible for data to exhibit multiple periodicities with 

incommensurate period { }kT . This enables the empirical calculation of Poly-Cyclostationary models in 

complete analogy to what is done in the theory for infinitely long data records. However, there is one 

essential modification needed for empirical poly-cyclostationarity: Because sinusoids with 

incommensurate frequencies are not orthogonal on finite intervals, they are not self-reciprocal and they 

must therefore be modified when extracting one set of sine-wave components from data containing not 

only those but also another set of sinewave components with frequencies that are not harmonically 

related to those from the first set. The method for doing this requires modifying formula (6) for use in 

the 2nd and 3rd expressions in (7). The required modification is presented in Section 3.8 of the article 

[JP67] on page 8.1 of the website www. cyclostationarity.com. 

Other than these subtle differences, the relationships among the various component-extraction 

operators and the FOT-CDFs, such as the fundamental Theorem of Sine-Wave-Component Extraction, 

are completely equivalent for finite data-segments and infinitely long records of data. For this reason, 

the same notation can be used for component extraction on finite segments of data: 
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where 1) is the Periodic Component Extraction Operation, 2) is the Sine-Wave Component Extraction 

Operation, 3) is the Poly-Periodic Component Extraction Operation, which includes the Periodic 

Component Extraction Operation as a special case, and 4) is the alternative representation of the Poly-

Periodic Component Extraction Operation. In (7) the left and center members of each identity comprise 

the original notation [Bk2], [JP34] and the right members comprise the notation used in this 

presentation.  

In summary, for the case treated here, of finite data-segments, the fundamental statistics and their 

relationships with each other that define the Purely Empirical FOT-Probabilistic Models of 

Cyclostationarity and Poly-Cyclostationarity are exactly as presented in the seminal publications [Bk2], 

[JP34]. The only difference is that here we do not consider Almost Cyclostationary models that are not 

Poly-Cyclostationary because infinitely many incommensurate periods is not an empirical concept. 

However, despite the equivalence of the models, the theories based on these models differ significantly 

in some cases. The impact of signal processing operations on the fundamental statistics can be more 

complicated in the empirical theory, for example when convolutions are involved, and the properties of 

these statistics also can be more complicated. Simplifications that are quite useful conceptually occur 

only in the limit as the amount of data approaches infinity. So, in practice, both the idealized and 

empirical non-stochastic theories are valuable tools. 
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CONCLUSIONS 

• As explained above, there exist entirely empirical FOT probabilistic models of stationary, 

cyclostationary and poly-cyclostationary times series.   

 

• All quantities occurring in these models can be calculated from physically measured/observed 

time series data on finite intervals. 

 

• This theory should appeal to practitioners who analyze and process empirical data. 

 

• CAVEATS: Drawbacks of the finite-time FOT probabilistic models are: 

 

o Cumulant Selectivity is not exact; it is only approximate; the more data, the more nearly 

exact it is. 

o Signal separability with FRESH filtering is limited. The degree of spectral redundancy 

decreases with decreasing amounts of data. 

o The spectral resolution of spectral correlation functions is limited 

o Sinewave generation is only approximately measurable since spectral features narrower 

than the reciprocal of the length of the data segment are not resolvable. 

o Relationships among statistics can be more complicated when signal processing 

operations involving convolution and other transformations with memory are involved 

because of data-edge effects.  

 

• PRAGMATIC IMPACT: In practice, one never has more than a finite amount of data; so, the 

above caveats exist in practice, regardless of the theory used. The Empirical theory is consistent 

with what is actually realizable in practice, whereas the more idealistic theory reveals what 

could be achieved with unlimited amounts of data. The theoretical simplifications of the 

idealized theory are definitely of conceptual value. But, as always, one must be aware that these 

simplifications are not realizable exactly. 

 


