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ABSTRACT

The constrained Bayesian methodology (CBM) is a new approach to
the design of structurally constrained statistical inference and
decision rules. The methodology is based on constrained minimum
mean-squared error estimation of posterior probabilities. The solu-
tion for the estimates is specified by a set of linear equations in
terms of only the prior probabilities, and moments and conditional
moments of prescribed functionals of the observations. The CBM is
developed and its applications to signal detection and estimation
partially investigated by Gardner in a series of papers. This thesis
broadens the development and application of the CBM‘for signal detec-
tion. The general results obtained include the following:

1) The CBM is shown to be equivalent to the constrained maxi-
mum generalized signal-to-noise ratio design methodology,
which links the CBM to other maximum SNR approaches.

2) The CBM is shown to be a useful tool for parameter estima-
tion, and this is exploited to compare decision rules based
on parameter estimates with the rule that chooses the
largest estimated posterior probability. The comparisons
afford insight into estimation-based decision rules in
general, and offer alternatives to degenerate decision rules
arising from inadequate posterior estimates.

3) The solution to a general detection problem, that of detect-
ing signals with separable moments in additive white Gaussian

noise, is partially characterized, and it is shown that many
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of the problems analyzed in this thesis are special cases

of this general problem.
These results are given in Chapters II, III, and VI, respectively.
In addition to these general results, performance and structural
analyses of many detection problems are presented. Specifically, the
linear, quadratic, and zero-memory nonlinearity-correlator structures
are analyzed in detail with evaluations of probability of error, in
Chapters IV, V, and VII, respectively. The analyses show that the
CBM is a viable design tool for a wide variety of detection problems,
being particularly useful for non-Gaussian noise for which there is
no general theory for optimum receiver design. The analyses also
provide insight into conventional structures such as matched-filter
tapped-delay line receivers for high-speed data transmission, and
suggest novel structures such as a modified quadrature correlator

receiver for noncoherent reception.
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CHAPTER I

INTRODUCTION

1. Motivation and Purpose

Modern communication theory is based largely on Bayesian statisti-
cal inference and minimum-risk decision [1]. In particular, the theory
of optimum signal detection has grown in the last twenty years around
Bayesian and related methods [2]. However, often the Bayesian method-
ology is not directly applicable because the underlying probabilistic
models are incomplete or overly complex. This difficulty is sometimes
avoided by compromising the model or by imposing simplifying assump-
tions which then allow the methodology to be applied. When this is not
desirable, an alternative approach would be useful. The value of any
such alternative, however, should be measured by criteria such as:

1) generality of application,

2) simplicity of analysis and implementation, and

3) performance comparable to that attainable with conventional

techniques. |

One such approach is proposed and developed considerably by Gardner

[3-8]. This approach, referred to as the constrained Bayesian method-

ology (CBM), is shown to satisfy the first two criteria quite well
and preliminary results obtained by Gardner for some basic examples
indicate promise for satisfaction of the third.

It is the purpose of this thesis to evaluate the constrained
Bayesian methodology for a wide range of signal detection problems

with the following goals with respect to the methodology:



1) to demonstrate and further establish its applicability,
pointing out its special strengths and weaknesses,

2) to demonstrate and further establish its simplicity for
analysis and implementation,

3) to carry out specific receiver designs and performance
analyses, and

4) to seek new interpretations and provide more insight into

its characteristics.

2 Classical Bayesian Decision

If two quantities are statistically dependent, then inferences
can be made about one, given information about the other. In order
to make minimum-risk decisions about one quantity, say x, given
observations of the other, say vy, it is sufficient to know the set
of posterior probabilities {Px/y[xi/Y]}ifl’ where x 1is assumed
to have a discrete distribution with M distinct samples {Xi}.
For example, the minimum probability-of-error (MPE) rule for deciding
which of the mutually exclusive events {Xi} occurred, given the

sample Y, is to decide x is X, if and only if

i

Px/y[Xi/Y] > Px/y[Xj/Y] Vi 1.1

The posteriors, however, are seldom directly available but are obtained
via Bayes' Rule from probability density functions of the observations

y (which are assumed to have a continuous distribution):

Px/y[xi/Y] = Pi fy/X(Y/Xi)/fy(Y), L2



where

M P
f(Y) = ¢ P.f Y/X, 1.
y( ) RARE y/x( / J) 3
J
and
A
Pi = PX[Xi]. 1.4

Thus, knowing the priors, {Pi}ifl and the conditional density functions
M .
] . . . .
(CDF's) {fy/X(Y/Xi)}i=1 is equivalent to knowing the posteriors. So
substituting the equivalent expression for the posteriors from 1.2 into
the rule 1.1 yields the equivalent rule: decide x is Xi if and

only if

B, fy/X(Y/Xi).i P fy/X(Y/Xj) vi. 1.5

3. Alternative Approaches
In practice, it often happens that the priors are unavailable or
undefined, in which case it is common to use one of the following
strategies [1]:
1) assume equal priors - this corresponds to maximum likelihood,
2) estimate the priors from repeated observations of y, oOr
3) choose the set of priors which yields the worst case (mini-
max).
In other applications, the priors may be known and the CDF's unknown,
in which case it is common to adopt one of the following strategies:
1 estimate the CDF's with repeated observations of y (cf.,

[9,10]), or



2) assume a convenient form for the CDF's, e.g., Gaussian
(cf. Van Trees [11]).
Then the test is performed using the estimated or assumed information
as if it were true.

On the other hand, alternative approaches are frequently used
which attempt to avoid these problems. One common example is the
maximum signal-to-noise ratio (SNR) approach. This approach, however,
suffers from serious drawbacks which prevent it from being generally
useful. For example, the SNR definition does not appear to generalize
in a natural way to multiple signal detection. In fact, it seems that
other than the CBM, no approach for structurally constrained receiver
design has been developed which is as simple as the SNR approach yet

. . . *
general in application.

4. The Constrained Bayesian Approach

" The essence of the new approach is to estimate the posterior
probabilities directly. To make this a meaningful estimation problem,
a constraint on the form of the estimate is necessary--otherwise the
"estimates'" would be exactly the true posteriors, since these are non-
randoﬁ functions of the observables. The constraint space, L, is
chosen to be linear and is generated by all linear functionals of the

images of a set of prescribed transformations of the observables y.

%
Actually, it is shown in Chapter III that the CBM is equivalent to the
maximum generalized SNR design methodology. ’




The estimation criterion is minimum mean-squared error (MMSE) subject
to this constraint. By using the Hilbert space orthogonal projéction
theorem, necessary and sufficient conditions can be obtained for the
estimate, namely that the estimation error must be orthogonal to every
vector in the constraint space. This results in a set of linear equa-
tions involving only the prior probabilities and moments and condi-
tional moments of the prescribed transformations of .

At the outset, the strengths and weaknesses of the methodology

appear to be:

Strengths

1) the intimate relationship to the Bayesian methodology,

2) estimates are determined by only linear equationms,

3) estimates require knowledge of only priors and moments and
conditional moments of prescribed transformations of the
observables,

4) without knowledge of the priors, the methodology can be used
with any of the strategies used with the Bayes methodology,

5) the constraint space can be expanded to make the estimated
posteriors approach the exact posteriors, and

6) the designer can choose the receiver structure and can use
the posterior estimates to compute estimates of parameters
for alternative parameter tests;

Weaknesses

1) the designer must have some insight into the appropriateness
of candidate structures since poor performance can result if

the comnstraint is not appropriate.



The major goal of this research is to extend these lists. One of
the strengths established in this thesis merits special attention;
viz., the equivalence of the CBM with the maximum generalized SNR
(GSNR) design methodology. It was found in the course of this work
that the receivers derived from the two methodologies are identical
except for final gains and biases (i.e., threshold levels). This
equivalence allows the CBM to be closely related to SNR approaches

which are widely used in practice and gives support to both approaches.

5. Related Previous Work

As mentioned in Section 3, a common alternative to the Bayesian
approach is based on approximations to the CDF's {fy/X(Y/Xi)}ifl.
This might appear to be similar to the new approach, but it is in fact
consideraEly different in concept and in procedure. The conceptual
difference is that the function being estimated is not a probability
distribution (demsity) function. The argument of the function being
estimated is the conditioning event, not the event whose probability
is being indicated. The procedural difference is that the estimates
of the CDF's are based on repeated observations, i.e., many samples
of y, whereas posterior estimates use only a single sample. The new
methodology is based on the generalization of the concept of the 'MMSE
linear discriminant" that is employed in empirical procedures for
partitioning feature spaces for pattern classification [12,13]. The
basic ideas behind the constrained MMSE estimation of posteriors arose
during the last decade in research work in the field of pattern

recognition [14-16]. However, these basic ideas appear to have been



.employed only for the development and justification of certain empiri-
cal procedures [17], and were evidently not extended or generalized as
needed for application to signal detection except for Gardner's work
[3-7]. This is evidently related to the vague nature of pattern
recognition models, whereas those in statistical communications prob-
lems are relatively specific.

There are two methodologies whgch bear some resemblance to the
CBM. First, there is Jaynes' approach to the estimation of prior
probabilities [18, see also 19] which is discussed in Section II.7
with application to posterior probability estimation. While appearing
similar, Jaynes' approach does not apply to the same types of problems
as the CBM. The second approach is Brick and Zames' canonical expan-
sion of likelihood functions [9,10]. Appearing to be the only approach
that is actually similar to the CBM, this is discussed further in
Section II.7 and a more detailed comparison is made in Section VI.3.
The series expansion approach of Schwartz [20] appears to Ee related
to Brick and Zames approach, but is only presented for single random

variable observations.

6 Preview of Results

In Chapter II, the methodology is defined and developed with a
general solution for the estimates and some illustrative examples.
In addition, the equivalence between the CBM and the maximum-GSNR
methodology is explored and discussed. In Chapter III, the relative
superiority of certain estimation-based decision rules is investigated,

particularly for linear constraints. In Chapter IV, the class of



linear constraints is developed in ‘general with specific applications
including passband equalization, with performance analyses and compari-
sons with well known results. In Chapter V, the class of quadratic
constraints is investigated and developed with examples of the band-
pass type. In Chapter VI, the class of Nth—order Volterra polynomial
constraints for random signals in additive white Gaussian noise (WGN)
is investigated and shown to include examples in Chapters IV and V as
special cases. In Chapter VII, the zero-memory nonlinearity (zZNL)/
correlator structure is analyzed in detail including comparisons of
performance with that obtainable using several related design criteria,
viz., the deflection (D) and the complementary deflection (5). Final-
ly, Chapter VIII summarizes and discusses obtained results with sugges-

tions for further research.

T General Remarks

Since the scope of this thesis is the application of the CBM to
signal detection problems, much of the generality of the methodology
is not made evident. Therefore, it should be noted that the CBM is
potentially very broad in application. Two of the most notable
restrictions of this work are that:

1 only discrete events, and therefore only discrete posterior
probability dis;ributions, are considered--the extension to
continuous posterior distributions corresponds to signal or
parameter estimation; and

2) only probability of error (PE) is used as a risk, although

this restriction is not essential.



For a more thorough treatment and unrestricted view of the methodology,
the reader is referred to the papers by Gardner [3-8], especially [3].
Most of Chapters II, IV and parts of Chapters III and V consist of
Gardner's development of the CBM, and do not represent work on my part.
Chapters VI and VII, and the remainder of Chapters II, III, and V do,
however, consist of my original contributions to the development and
application of the CBM. More specifically, my contributions in Chapter
IT are Sectioms 2, 3, 5.2, 5.3, and 7; in Chapter III are Sections
2.2, 2.3, 3, and 4; in Chapter IV are Sections 3-5; in Chapter V are
part of Section 2, and Sections 3-5. More specifically, Gardner's

work is referenced in the text where appropriate.

8. Glossary
In this section is a list of abbreviations and notation that

should facilitate the reading of this thesis.

Abbreviations

ASK amplitude-shift keyed

APK amplitude~ and phase-shift keyed

CBM constrained Bayesian methodology

CDF conditional density function

ET estimation theorist's (rule)

FOB fourth-order Butterworth (noise density)
GL Gaussian-like (random variable or process)
GSNR generalized signal-to-noise ratio

HT hypothesis tester's (rule)



Abbreviations (Continued)

ISI intersymbol interference
LC linearly constrained (rule)

L-MMSE L-constrained MMSE

LMS least mean-square

M-ary having M values or realizations (pertains to a signal)
MMSE minimum mean-squared error

MPE minimum probability of error

MS mean-square

MSE mean—-squared error

0G optimum-for-Gaussian noise

oI orthogonal isonormal

OoP orthogonal projection

PAM pulse amplitude modulation

PDF probability density function

PE probability of error

PSK phase—shift keyed

QAM quadrature amplitude modulation
QC quadratically constrained (rule)
RS regular simplex

SNR signal-to-noise ratio

WGN white Gaussian noise

ANL zero-memory nonlinearity
Symbols

D deflection

D complementary deflection



Symbols (Continued)

E{:}

H

» |

we

K>

N

expected value
Hilbert space generated by the finite mean-square images pf
all functionals of the observables, vy
the hypothesis that the ith signal is present
kurtosis (ratio of the fourth centered moment to the square
of the variance of a random variable)
the nth moment of x (e.g., Méz)(tl,t2)= E{x(tl)x(tz)}) -
for n=1, the superscript is omitted
the nth conditional moment of x, conditioned on Hi
the prior probability of Hi’ i.e., Pi 4 Pr[Hi]
the posterior probability of Hi’ given Y, i.e.,
P & Pr[H,/Y]
i/Y i
the centered version of x, i.e., x g x - E{x}
the orthogonal projection of x onto the Hilbert space H,
also equivalent to the MMSE estimate of x, given Y
the orthogonal projection of x onto a Hilbert subspace L,
of H

the variance of x, i.e., Oi £ E{EQ}
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CHAPTER II
DEFINITION AND GENERAL DEVELOPMENT OF THE METHODOLOGY

FOR SIGNAL DETECTION

1. Definition

The general situation to which the methodology directly applies
is the following. Given the prior probabilities, {Pi}, and some
moments of the conditional distributions {F(-/Xi)}, and of the dis-
tributions {F(*)}, (e.g., ﬁeans and covariances), find a decision
rule that employs these to approximate the Bayes minimum risk rule.
The methodology, to be referred to as the '"constrained Bayesian method-
ology" (CBM), is based on constrained MMSE estimation of posterior
probabilities. The posterior estimates are used as true posteriors

in the decision rule: ''decide Xi occurred if and only if

P[X, /Y] > ﬁ[xj/y] vi.n 2.1

The estimation criterion used in this methodology is minimum mean-

squared error (MSE)

MsE 2 E{(ﬁ[xi/y] - P[Xi/y])z} 2.2

over all random variables contained in the Hilbert space L, generated
by all linear functionals of images of prescribed transformations of

the observables y.



2, Clarifying Example

To illustrate the procedure of the methodology, consider the fol-
lowing simple example. Assume that the observable, y, is a continu-
ously distributed random variable which is related to a discretely
distributed random variable x. Also assume that the constraint on the

form of the estimate is an Nth—order polynomial

A 3 B ion
2PIx /Y= I ¢ X0, 2.3

B,
i1 n=0

where

Y8y - gy} . 2.4

Minimizing MSE (2.2) yields the following set of necessary-and-suffi-

cient linear equations

N )
l_
E Mot % = ¥y Mz, 32
m=0 i
M 8 ¥}, 2.6
n
- <n
Mn/Xi E{Y /Xi} . 2:7

ot =pq 7ty 2.8

where the ijth element of Q is

4 M s 2.9

Rez = Moy

and the jth element of M, 1is
=i

13
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M.). =M

Byl j/Xi 2.10

To illustrate the performance attainable with the simplest esti-
mate (linear, i.e., N=1) which requires knowledge of only the variance
and conditional mean of y, consider the following specific example.

Let y be related to x by
y=x+n ‘ 2.11

where x 1is a binary random variable with samples Xl, X2 (Xl < Xz)

and prior distribution P and where n 1is a statistically

P
r o2

independent zero-mean random variable with Laplacian (double-sided

exponential) PDF

£ ) = (cn/id'l-exp(-|N{/§yon) . 2.12

From 2.3-2.10, the estimate is obtained:

~ L LA i= ‘

Pi/Y (po %+ Cbl Y 9 2-13
i

¢0 = Pi > 2.14
i i 2 2

¢ = (=1)'nd/ (o +0) 2.15

where

Ay

n=Pp, , 2.16
A

d=X,-X 2.17

o2 & na® . 2.18
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The true posterior is

>

Pi/Y = P[Xi/Y] Pi fy/Hi(Y/Hi)/fy(Y)

(LHD £ (T,H))]

f (Y,H.)/[f
y,Hi i y,H »Hy

1

{1+ (P;l— 1) exp[-v/2 (|Y+ g xi]

-ly-x. /o 137 . 2.19
i n
The normalized MSE of estimation, El’
A 1.5 _ 2 2 1}
e, = 101og {E{(PI/Y P, ) HEER] ) 2.20
is plotted in Figure 2.1 for priors Pl = 0.1, 0.5, 0.9 as a function
of SNR, de,
A 2,2
Pan = 10 loglo(cx/dn) . 2.21

The mean-squared error goes to zero as approaches either —=® or +o,

PaB

This is due to the fact that the posteriors and the estimates both

approach the priors as approaches —» and that both approach either

Pap

0 or 1 as approaches +x.

PaB

e The Relation Between Estimation Error and Decision Error

For binary testing, the rules 1.1, 2.1 are simply

!

>
P k.
2

P2/Y 2.22
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and

jas]

1
Pijy 2 0By 2.23

T AV

however, using the fact that the posteriors and their estimates sum to

one (see Section 4, Property 5), 2.22 and 2.23 are .equivalent to

!

: _
Py 2 42 2.24
H,

Hy

1/y 2
i,

P 1f2 . 2.25

The linearly constrained (LC) rule (2.25) can be simplified further for

this simple case to a threshold test on Y:

H
1 ,
sy 41 1 2 .

Y H< Y 2(Xl + Xz) +5 on(l?2 Pl)/n . 2.26
2

This rule is similar to the optimum rule for Gaussian n (i.e., the

0G rule), viz.,

|

Y 2 vy
By

ne>
N

2
G (Xl + x2) + On ln(P_z/Pl) s 2.27

which can be used to compare the performance of the LC rule. To illus-
trate the relationship between estimation error and decision error,

A

Pl/Y’ Pl/Y’ fy’ and fy;Hi, i=1,2 (ﬁy,Hi='Pi fy/Hi) are plotted in
Figure 2.2 for Pl= 0.1, and de = 0, 10. As can be seen graphically,

and from comparing 2.25 with 2.26, Y, is just that value of Y for
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which §1/Y = %: Similarly for the unconstrained rule, the optimum
threshold, denoted Yo’ is that value of Y for which Pl/Y==-%. For

a given Y , the probability of error (PE) for the rule using Y as

a threshold is the area under the curve fy q to the left of Y,
b
2
representing errors under H2, plus the area under fy 0 to the
1
right of Y, representing errors under Hl’ i.e.,
'Y oo :
PE =ff o) do +ff o) do 2.28
) o1, @ o1,
- 00 'Y

'Y oe]
= P2 ffy/Hz(o/Hz) do +_P1ffy/Hl(c/Hl) do
- OO0 ‘Y

Y 0
192 ffn(o - xz) do + Plffn(c - Xl) do

- Y

R =Py gn(Y - Xz) + Py gn(X1 -Y),
where

g (x) =f £ (0) do . ' 2.29

- 0
Both YL and Yo appear naturally in Figure 2.2 and Yo is included
for comparison. The observations that result in different decisions
from the two rules 2.24, 2.25, lie between YL and Yo' The resultant

difference in PE is the shaded area. Note that for 0, YL and

Pas =
YG straddle the optimum value, Yor Yo actually being closer

(evaluation of PE shows that 2.27 is superior to 2.26). For 10,

PaB =

however, Yo is further away from Y, on the same side as YL’ and

clearly 2.26 is superior to 2.27. The probability of error for both
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rules is plotted in Figure 2.3 for three cases where the random
variable n has the PDF's:

1) Gaussian

S (on/fﬁ)'lexp[-(N/on)z/z] : 2.30

2) Laplacian (2.12); or

3) fourth-order Butterworth (FOB)
£ (N) = (YZ/10.) [1 + (/o )4t 2.31
n n n . :

In all three cases, the difference in PE for the two rules is negligible
for all values of PaR’ and for all values of priors that are within
an order of magnitude of each other. There is a distinct tendency,
however, for the LC receiver to outperform the 0G receiver at high SNR
(except, of course, for Gaussian n).

It is not always true, however, that a more accurate (in terms of
MSE) estimate will yield a lower decision error. An example of this

anomaly is given here for the quadratic-plus-linear estimate:

_ o4 i =, i =2
P dog T 01q ¥ * ¢3q Y 2.32
where

i i 2 2 :

¢OQ - Pi ¢2Q(ﬂd + On) s 2.33
i _ _ 2 2

$1q = G4 [ - Lo + 4nd”] 2.34
i — — —-—

fgq = ~O0gd(8, - By . 2.35
c, 8t gapa* + ®+3)d? ci 2 (K—l)Gi/n]_l , 2.36



K = E{n4}/0i . 2.37

To demonstrate this anomalous behavior, the quadratic (QC) estimate
(2.32) is shown in Figure 2.4 along with the other curves from Figure
2.2, for Laplacian n, and in Figure 2.5 for Gaussian n. Comparison

of Yy, YQ’ and Yo reveals that for 0, the QC rule is

Pa ™

superior to the LC rule whereas for 10, the opposite is true.

PaB~
It is also interesting to note that for the Laplacian case, the 0G

rule is superior to the QC rule for both values of Pap* The probabil-
ity of error for the two rules is plotted in Figure 2.6 for Gaussian
and Laplacian PDF's. (The FOB PDF has an infinite kurtosis, K, so
the QC rule is identical to the LC rule.) These plots display the
relative superiority of the LC rule for higher SNR. Hence, the added
accuracy of estimation only degrades performance in this case.

To further illustrate this anomaly, PE is shown in Table 2.1, for

the following rules:

LC - the linearly constrained rule (2.13),

QC - the quadratically constrained rule (2.32),

CC - the cubically constrained rule,

CNQ - the cubically constrained rule, but with no quadratic term,
MIN - the minimum PE rule,

MAX - the maximum PE* rule, decide B, 1f P, > %,

*
The maximum PE rule makes no use of the observations, simply always
choosing the hypothesis with the largest prior probability.
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Gaussian
noise

Laplacian
noise

Table 2.1. Probability of Error (10 loglO(PE)) for Various
Binary Decision Rules
PaB 0 5 10
Py
MIN -10.06 MIN -15.37 MIN -67.74
QC -10.05 QC -14.50 CC -66.54
0.1 LC -10.00 LC -13.54 LC -65.45
: cc -10.00 CNQ -13.41 CNQ -42.31
CNQ -10.00 MAX -10.00 QC -39.90
MAX -10.00 cc - 0.92 MAX -10.00
MIN - 5.97 MIN -12.93 MIN -65.82
QC - 5.96 LC -12.92 LC -65.81
0.3 LC - 5.96 QC -12.30 CNQ -50.84
: CNQ - 5.51 CNQ - 9.57 QC -49.20
MAX - 5.23 MAX - 5.23 cC -14.87
cC - 4.9 CC - 4.94 MAX - 5.23
MIN - 5.11 MIN -12.45 MIN -65.43
LC - 5.11 LC -12.45 LC -65.43
0.49 QC - 5.11 QC -12.45 CNQ -65.37
CNQ - 4.91 CNQ - 9.48 QC -65.28
cC - 4.91 CC - 9.46 cC -61.70
MAX - 3.10 MAX - 3.10 MAX - 3.10
PaB 0 5 10
By
MIN -10.00 MIN -14.92 MIN -35.94
MAX -10.00 QC -14.29 LC -35.47
6.1 CC -10.00 CNQ -14.01 CNQ -33.41
2 LC - 9.99 LC -13.41 QC -31.96
CNQ - 9.99 MAX -10.00 MAX -10.00
QC - 9.99 CC - 0.61 cc - 0.03
MIN - 6.46 MIN -13.10 MIN -34.10
CC -~ 6.18 LC -13.10 LC -33.92
4.5 CNQ - 6.14 QC -12.85 QC -32.10
" QC - 5.76 CNQ -11.91 CNQ -31.94
LC - 5.76 CC - 6.68 cc -17.79
MAX - 5.23 MAX - 5.23 MAX - 5.23
MIN - 6.08 MIN -12.72 MIN -33.72
LC - 6.08 ¢ -12.72 LC -33.72
3 .05 QC - 6.08 QC -12.72 CNQ -33.72
’ CNQ - 6.04 CNQ -12.08 - QC -33.71
cC - 6.04 -+ CcC -12.08 CC -33.42
MAX - 3.10 MAX - 3.10 MAX - 3.10
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for Gaussian and Laplacian n, Pl = 0.1, 0.3, 0.49, and for de = 0,
5, 10. Note that the term "cubically constrained,' for example, implies
that all order terms up to the third order are included in the con-
straint, unless otherwise noted. Hence, the QNC rule computes terms
of third and first orders. The first four rules listed above were the
most robust of all possible polynomial forms up to third degree. The
CC rule, while performing poorly in general, is included to emphasize
the extreme degradation in performance that is possible with added
estimation accuracy. This section illustrates the seemingly strange
fact that a more accurate estimate may yield a larger probability of
decision error. Ihe conclusion to be drawn from this is that the type
of estimation constraint is highly important to the performance of the
estimate. Of course, in the limit as the number of terms in the
constraint approaches infinity, i.e., as the estimation error goes to

zero, the decision error must approach the minimum possible value.

4. Equivalences and Properties of Posterior Estimates

A part of the theoretical background for the methodology is a
number of equivalences and properties for posterior probabilities and
their estimates developed by Gardner [3,6,7]. For brevity, they will
be summarize& here without proof; ATo do this, it is first necessary
to introduce the following definitions:*

1) a random function called a random indicator:

1 if X occurs
§(X) = 2.38

0 otherwise,

* x -
The use of the symbols and has been interchanged from the usage
in [3,6,7].



2)

3)

4)

5)
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H, the Hilbert space generated by the finite mean-square
(MS) images of all functionals of the observables, v,

L, any Hilbert subspace of H,

S(X)/y, the orthogonal projection (OP) of &(X) omnto H,
and

S(X)/y, the OP of &(X) onto L.

With these definitions and the basic properties of probabilities and

OP's, the equivalences presented in Subsection 4.1 can be derived.

4.1 Equivalences

D)

2)

3)

4)

5)

6)

g(X)/y is MS equivalent to the OP of S(X)/y onto L. This
follows from the smoothing property of OP's [21,22].

The OP, S(X)/y, is MS equivalent to the mean of &(X),
conditioned on y. This follows from the smoothing property
of expectations [22,23] and the orthogonality condition.

The conditional mean, E{6(X)/Y}, is the posterior probabil-
ity P[X/Y]. This is true by definition [23].

The OP of &§(X) onto H, S(X)/y, is MS equivalent to the
random posterior probability P[X/y]. This follows from
equivalences 2 and 3.

The OP of &(X) onto L is MS equivalent to the OP of
P[X/y] onto L, denoted ﬁ[X/y]- This follows from
equivalences 1-4.

P[X/y] is MS equivalent to the MMSE estimator of &(X),
given y [24]. This follows from equivalence 4 and the

OP theorem [21].



7) ﬁ[X/y] is MS equivalent to the L-constrained MMSE (L-MMSE)
estimator of P[X/y], and of &(X), given y. This follows

from equivalence 5 and the OP theorem.

4.2  Properties

Throughout this thesis, it is assumed that the subspace L con-~
tains zero-variance random variables (i.e., non-random variables), so
that L-MMSE estimates e#hibit zero-mean L-constrained minimum variance
error. Let ¢ denote the null event and  the certain event. From
the equivalences in Section 4.1 and the linearity of OP operators [21],
the following properties of L-MMSE estimators for posterior probabili-
ties can be verified:

1) L-MMSE estimates of posteriors are non-negative on the

average:
E{P[X/y]} = P[x] > 0 . 2.39

2) L-MMSE estimates of the posterior probability of the certain

event edual one (1):
PIR/Y] = 1 . 2.40

3) L-MMSE estimates of the posterior probability of the union of
two mutually exclusive events equal the sum of L-MMSE esti-

mates of the posterior probabilities of the individual events:

P[XU Z/Y] = P[X/Y] + P[z/Y], XNZ=¢ . 2.41
4) L-MMSE estimates for posterior probabilities possess the
following higher level properties, which follow from the

basic properties 1-3:
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5)

6)

24

P[¢/Y] = 0 , 2.42
Plxnz/v] = P[x/Y]- BrxnzS/y], 2.43
PIXS/Y] = 1 - P[x/Y] , 2.44
P[XU Z/Y] = P[X/Y] + P[2/Y] - PIX N 2/¥], 2.45
E{P[X/Y]} < E{P[z/Y]} if XcCz . 2.46

The above properties parallel those of true prbbabilities
although 2.39 and 2.46 are weaker than the corresponding
properties (for which E{+} 1is deleted) for true probabili-
ties.

L-MMSE estimates of joint posteriors sum to L-MMSE estimates

of corresponding marginal posteriors:

% ﬁ[XLJZi/Y] = PIX/Y] 2.47
i
5 ﬁ[zi/Y] = 1. 2.48
i

L-MMSE estimates of posterior probabilities decompose into
the product of the prior probability and the L-MMSE estimate

of the ratio of PDF's f /£, i.e.,
y/x' "y

P[X/Y] = P[X] [fy/x(Y/X)/fy(Y)] ) 2.49

where [°¢] denotes the L-MMSE estimate of the random vari-
able within the brackets. Let x be a discrete random vari-
able with realizations {Xi}, and let E{+/Y} denote wide

sense conditional expectation [25].
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7) Wide sense, relative to L, conditional moments are MS
equivalent to the moments of the L-MMSE estimated posterior
distribution:

B/ =T X2 B, ) 2.50
; 1 ily

It should be mentioned that most of the results in this section extend
to continuously distributed posteriors, which can be used, for example,

in a study of signal and parameter estimation.

5. Equivalence of the Constrained Bayesian Methodology to the

Generalized Signal-to-Noise Ratio Methodology

5.1 Definition of GSNR and Its Relation to Other SNR Definitions (for
Binary Hypotheses)
Gardner [8] has proposed a generalized measure of signal-to-noise
ratio, denoted by GSNR, which includes several different definitions
of SNR as special cases. The definition applies to the binary test of

a statistic T which is a functional of the observations:
T=0¢) < Y, . 2.51
where Yy 1is a threshold level and Hi’ i=1,2 are mutually exclusive

and exhaustive hypotheses being tested. For this situation, the

definition of GSNR is
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(E{t/H,} - E{t/0,}1°
o Var{T/Hl} + (1-a) Var{T/Hz} 2

GSNR = 0<ac<l. 2 5%

Depending on the choice of &, this measure includes deflection (D)
(=0, H2 corresponds to no signal present) [26-33] and complementary

deflection (5) (a=1, H2 corresponds to no signal present) [34,35].
In addition, for situations in which Var{T/Hl} = Var{T/Hz}, such as
sure signals in additive noise, GSNR is equivalent to both D and D
for any choice of «. However, when T dis to be used in the test
2.51, a more natural choice would seem to be a==Pl, the prior proba-
bility of Hl'
5.2 The Unconstrained and the Constrained GSNR Methodologies

In [8] it is proved that the decision function which maximizes
GSNR (using o= Pl) subject to a zero-bias constraint is identical to
the decision function which minimizes PE. When structural constraints
are imposed on the decision function ¢, a modified general equivalence
exists as shown in [8]. This result is given here as a theorem and

proved in Appendix I.* To facilitate the comparison of the L-

constrained PE-type approach (CBM) with the L-constrained GSNR ap-

proach, the probability-estimation decision rule (2.1) from the CBM
is reexpressed, using the sum-to-one property of posterior estimates

(Property 5, 2.48), by

*
My contributions to this result are explained in the acknowledgements
in [8]. -
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sl
Opp(Y) < Ypp s 2.53
H
2
where
A -
Ypg (PZ/Pl 1)/2 2.54
and
CIDPE(Y) = Pl/Y/Pl -1 , 2.55

and the maximum~GSNR decision rule is expressed (with a-= Pl) by

iy

>
%esnr Y < Yosnr - ‘ 2.56
5y

Then, the result for L-constraints is given by the following theorem.

Theorem: If the minimum attainable PE is nonzero and =P in GSNR,

1
then for any L-constraint the L-constrained maximum-GSNR decision

function, subject to the zero-bias constraint

is identical (except for an arbitrary scale factor R) to the L-

constrained minimum-MSE probability-estimation decision function:

o 2.58

csnp () = Bopp(+)

These equivalences have a two-way effect. First, the second
equivalence (constrained) provides considerable justification for the
use of the CBM since maximum-SNR techniques are well established,
widely used, and reasonably well understood. Second, since the CBM
is linked to the optimum Bayes theory by formulation, this gives much

insight into and justification for the maximum~GSNR approach.
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The fact that the two methodologies are equivalent can be under-
stood both intuitively and analytically from their relationship in
terms of quadratic performance measures. The CBM performs minimum
mean-squared error estimation of posterior probabilities, and SNR
inherently involves quadratic operations: the square of the difference
of the conditional means divided by the variances of the statistic.

It is nevertheless surprising that the particular quadratic forms that

arise in the two approaches are identical.

5.3 Extension to Multiple Signal Detection

There does not appear to be a natural extension of the single SNR
performance measure for binary hypotheses to the multiple hypothesis
testing problem. However, a definition has been found for a set of
individual SNR measures which reduces to the binary case properly and
which is equivalent, in the sense described in Section 5.2, to the
constrained and unconstrained Bayesian methodologies. The definition

applies to the testing of the hypotheses

Hi: Y is a sample from Yi» i=1,...,M 2.59

with the test statistics Ty = @i(Y) in the decision rule: 'decide

Hi if and only if

2 1"
aT, + bi > ajrj + bj Vi, A 2.60

where the gains and biases {ai,bi} are to be specified. The GSNR

definition for multiple hypotheses is then
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[B{r, /u,} - E{1 /H }1?

GSNR(1) 2.61

P, Var{t /H.} + (1-2,) Var{Ti/ﬁi}

]

subject to E{Ti} 0, where ﬁ; denotes the complement of the hypo-
thesis Hi’ i.e., not Hi. Now, taking a single hypothesis pair,
e.g., (Hi, ﬁi), the results for binary hypotheses apply directly.

Thus, the equivalence between the maximum-GSNR methodology and the

CBM holds for every i and therefore in general.
6. Solution for L-MMSE Estimates of Posterior Probabilities

6.1 General Solution
For applications to signal detection problems, it will be assumed
that the subspace L corresponds to linear functionals of images of

prescribed nonlinear transformations of the observables, y, i.e.,

PIx/Y] = 2[{g(y,v), v € V}]

L{gy(t), £t € T}, v), v € V}] 2.62

where & is a linear functional to be optimized, T is an indexing
set which is a subset of the reals, and the indexing set V is a
Cartesian product of subsets of the reals, and {g(°,v), v e V} is a

prescribed set of functionals. As mentioned in Section 4.2, it is

assumed that there exists a v, in V such that g(Y,vo) 1. For
an illustrative example of the quantities g and V, see the specific

example at the end of the next subsection.
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For constraints of the above type, the necessary-and-sufficient

condition obtained from the Hilbert space OP theorem [6,25],

E{P[X/Y]z} = E{P[X/Y]z}

]

1]

P[X] E{z/X} vz e L 2.63

can be reduced to a set of explicit linear equations. Summarizing the

results obtained by Gardner [6] using the Riesz representation [25],
PIX/Y] = <g(¥),0> , 2.64

where ¢ 1is the Riesz representor for the optimum linear functional

20, these equations are
<E{g(y,v)g(y,*)},6(+)> = P[X] E{g(y,v)/X} VveV. 2.65

Since a constant term is included in the comnstraint, the solution for
ﬁ. is of the form
ily
P, = +T | .
Pi/y Pi[l Ti(Y)] 5 2.66

where the functional Ty includes only terms that depend on Y.

6.2 General Example

The following is an example of the application of 2.65, to which
all of the problems in this thesis will conform (including analogous
discrete-time problems). Consider an observation Y that is a sample
of a continuous parameter process {y(t); t € T}, dependent probabil-
istically on the signgl s(t) which has M realizations
{Si(t); t e T}?=l' By H; denote the hypothesis that s is 8 -
Let the estimation constraint be a generalized Nth—order Volterra

polynomial [7,36] in Y. Then the estimated posterior takes the form



N
=z f f¢l(Tl,---,T )X(Ty). Y(T )dt, . 2.67
n=0 T...T
and the solution for {¢n}n_ is expressed in terms of the N+1 simul-

taneous linear equations from 2.65:

fo (
n+k)
X ¢ (Tl,...,T M (T ...,Tn, tl,...,tk)dTl...dTn

n=0 T...T
P (§% (t ...,tk) s th e T, j=1,...,k;
k=1,...,N 2.68
where
(k) N = X
M}_’. (tl,...,tk) = E{Y(tl)...Y(tk)} 5 2.69
(k) e
/H (tl,...,t y = E{Y(t ). .Y(tk)/Hi} . 2.70

Note that 2.67-2.70 are just the continuous-time counterpart of 2.3-2.6.
Gardner has shown that explicit solutions to these integral equations
can be obtained for a.number of interesting signal detection (and
estimation) problems. Chapters IV through VII describe these prelimin-
ary results and extend them to a wider range of signal detection prob-
lems. Chapter VI investigates constraints of this form in more depth
for additive white Gaussian noise (WGN) and signals whose autocorrela-
tion functions are separable. Chapters IV and V examine the classes

of linear (N=1) and quadratic (N=2) constraints, respectively, and
Chapter VII investigates the zero-memory noplinearity (ZNL) /correlator

structure. In all cases, receiver structures and/or performance are
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analyzed. The example 2.67 has the natural discrete-time counterpart,

which will be used in Chapters III, V, and VII:

A N q 9 — —
Poo= L | T oo T oX,...,i)7. . .1 | . 2.71
LT g i=1 i-1 "1 s B

A specific (quadratic) example of the above is given below for N= 2:

P, =06t + I o () Y. + z T ooT(i,k) Y.Y 2.72
i/Y 0 g 1 3 j=1 k=1 2 i’k

where Q} & {¢3, ¢i, ¢Z} is the solution to the following set of
l+-q4-q2 linear algebraic equations

QLM (1y,00051)) + Jz oM (1)

q
LR IR RS T RN R
RS

(n) ; . - . -
P /H (ll""’ln) ; n=0,1,2; Vj,k=1,...,q

2.73

where M;P) and MSP) are as defined in 2.69 and 2.70. Note that for

/H

this example, g and V of the general formulation are given by
{g(¥,v), vevl=1{1, v(), Y(T)Y(O); t eT, (t,0) € TxT},
2.74

Vv = {¢, T, TxT} . ' 2.75
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7. Comparison with Prior Methodologies

As mentioned in Section I.5, ;he CBM is quite different from
approaches based on the estimation of conditional density functioné,
although there are two such approaches that appear somewhat similar
to the CBM.

The first is Jaynes' approach to estimating prior probabilities

[18, see also 19] using a maximum entropy criterion:

A M
Max H= - I P, log(?.) , 2.76
i=1 *

with the constraints that the estimates must be positive and sum to one.
The estimates are obtained from linear equations that are fully speci-
fied by (prior) moments of the distribution to be estimated. While
lseeming similar to the CBM, this approach is not applicable to the same
types of problems. If Jaynes' approach is applied to the estimation

of posterior probabilities, then specification of posterior moments

is necessary, and these moments are all that one is really after in
applications to signal estimation (and some applications to signal
detection). For example, the posterior mean E{S/Y} of a random sig-
nal parameter is the MMSE estimate of that parameter, and to require
its specification is to require the solution of the "signal estimation"
problem. In contrast, the CBM requires specification of conditional
moments of the observations (e.g., E{Y/S})--quantities that can in
many applications be specified (or estimated) without first solving the

"signal estimation" problem.



The approach which appears to be most similar to the CBM is Brick
and Zames' approach based on Wiener canonical expansions [9,10],
described in more detail iﬁ Chapter VI. This approach is based on
truncated series expansions of likelihood functions, and like the
CBM, requires knowledge of conditional means of prescribed functionals
of the observations, but unlike the CBM; does not require the solution
of linear equatioms. Thus, while the CBM is probably superior for
low-order constraints since it yields optimum approximations with
specification of only a few low-order moments required, Brick and
Zames' approach may be preferable for applications where many moments
can be computed or estimated (e.g., for ergodic models and adaptive
procedures). The truncated series is not optimum in any sense,
however, as are the functionals obtained via the CBM, and there
appears to be no way to gain insight into appropriate choices of bases
for the expansioﬁs. Thus, Brick and Zames' approach is more ad hoc
than the CBM.

Another approach that appears to be related to the two approaches
described above is the series expansion of conditional densities of
Schwartz [20]. However, it appears that only the single random vari-
able observation problem is studied, and extension to multiple random
variables might considerably complicate the procedure. Extension to

waveform observations is not straightforward.
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Figure 2.1. MNormalized mean-squared error in
estimating a posterior probability.
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Observation, Y

(a)

Py Bigy

<

Observation, Y
(b)

Figure 2.2. Estimated and true posterior probabilities with the densities

of the observations for Laplacian noise with P
and o4 = 0 (a), 10 (b).

1= 0.1,
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Figure 2.3.

Probability of error for the linearly constrained
binary detector (PEL(Pl)) and for the optimum-
for-Gaussian noise binary detector (PEG(Pl))

with (a) Gaussian (2.30), (b) Laplacian (2.12),
and (c) FOB (2.31) noise distributions.
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Figure 2.4. Linear and quadratic estimated posterior probabilities
with the true posteriors and the densities of the
observations for Laplacian noise, with Pl = 0.1
and Pgp = 0 (a), 10 (b).

Figure 2.5. Same as Figure 2.4 for Gaussian noise.
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CHAPTER III

COMPARISON OF ESTIMATION-BASED DECISION RULES

1. Introduction
The decision rule that chooses the mode (maximum) of the estimated

posterior distribution, i.e.,

N

Ma 3.1

ix Py

referred to by Gardner [3,7] as the hypothesis tester's* (HT) rule,
serves as the basis for the CBM. Assuming that the observations Y
depend probabilistically on a discretely distributed random g-vector
X, with realization gi, given Hi; an alternative decision rule to
the HT rule can be based on the L-MMSE estimate of x, (g/Y) instead
of the L-MMSE estimate of Pi/y' Specifically, the decision rule that
chooses the closest value in the rangev {gi}ifl to the estimate, i.e.,

win [Z/Y - X, ]| 3.2
i

where ] is an appropriate norm for the parameter space, is such
a rule. Following the terminology of Ziv and Zakai [37], Gardner [3,7]
calls 3.2 the estimation theorist's (ET) rule.

Now, when constructing a decision rule, such as 3.2, based on a

structurally constrained estimate of some quantity x, the most obvi-

ous question to ask is '"what quantity should be estimated?'" The answer

*
This term is derived from the original minimum PE rule which comes
from the Bayes decision theoretic approach to hypothesis testing.



to this question is essential to the comparison of the CBM to other
L-MMSE-estimation-based methodologies. The answer is partially given
by property 7 in Chapter II, subsection 4.2, namely that the L-MMSE
estimate of any quantity, referred to as a parameter (e.g., of a
signal), can be obtained from the L-MMSE estimates of posterior
probabilities:

A

M
% 2y Pi/Y >

XY = 3.3

i=1

i.e., that the L-MMSE estimate of x is the mean of the estimated
posterior distribution. Using this fact, the posterior estimates can
be used to compute the L-MMSE estimate of a more prefefable parameter.
This reveals that for the particular L-constraint being used, the

"sufficient statistics," i.e., they

posterior estimates form a set of
contain all the relevant information there is for L-MMSE estimation.
The relation 3.3 is analogous to, and in fact, reduces to the well-

known result for no constraint that the MMSE estimate of x, given Y,

is the conditional mean of x, given Y, i.e.,

~

Borse =

i

P . 3.4

X. .
1t i/Y

™Mz

The comparison of the HT and ET rules is facilitated by the re-
expression of 3.2. Expanding the norm into an inner product and chang-
ing the minimization into the maximization of the negative of the inmer

product yields, after a little manipulation,

= 1 :
Max(X,X,) - 5 Xy 3.5
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which is equivalent to

M N 1
MaXZXiiP'/ -5 %y 3.6
i j=1 47 *
where
4% %, 3.7
1] -1 -]
and, e.g., Xg is the centered version of gi (2.4). DNote that this
is identical in form to the optimum rule for detecting M signals in
additive WGN, except for the addition of the term p-lln(Pi) [11, ps.
259], where p 1is a suitably defined SNR.

Garner [3,7] shows that the two rules 3.1 and 3.2 are equivalent
for binary (M=2) signals and that the HT rule without constraints is
optimum, so cannot be worse than the unconstrained ET rule. He also
shows that in general for L-constraints:

1 neither rule is always superior or equivalent to the other,

and

2) the rules are equivalent when the quantities zi (=1 are

mutually orthogonal and isonormal (OI), i.e.,
X., X.)=6,, E, i,j=1,...,M . 3.8

1 =] 1]

In light of the fact that the posterior estimates are MS equivélent to
L-MMSE estimates of the random indicator functions (see Subsections
ITI.4.1 and II.2.2), this can be interpreted as the equivalence among
OI bases, i.e., decisions can be rade equally well based on any set of

OI vector quantities.



Another aspect to the equivalence of the posterior estimates to

estimates of indicators is that the HT rule can be regarded as an ET

rule.

and ET rules is the comparison among various ET rules.

Thus, an alternative perspective of the comparison of the HT

The purpose

of this chapter is to extend and generalize the above results by

establishing some conditions under which one rule is equivalent or

superior to the other.

In terms of the above mentioned alternate

perspective, this amounts to investigating what are appropriate para-

meters to be estimated.

2

2.1 Arbitrary Binary Signals

Equivalence of the HT and ET Rules

For binary signals, substituting 3.3 into 3.6 and using the sum-

to-one property of posterior estimates (2.48) yields after a little’

manipulation,

A 1
Max (By )y - X
i,j
i#j

ii

Since i#j in the above expression, the term Xi'

3.9 is equivalent to

+ (1-

A 1
Max (Bypy = D) gy - %450
i,]
i#]
Now, since X.,.-X., equals P,
ii ij j

if and only if Pi/Y > Pj/Y’

HT and ET rules are equivalent for binary signals.

~

P

Hzi_

179 i

J

%l > o,

3.9

is constant, so

3.10

. A 1
and since Pi/Y > 2

then 3.10 is equivalent to 3.1 and the
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2.2 Regular Simplex M-ary Signals
The equivalence of the HT and ET rules can be extended from OI

%
signals (3.8) [3,7] to a related class of signals, called regular

simplex (RS) signals [38-45] for which

Xij =E M 6ij -1)/M-1) . 3.11

Substituting either 3.8 or 3.11 into 3.6 yields 3.1 after very little
manipulation, and the two rules are thereby shown equivalent for RS
signals. As mentioned in the introductory section, an interesting
example of this equivalence is for x = §, where ¢ is the random

indicator vector

Qg)i = Gij , given Hj s i=1,...,M . 3.12

For this case, 3.11 (and 3.8) is satisfied, and the parameter estimate
is identical to the posterior estimate (see Subsection II.4.1, Equiva-
lence 7). Note that the results of this section are valid for any

L-constraints, for any type of observations (e.g., not only sure sig-
nals or additive noise), and for arbitrary prior probability distribu-

tions.

2.3 Linear Estimates
To obtain further results, linear constraints are focused on in

"this subsection. 1In Chapter IV, the linear estimate is shown to be

*
An OI set with M elements lies in a M-1 dimensional space in which
the centered version of the set is a RS. Thus, if the set {gi} is

0I, the set {Zi} is a RS. The extension, however, -allows for a set

that is an arbitrary translation of an OI set.



i)Y = Pi[l + Ti] s 4.5

where

>

T,
i

fQ(t,T) M?/Hi(t) Y(t) dt dt , 4.6
T T

and Q is the solution to the integral equation

fM;Z)@,T) Q(t,0) dt = §(¢ - 0) . 4.3
T

Let W be a factor of Q, i.e.,
Q(t,0) =fW(t,T) W(t,0) dt , 313
T
then the whitened version of ; can be defined as
— A — )
z(t) = | W(t,0) y(0o) do , 3.14
T
and z is called white since, from 3.14,
E{z(t) z(T)} = 8¢t - T) . 3.15

Now consider the linear vector space S spanned by the M-1 dimensional
set of functions ME/H (t)}g;l. Denote an orthonormal basis for S
i

by {Si(t)}l;_I where N < M. Then denote the representation for

=.l’
MZ/Hi(t)’ relative to this basis, by u;, i.e.,
_ T
Mz, (P Ty 20 3.16
u é./.s(t)M__ (t) dt 3.17
—1i == z/Hi > y

T
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f Si(t) Sj (t) dt = 6ij . 3.18
T

Using this representation, 3.5 can be written as
=p [l +u 2], 3.19

where _z is the representation of the projection of zkt) onto S:

ne>

f’z‘(t) x(t) dt . 3.20
T

z
Substituting 3.19 into 3.3 gives

_.T p— =
X P IL+1 Z] . 3.2T

b >
1
M=

i=1

Subtracting vMX from both sides of 3.21 yields the simpler expression

zZ M —T —
X= 2 X, P, u, z 3.22
= i_q L, A4 — —
i=1 _
Now defining
M
K—= I P, . X , 3.23
ux o1 1714
3.22 and 3.6 are, after some manipulation, simply
e T —
X=K_-2 , 3.24
A ix =
Max XC Ko Z - 2%, . ' 3.25
; 1 oEx -~ 2 Tii

Substituting 3.19 into 3.1, the HT rule for linear estimates is
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Max P, [1,+§§Z] . 3.26
i

Now, if the HT rule is not degenerate (see Section 3), i.e., if there

A

exists a vector Zi such that P,

i/Y is the largest estimate, for each

i=1,...,M, then general necessary-and-sufficient conditions can be
derived under which the rules 3.25 (ET) and 3.26 (HT) are equivalent.

If the HT rule is degenerate, then sufficient conditions for equivalence
can be derived although the results afe of little practical importance.
Assuming the HT rule is not degenerate, the rules are equivalent if

and only if both 3.25 and 3.26 partition the observation space into

the same decision regions. This means that one rule must be at most

a scaled shifted version of the other, where the scale and shift must

be independent of i, i.e.,

Z] = a X KI—E-lxii]+b+£Tz > 327

_T
Ei =i Tux = 2

P.[1 +
1

where a > 0 and b are arbitrary scalars and ¢ 1is an arbitrary
N-vector. Since 3.27 must hold for each Z, the following two condi-

tions must hold for equivalence:

P, = b -2a X, 3.28a
=akK_X. +c , i=1,...,M . 3.28b
Hx =

These two conditions are met for equal priors by any x such that

X,.=d6,, +e , 3.29
ij ij

where d > 0 and e are constants. This condition is satisfied by

any RS (3.11) of M-1 dimensions (e = -d/M) which coincides with the



general result of Section 2.2. 1In addition, if the priors are equal,

then 3.28 is satisfied by any parameter set of the form

=aAyuy., , i=l,...,M , 3.30

where a 1is a constant, and where A 1is a NxN matrix satisfying

T -1
A"A = R-~- .
T 3.31

where I 1is the NxN identity matrix and Kﬁi is defined in 3.23 with
X replaced by U. This is verified by substituting 3.30 and 3.31 into
3.28 and noting that for equal priors, c =0 1in 3.28b. Note that a
solution to 3.31 for A always exists since Kﬁﬂ' is easily shown to
be positive definite. Equation 3.28a is interesting in that, for the
equivalence of the two rules, the energies Xii can be equal if and
only if the priors are equal, and if either is unequal, a low energy
signal must be compensated by a high prior probability, and conversely.
Perhaps more interesting, however, is 3.28b, which says that the dimen-
sion Rg of the space spanned by {zg}, referred to as the rank of
the matrix whose it-h row vector is E&, for the two rules to be

equivalent. Since RE must be less than M, it can be concluded

that for equivalence,

Ry SRS M-1 . 3.32
==

Parameters satisfying 3.28 can be constructed for which RE
ranges from Rﬂ to M-1 for the case Rﬁ =1, M= 3, which shows that
such parameters exist for unequal priors at least for some cases,
although this has not been proved yet in general. Also not proved,

except for equal priors, is the conjecture that if a parameter set
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{X&} with rank RE greater than Rﬁ is found satisfying 3.28, then

there must exist an equivalent parameter x~ of rank Rﬁ’ with the

relationship
X7 =AX, +7Y, 3.33
b ==, 2 16

where
XXy =0 vi,j = 1 M 3.34
_i"j H 5] 200 ® .

Whether or not there exist parameters satisfying 7.27, a natural
question is "Does a parameter x exist for which the ET_ rule is
better than the HT rule (in terms of PE performance)?'" This question
is approached in Section 4. The importance of finding parameters X
which satisfy 3.28 for the case of unequal priors is reduced by the
questionable appropriateness of the ET rule for umequal priors. Per-
haps a more suitable rule would take account of prior imbalances other
than by weighting the more likely points mofe heavily in the estimate.
For example, the 0G rule (see Section 1) includes the term p“l ln(Pi).
This would then change condition 3.28.

As seen above, when the priors are not equal, the comparison of
the HT and ET rules is not easy. The following example is offered as
an indication of the kind of behavior the two rules can have for un-
equal priors. Shown in Figure 3.1 are plots of PE for the two rules
in detecting a ternary random variable, x, in additive noise, n,
where the parameter for the ET rule is the "signal,”" x. The observa-

tion, vy, 1is

Y = Xi + N, i= 1,2,3 , 3.35
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where Xi= i-2 and Pl==P3. The three plots are for Gaussian (2.30),

Laplacian (2.12), and FOB (2.31) noise, respectively, each for various

priors, P2. It can be seen that the ET rule is superior to the HT

rule for high SNR values in all cases. Typically, the HT rule becomes

superior for SNR values below 1 to 7dB for P2 > %3 and for SNR

values below -4 to -7dB for P, < 1 whereas the rules are equivalent

2 " 2°
for P2 = %u The exception to this is that for Gaussian noise, with
P2 <-%, the ET rule is superior to the HT rule for all values of SNR,

although for the other noise types, the superiority of the HT rule is
only at levels of PE around l—-Min(Pl,Pz), which is attainable simply

by choosing Hi if Pi is largest.

3. Degeneracies in the HT Rule

For "signals" with rank RE < M-1, it is possible for a degener-
acy to occur in the HT test. The problem arises whenever some of the
signals cannot be detected. An example which is easily visualized is
shown in Figure 3.2a for M=5, Ri= 2, and equal priors. For this
configuration, H5 is never selected, Hi always being selected
whenever :Z is in the ith quadrant.

A related problem can occur whenever M > 2, namely that the

neighborhood of a signal conditional mean,.E,, is not in the appropriate
decision region,é%&. This degeneracy is illustrated by the signal set
in Figure 3.2b. The transformation W (3.14) attempts to correct this
situation, but when the signal set differs too much from a hyperellip-

soidal shape, a degeneracy can remain. The larger M is for a given

Rﬁ’ the more the signal set must conform to a hyperellipsoidal shape



if this degeneracy is to be avoided, assuming the priors maintain suffi-
cient "continuity" as M increases. In fact, it can be shown that for
fixed Rﬁ’ as M+, any nondegenerate signal set must approach a
hypersphere if the priors are equal. For unequal priors and fixed
Rﬁ’ the class of limiting (M + ®) nondegenerate signal sets contains
only convex (hyperellipsoidal) but not hyperspheroidal sets.

With the use of a proper parameter in an ET test, however, these
HT rule degeneracies can be avoided. Alternatively, a more accurate
estimate of the posterior can avoid this problem, as illustrated
in the following example. Consider an amplitude-shift keyed (ASK)

signal in additive WGN of spectral height No:

Y(t) = Ai S(t) + N(tv) , Pi =M 7 i=1,...,M, 3.36

=4 -1
B % = 5(M# 1) . 3.37

Then the linear estimate of the posterior is

e
Pi/Y =M 7[1+ Air] 5 3.38
where
A 2 -1
T = [N0 + (M° - 1) E/12] S(t) Y(t) dt , 3.39
T
E é./‘Sz(t) dt . 3.40
T
If T >0, then PM/Y will always be the largest estimate; if T < 0,
then §1/Y will always be the largest, and if T = 0, then all the

estimates will be equal. Hence, all other signals will never be

detected. Figure 3.3 shows the minimum order constraint, Nmin’
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#

needed for the detection of all ASK signals in the absence of noise,
i.e., for high SNR. Nmin was found by assuming n==No= 0 and con-
sidering all possible constraints of order i, for i= 1,2,..., until
a constraint was found that did not possess a degeneracy. It turned
out that for each constraint order i, the structure possessing terms
of all orders up to i showed nondegenerate behavior for higher values
of M than any other ith—order constfaint. A structure was determined
A

degenerate by computing the elements {ij = ﬁj/Y/Hk}?,k=l and then

testing to make sure that

P > P

Also shown in Figure 3.3 is N . -1 to indicate the behavior of N .

, min min
as the smallest integer greater than a quantity N;ln which may have
an analytic dependence on M. This functional dependence seems to be
a power relation close to ’

/2

N' 2 (Ml
min

-1, 3.42
with c e [1.7179, 1.7266], although for M <9, especially M=9,
the actual values do not follow 3.42 exactly, as do the other points,
2 : *
being slightly lower than Nmin'
The nature of the degeracies of the HT rule are related to both
the structural constraint on the posterior estimates as well as the
structure of the signal set. To isolate the effects of these two
factors, it may be enlightening to consider the unconstrained situa-

tion. To begin, the unconstrained HT rule is optimum, being the mini-

mum PE rule. As illustrated below, the ET rule (both constrained and
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unconstrained) can behave poorly at low SNR values for degenerate
signal sets (i.e., those for which the constrained HT rule is degener-
ate), compared with nondegenerate signal sets. Consider the two
signal sets shown in Figure 3.4 for equal priors. At low SNR, the
estimate of s will be close to the mean of s, M, . In the first
set, the four signal points lie on a line and the set is degenerate.
Since the signal mean is halfway between 1, and U, the estimate
will be closest to either L, or 1, making the detection of 1y
or L% unlikely. Looking at the second set, MS is centered between
all four points, equally spaced from each. Thus, the slightest per-
turbation from the mean will favor one of the points in favor of the
others, and each of the four points is equally detectable. As illus-
trated by the previous ASK example, a similar phenomenon occurs with
the linear HT rule at all values of SNR for the same reason. Again,
this is avoided for the second signal set and is also avoided.for the
first set at high SNR values by using a higher order constraint. Thus,
it can be concluded that:

1) the lower the order of the constraint, the more important is

the signal structure to the HT rule at all SNR values, and
2) the siénal structure is very important with regard to the
degeneracy of both the constrained and unconstrained ET

rules at low SNR.

4. Strengths and Weaknesses of the ET Rule
This section serves to show that:

1) the ET rule is potentially superior to the HT rule, and
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2) the ET rule can fail when the parameter to be estimated is
inappropriately chosen.
The former is accomplished by showing that unequal "signal" energies

of ME do not affect the ETU rule as they affect the HT rule. For

/H.
i
reliable detection using a linearly constrained ET rule, the signal
means E; should fall in their respective decision regions. If very
little noise is present and a "signal" mean does not fall in its
decision region, the rule will not be asymptotically error free, as it
should. Since the appropriateness of the ET rule is questionable for
unequal priors, the case of equal priors will be focused on in this

section. Whether or not the noise is additive, represent :Z for the

linear receiver (see 3.14) as

IN]

= E% + Ek 5 given Hk 3.43

(note that E{Ek/Hk} = 0). Then the HT rule is, from 3.26,

M?x Vik + Nik . given Hk s 3.44

and the ET_ rule is, from 3.25,

M

~1 1 .

Méx M .E Xij ik -3 Xii + Uik s given Hk , 3.45
i i=1
where

g ==

Vi - Y By =) Mgy (O MrZ/Hk(t) e v
i
T

47T v - 7 -

Nik = Uy Ek ME/H.(t) Z(t) dt Vik 5 3.47

T b &
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M
M~ X,..N, . 3.48

Comparing 3.44 with 3.45, if x has an inappropriate structure (e.g.,
RE is too low), the HT rule can easily outperform the ETX rule. As
an example of this, consider a phase-shift keyed (PSK) signal in addi-

tive WGN:

Y(t) = A cos(wot + ¢i) + N(t) , given Hi 5 3.49

where the amplitude, A, 1is constant, the phases {¢i}?;l are equally
likely and uniformly spaced over the interval [-m,m], and N is a
sample from a white noise process, n, of spectral height No' From

~

4.3-4.6, the posterior estimates are

2 _ =1 .
Pi/Y =M {1 + C[Yc cos ¢i + Ys sin ¢i]} s 3.50
cé VG S TO 3.51
A .
Y =fY(t) cos w_ t dt , 3.52
c o
I
A .
YS = i}r Y(t) sin wot dt . 3.53
T

From 3.50, it is easily seen that the HT rule is equivalent to picking
the closest phase to tan—l(Ys/Yc). However, the ET¢ rule, which

estimates the signal phase, picks the closest phase to the estimate

_.l M
MTCY X ¢, sin ¢, 3.54
s . i i
i=1

©>
]

>

cCY_ S . 3.55
s
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Now, SM is a constant ranging from m/2 for M=2, to 1l as M

increases (S, = m/3 = 1.047), and

6

= L : _ :
YS =3 A T sin ¢j NS 5 given Hj 5 _ 3.56
N =fN(t) sin w t dt . 3.57
s o
T

Assuming there is no noise (N = 0, N0 = 0), C becomes 4/AT, YS/Hj

becomes %AT sin ¢j’ and

$ 2 SM'sin ¢j , given Hj 3.58

e

2 sin ¢j . 3.59

Now, for any value of M > 3, this estimate will have an associated

PE of 1 or 1 - 2M-l, so this shows that the signal phase is not an
appropriate parameter to estimate. Rather? the in-phase and quadrature
components of the signal, i.e., A cos ¢i and A sin ¢i, which form

a basis for the conditional means of the observations (see (3.16),
would be more appropriaté. It seems that an appropriate parameter
needs to have the rank of :E, although contrived counter examples

can be found. One natural example of such a full-rank parameter is

x = U. (Note that, as shown in Section 2.3, there exists a transforma-
tion A for which the ETAu rule is equivalent to the HT rule, although

this may not perform as well as the ETU rule.) For large SNR, using

3.46 and 3.15,

L ou-ezzll-1, ‘ 3.60
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and replacing x with U in 3.45, the ETU rule becomes

M?x Vik + Nik s given Hk R .61
where
- A 1
Vik = Vik 2 Vii 5 3.62

Since both 3.44 and 3.62 involve the same noise terms, the two rules

can be compared using the measures

A
D, =Min V., -V, 5 3.63
HT 14k kk ik
D 4 Min V~, - V7 3.64
ET ik kk ik

The reasoning behind the choice of these measures is that for a given

Hk’ the correct decision will be made only if the value of V (using

kk

the HT rule 3.44 for example) is larger than the value of any other

Vik' For high SNR, the amount of PE will depend only on the term

Vik + Nik for which Vik is closest to ka, given Hk. Thus, as

long as both DHT and DET are positive, the larger quantity will

indicate the asymptotically superior rule. Substituting 3.62 into

3.64 yields
D =Minx (V. +V - 2V,.) 3.65
ET .02 Wik T Viz ik’ - :
i#k
Using the facts that
Min{f(x)} + Min{g(x)} < Min{f(x) + g(x)} 3.66

X X X



(where equality holds if and only if the minima of f and g occur
for the same value of x) and that the indices in the definition of
DHT (3.63) can be interchanged with no effect on the value of D
it follows that

HT’

Min(V,, -V_ )+ Min(V,, -V .) < Min(V, . +V_.-2V, ) , 3.67
ik kk ik Kt ii ki 14k kk ii ik
from which it follows that
<D s 3.68

DHT = ET

If the energies Vii are equal, 3.68 will be satisfied with equality,
and the two rules are equivalent. However, if the energies are not
all equal, the two rules cannot be equivalent because of condition
3.28a, yet 3.68 can still be satisfied with equality. This happens
when there are many index pairs (i,k) that simultaneously minimize the
expressions in 3.63 and 3.64,'but when there are more such pairs for

D than for D

uT ET? in which case the ET rule is superior. It is

easily shown that the reverse situation cannot occur, so whenever 3.68
is satisfied with equality for unequal energies, the ET rule is
superior. This seems to be an uncommon, almost contrived situation,
as illustrated by the signal set in Figurg 3.5. Setting aside this
anomaly, the behavior of the two rules is nicely illustrated by the
following example, shown in Figure 3.6. The four points on the coor-
dinate axes are fixed, and the points on the diagonals vary in loca-
tion as a ranges from 0 to 1. Plotted in Figure 3.7 are the values

of DHT(a) and DET(a) over this range:

D,..(a) = Min(1l - a, 2a2

uT - a) , 3.69
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DET(a) = M:Ln(2 a+a

For a_i-%, the HT rule is degenerate, so the ET rule is superior.
Except for the value of a =-%, for which the signal energies are
equal (making the two rules equivalent), the ET rule is everywhere
superior to the HT rule.

Although there appears to be no way in general to specify what
quantities are the best to estimate, those parameters with rank equal
to that of the "signal" set are superior to others considered here.

Thus, the conditional means of the "signal" seem to provide appropri-

ate parameters of full rank (dimension) in all cases.

5. Summary
The purpose of this chapter is to compare the performance of the

hypothesis tester's (HT) and estimation theorist's (ET) rules. In

summary, the results of the comparison are listed and briefly discussed.

Results originally obtained by Gardner [3,7] are marked with a (G).

1) (G) Neither rule is always equivalent or superior to the

other. The main function of this chapter, then, is to estab-

lish some conditions under which one is equivalent or
superior to the other.
2) (G) The rules are equivalent for binary hypotheses. This

result is one of the most important due to its generality,

although its implications are limited since any two binary

tests using the same statistics are already very similar.

3) (G) The rules are equivalent when the parameters being used

by the ET rule are mutually orthogonal and isonormal (OI).

, 2a”) 3.70
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4)

5)

6)

65

This result is useful for applicaﬁions in which the para-
meters being estimated are to be chosen. However, for most
ordinary estimation problems, the parameters present in the
signals, such as phases, amplitudes, or frequencies, are not
vector quantities, and as such, are not orthogonal. Aside
from these pragmatics, the result is useful as a benchmark
in partitioning the class of detection problems with respect
to the classes of parameters, into recognizable pieces so
the general question of superiority can at least be partially
answered.
The rules are equivalent for regular simplex (RS) parameters.
An RS set is just a translation of an OI parameter set in
the next higher dimension, so this extension of result 3 is
of lesser significance.
(G) The estimates of the random indicator vector, which is
OI, are just the posterior probability estimates, so the HT
and ET are trivially equivalent for this parameter.
Conditions for the equivalence of linearly constrained ET and
HT rules are derived from which certain observations can be
made:
a) for equivalence of the two rules, the priors and ener-
gies must be inversely related;
b) the rank of the parameter to be estimated must be at
least as great as the rank of the signal conditional
means for equivalence of the two rules. However,

although only proved for equal priors, it is conjectured
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that there is no advantage in having a parameter rank
greater than that of the conditional means. This would
imply that the parameters need only lie in a space of
the same dimension as that of the conditional means.

For this reason, in addition to specific examples which
support this, the»conditional means are believed to
provide an appropriate, possibly optimum for some cases,
parameter to estimate. If the parameter is inappropri-
ate, the ET rule can fail completely. An example of
this is the estimate of the phase for a PSK siéﬁal.

The ET rule fails for M > 3 whereas the HT rule per-
forms appropriately. If the in-phase and quadrature
components of the signal were estimated, i.e., the
condi;ional means (or their representations with respect
to a basis) of the observations, rather thén the phase,
the ET rule would then be equivalent to the HT rule.

c) The ETu rule (using the conditional means as parameters)
is shown to be superior to the HT rule for a specific
example (ternary, M = 3) with unequal priors, and in
general for equal priors and unequal energies at high
SNR. For equal priors and equal energies, the two rules
are equivalent at high SNR. This is not too surprising
since there is always a parameter that can perform as
well as the HT rule (see result 5 above).

7) The HT rule can be degenerate under certain conditions which

are satisfied when the conditional means of the observations



are devoid of sufficient hyperellipsoidal regularity. Ex-
amples of this occur for:

a) Amplitude-shift keying (ASK):

Si(t) = Ai S(t) , 3.71

b) Quadrature amplitude modulation (QAM):

Sij(t)=‘AiS(t) cos wot + Bj S(t) sin wot 5 3.72

c) Amplitude/Phase-shift keying (APK):

Sij (t) =AiS(t) cos(u)ot + ¢j) . 3.73

The degeneracy of linearly constrained rules can be avoided
by choosing a constraint of a higher order. The minimum
order constraint that has nondegenerate (HT) behavior is

computed for M-ary ASK signals.
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Figure 3.1.

Probability of error for the hypothesis tester's

. (HT(P3)) and estimation theorist's (ET(Py)) rules

for detecting a ternary random variable in (a)
Gaussian (2.30), (b) Laplacian (2.12), and (c)
FOB (2.31) noises.
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Figure 3.2. Examples of HT degeneracies
a) ES cannot be detected,

b) Hsy is not in its decision region, 9/?3.
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Figure 3.3. Nmin’ the minimum order of the constraint

to detect M ASK signals.
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Figure 3.4.

Examples of a) degenerate and
b) nondegenerate signal sets.



Figure 3.5.

An example of a signal set with Dgr = Dy
but for which the ET rule is superior.
(Note: this set must be appropriately
scaled to satisfy 3.60)
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A signal set illustrating (with
Figure 3.7) the use of Dyr and Dgp to
demonstrate relative performance of
the HT and ET rules.
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Figure 3.7.

The minimum distances of the ET (3.70) and HT (3.69)
rules for the signal set in Figure 3.6, as a
function of the parameter a.
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CHAPTER IV

LINEAR CONSTRAINTS

Ls Background

The linear structure is the simplest conceivable structure and
at the same time the most analytically tractable. Thus, it is natural
to begin a general investigation of structural constraints with the
linear structure. Following the general example of Section II.6.2,

with N=1, the form of the linear estimate is
P, = ¢t +f¢i(t) Y(t) dt 4.1
i/Y 0 1 ’ )
T

where

and ¢i is the solution to the integral equation

- i (2)
Pi M?/Hi(t) —fq)l('r) MY’ (t,T) dt . 4.2
T

Assuming that M;z)

is invertible (it always will be for these appli-
cations), the inverse can be expressed as Q, where Q 1is the

solution to

fM}éz)(t,T) Q(t,0) dt = 8§(t,0) . 4.3
T

Then ¢i can be directly expressed as
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i -
¢l(t) = Pi,jr Q(t,T) M§/Hi(T) dt . 4.4
o .

Thus, the estimate is (2.66)
P

i/Y Bg UL & L 4.5

where

>

?i fo(t,‘L‘) M?/H‘(t) Y(T) dt dT . 4.6
T T =

Note that the ?; and hence the conditional means of the observationms,
My/Hi’ must be distinct for the linear estimate to be useful. The
block diagram of this estimate is shown in Figure 4.1.

If ;(t) consists of a colored component ;(t) and an independent
white component w(t), with power spectral density No’ then Gardner

[3,7] has shown that

(2) _ _ (2)

M§ (t,7) = NO S(t T) + M‘7 (t,T) 4.7
and

Q(e,™) = NM[8(t - T) - h(e, D] 6.8
where

h(t,T) éfQ(t,o) Mvﬁz)(c,r) i . 4.9

T

Furthermore,

V() /Y éﬁl(t,T) Y(T) dt 4.10

T
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is the linear MMSE estimate of the colored component V of Y, given

observations Y. Then

— _ _l _ _ -
T, —/fNO [§(t-1T) h(t,T)] MWHi(t) Y(T) dt dTt
TT

- Tty - ¢
= N0 fMS"/Hi(t) [Y(t) - V(&)] dt . 4.11
T

Thus, the estimation rule subtracts out the linear MMSE estimate of the
colored component of the centered observation, and then correlates
with the measure of the signal, M?/H.(t)’ as shown in Figure 4.2.

The similarities between these receiv;rs and those that are optimum

for sure signals in additive Gaussian noise [1l] are remarkable.

These similarities are even stronger for the specific case of sure

signals in additive noise, discussed in the following section.

2 Sure Signals in Additive Noise

Assume that the observations Y are given by

Y(t) = Si(t) + N(t) , te T, given Hi s 4.12

where N(t) is a sample of a zero-mean second order random process,
n(t), with autocovariance Mﬁz)(t,r) and {Si(t)}?;l is interpreted
as the set of samples, with prior probabilities Pi’ of the random
signal process, s(t), with autocovariance

2 M

)
M2"(t,T) =  R., S.(t) S.(tT N 4.13
5 (£,7) TR RND |



where
R.. é P, §,, -P.P
1 i 4ij i j
Then,
(2) o B (2)
Ms,‘ (t:T) - M'S— (tsT) + Mn (t9TA)
and
g _l M
M_, (t) =P,7 I R,., S.(t)
y/Hi iyap 173

Thus, the formal solution 4.4 becomes

i M
$7(e) = .Z

Ww,. 6.(e) ,
i=1 J

1]

where ei is the solution to the Fredholm equation

(2) : _ |
an (;,T) ei(T) dTt = Si(t) 3
T

and where the matrix W is given by

WéR[I + V)T ,

and where the elements of the matrix V are

A .
Vij _“/ﬁei(t) Sj(t) dt
T

and I 1is the identity matrix.

.14

.15

.16

17

.18

.19

.20

The linear (LC) receiver is a correlation receiver shown in Figure

4.3. The correlators are the same as those employed in the OG receiver

[11]. The only differences between these receivers are that the 0OG

receiver does not use the linear weighting network and the final biases
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are {Kn(Pi) -3 No

Vii} rather than {Pi}. Note that the receiver
could be implemented without the weighting network by using the {¢i}
as correlators rather than the {Gi}. Moreover, if the signals are
linearly dependent, then only N correlators need be used, followed
by a NxM weighting network, where N 1is the rank of the signals (see
Section III.2.3). The specific examples of amplitude-shift keying
(ASK) and phase-shift keying (PSK) are discussed in Chapter III, Sec-
tions 3 and 4. In addition, the observations can be left uncentered
and the final biases Pi replaced by Pi + é ¢i(t) My(t) dt.

Now consider the special case of white noise and mutually orthog~

onal signals with energies {Ei}. Then, Gardner [3,7] has shown that

the solution (4.17) simplifies to

. B. N B8
o7(t) = L5 (6) - = B—k 5,.(6) 4.21
o 3 k=1 "0
A i
Bk = Pk(l + PkEk/NO) , 422
M
8, & 5 B, - 4.23
k=1

The similarities between the LC receiver and the 0G receiver are out-

standing. The LC receiver performs M-l tests of the form

M
z

- P) s 4.24
i=1 J

>
i - <
ij(l) [[. P.E.] N (Pl

J

and the OG receiver performs M-1 tests of the form

82



83

¥ *
z ij(l)(Ti - Ei/2)_jL N ln(Pk/Pj) R 4.25

i=1 H.
J

where {Tj} are the correlation statistics

A
Tj ij(t) Y(t) dt , 4.26
T
and
A . Bj -~ By
ij(l) = Bi [ij(l) - Bo } , 4.27

|
[e2)
|
(3]
|

G'k(i) =
] 0, else (note: j # k) . 4.28

j 1, i=j
= l-l’ i=k
In fact, if the energies {Ei} and priors {Pi} are uniform, then
the receivers are identical. For binary signal detection (M=2), 4.24

and 4.25 reduce to (note that any binary signals can be made orthogonal

by subtracting an appropriate constant signal):

LC rule:
H
1N
5 0 pn-l -1, A
(rl E,/2) - (1, - E,/2) I; > By =B =y 4.29
2
0G rule:
%} N = “1 A
(Tl-El/Z)— (TZ—EZ/Z) H< > [ln(Pl ) —ln(Pz )] = YG . 4.30
2

Thus, these two receivers differ only in the sensitivity of their

thresholds, 7Yy, to the priors. Plotted in Figure 4.4, both thresholds



84

exhibit odd symmetry about Pl= P2=r%, and approach ® (-®) as Pl
approaches 0 (1). However, the LC receiver is more sensitive to the

priors since |YG| for all P, and P with equality if and

1 2°

>
lv | >
= at which point they equal zero. Evaluation of PE

only if P1=P2= 5
(Subsection 4.1) shows that the effect of this increased sensitivity
is negligible for priors within an order of magnitude of each other.
For additive noiée with heavy-tailed density functions, the per-
formance of the LC rule will be significantly inferior to the optimum

rule, since these rules are highly nonlinear. A properly chosen L-

constraint might perform comparably, e.g.,

A .

P,y = 05 +f¢>]j:(t) GIY(t)] dt 4.31
T

where G 1is, for example, a clipping or limiting nonlinearity. Note,

however, that this estimate requires knowledge of the moments

E{G[y(t)]G[y(T)]} and E{G[y(t)]/Hi}. This form is investigated in

Chapter VI, where the receiver structure and performance are analyzed

for a number of cases.

It should be noted that considerably more general models for M-ary
signal detection in additive noise also lead to explicit solutions for
the LC receiver. In Reference [5], Gardner obtains the solution for
repetitive detection of signals with intersymbol interference and
additive noise. This problem is discussed in Section 4. Iﬁ reference
[4], he obtains the solution for repetitive detection for marked and

filtered doubly stochastic Poisson processes in additive noise.
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3. Sure Signals with Random Parameters in Additive Noise
If the model considered in 4.12 is generalized to include random

"nuisance' parameters in the signals, then the hypotheses are composite:

Hi: Y(t) = Si(t,e) + N(t) , 4.32

where 6 is a sample of a set of random parameters with joint probabil-
ity density function fe(-). The effect of these parameters on the
linear receiver is that the signal portion, 4.13, of the kernel M;?)

is replaced with its average over the parameter space, and the measure,

M?/H (t), of the signal 4.16 is replaced with its average:
i

(2) (2)
Mo " (EST) = W

(£,7) = M_(£) M_(T)

M

- (2) _
o ;_ [Pidij MS‘S.(t,T) PinMs.(t) MS.(’L‘) .
i, j=1 i i j
4.33
Moy (8) = Mg (£) - M_(¢)
1 1
...l M
=P, I R.. M t) . 4.34
i . ij s,
J=1 h|

More generally, for arbitrary random signals in additive noise, the
mean signal under hypothesis Hi plays thg role of a sure signal and
the autocovariance of the signal plays the role of the autocovariance
of an additional noise——thesé roles being defined by the optimum
receiver for sure signals in additive colored Gaussian noise.

In cases where the averaged-conditional means are equal or zero,

the LC estimate is just the prior probability, and therefore makes no
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use of the observations. An example of this is the case of bandpass
signals with a uniformly diétributed random phase. For this situation,
a higher order (nonlinear) constraint is necessary. This is examined
in further detail in the next chapter. As nontrivial examples for
which the LC receiver is useful, the following sections investigate

random amplitude and partially coherent phase.

3.1 Random Amplitude

Consider a sure signal with a slowly time-varying amplitude, i.e.,
Si(t,A) = A Si(t), for all t in the observation interval T. That
is, A 1is random, but constant over T. Then, it is easily seen that
the form of the solution for ¢i is unchanged, the only difference

being that V and R are replaced by

-4

vEn v, | 4.35

g~ 4 Mi R + Var {A}p , 4.36
where

p.. %5 P . 4.37

ij ij "4

For amplitudes that are not slowly time-varying, the effect is
a multiplicative noise, which can be treated in either one of two ways,
one of which (generalizing Eqs. 36-42 in [3]) is described here, and

the other in Chapter V. Given the model
Y(t) = A(t) Si(t’e) + N(t) , given Hi s 4.38

reexpress Y as
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Y(t)

M, (t) Msi(t) + [A(r) 5,(t,0) - M, (c) M

s () + N(D)]
1

=

S{(t) + N°(t) 4.39

where S{ is the "new'" deterministic signal, and N~ 1is the "new"
noise. If a, 6§, and N are independent, then

(&) = 2

Mﬁ'/H. n's’/H.(t’T) = 0, and
i i

MI(I%}Hi(t,T) - Mr(lz)(t,‘t) " Mliz)(t,‘r) Ms(i)(t,l')

- MA(t) MA(T) Msi(t) MSi(T) . 4.40

Thus, using this approach, linear constraints for multiplicative noise
Or any nuisance parameters can be treated entirely using only the
results obtained for additive noise. This does not carry over, however,
for quadratic constraints with zero-mean signals. Suppose that
MS,(t) = 0, as would be true for a sinusoid with a uniformly dis-

i
tributed random phase. Then, this approach would have the new signal
as zero and the observations as all noise. For this situation, the

approach described in Chapter V, Section 3 would be necessary.

3.2 Partially Coherent Phase
Suppose the signal is phase-shift keyed with a partially coherent

reference phase (e.g., the output of a phase-locked loop). Then

Si(t,e) = A cos(wot + ¢i + 0) E 4.41

where A 1is a constant amplitude and 6 is a random phase with PDF

fe(e). For simplicity, assume that the noise is white. Furthermore,



assume that the phase PDF is symmetric about zero, monotonically
decreasing in |8|, and zero outside [-m,m]. Also, define the

quantities

T
¢, é./f £4(8) cos(k8) 46 . 442
-

In order that the phase not be completely unknown, which would render
the linear receiver useless, Cl must be positive. If Cl = 1, then
the phase is completely known. In addition, to distinguish among the
signal phases, Cl must be approximately no smaller than cos(m/M) for
equally spaced {¢i}. For the random amplitude (A) case, the form of
the solution is the same as that for the known phase case. The only
difference is that the correlation term (see 3.50) is weighted by the

factor C which is a measure of the coherence of the phase, i.e.,

l)

¢i(t) =ac (N A2r/gy~L cos(ut +6.) . .43

Hence, the linear receiver ignores the quadrature term of the signal,
sin(wot + ¢i). For an analysis of the quadratic receiver, refer to

Section V.5.

4, Signals with Intersymbol Interference in Additive Noise

As mentioned in Section 2, Gardnmer [5] obtains the solution for
repetitive detection of sure signals with intersymbol interference
(ISI) and additive noise. Typically, ISI occurs over bandlimited
(dispersive) channels, which tend to "spread out" the signal pulses

in time so that adjacent pulses overlap. Gardner shows that the
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*
linearly constrained MMSE estimate of a signal parameter a with
M

reali : -
ealizations {a1}1=l’

is given by the sum of the outputs of a bank of
matched filter-tapped delay lines (MF-TDL's) shown in Figure 4.5. Note
that matched filter-samplers correspond to multiplier-integrators
(correlators), which are used in this work. Thus, other than the bias
term, the only difference between the receivers for signals with and
without ISI is the presence of the TDL's after the MF's in place of
simple gains.

This section extends this receiver structure to estimate q-
dimensional parameters, with specific application to passband signals.
For this application, the linearly constrained structure is shown to
be identical to the conventional ad hoc structure, although the results
presented here are considerably more general.

Assuming the signal model 4.12, where S(t) depends on the N-

dimensional vector parameter, X, 1i.e.,

Si(t) = S(t,Xi) 5 i=1,...,M , 4.44

the L-MMSE estimate of x can be formed using the unbiased version of
Gardner's results [5] and the general formula (3.3) for L-MMSE para-

meter estimates in terms of posterior estimates. The resultant struc-—
ture, shown in Figure 4.6, consists of M TDL's with N sets of taps
for each TDL, one set for each component of %, For each value of 1,

the ith sets of taps of the TDL's are summed to form the estimate for

* - G
No constant (nonrandom) term is included in this estimate, which is

therefore biased. Reference [4] contains information about the con-
version of the biased estimate in [5] to the unbiased estimate used
here.



(§n)i, as in Figure 4.5, where n is a discrete time index for the
information sequence. Now, the ET test using ‘% in accordance with
3.5 follows the structure in Figure 4.6 with a qxM linear transfor-
mation, a bias for each of the M final paths, and finally a maximum
selector, as shown in Figure 4.7. It is easily shown that the cascade
of two linear transformations Ti, with 12 feedforward and ay
feedback taps, i=1,2, is a linear transformation T with p= pl-l-p2
feedforward and q= ql-l-q2 feedback taps. Thus, the Mxq TDL matrix
[T] shown in Figure 4.6 can be merged with the qxM transformation
shown in Figure 4.7 to yield an overall simplified structure, shown
in Figure 4.8. This simplified structure has M TDL's each with M
~
sets of taps. A furthgr simplification arises by taking advantage of
the linear dependence of the signals {Si(t)}?;l. Assuming that each

signal can be written as a linear combination of N waveforms, i.e.,
T ;
Si(t) =_Ei_§(t) , I=1500e M 4.45

then the number of MF's, and hence the number of TDL's in Figure 4.8
drops from M to N, each still with M sets of taps. Thus, the
matrix size becomes NxM. Otherwise, the structure in Figure 4.8 is
unchanged. This simplification is readily shown since the MF's are
linear transformations on the signals. This simplification also
applies to the receiver structure in Figure 4.6, .where any decision
scheme could follow the estimate gn. Thus, these structures can be
directly compared to the conventional structures for passband equali-
zation. Proakis [46] describes in baseband complex-signal notation

the same structure as that given in Figure 4.6 (with N MF's and a
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