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Abstract

In this paper it is shown that cyclostationarity-
exploiting direction-finding methods can be much less
sensitive than conventional direction-finding methods
to errors in the array calibration data. In particular,
when only a small subset of the signals arriving at the
array exhibits the desired cyclostationarity property,
it is shown that the signal-selective methods can oper-
ate properly in the presence of calibration errors that
cause the conventional methods to fail.

I Introduction

The need to estimate the directions of arrival of sig-
nals impinging on a sensor array arises in applications
such as signals intelligence and commercial commu-
nications monitoring in which often very little prior
knowledge of the interference and noise characteristics
is available. In these applications it has been shown
[1,2,3,4,5,6, 7] that signal-selective methods that ex-
ploit known (or estimable) second-order cyclostation-
arity properties of the signals of interest can greatly
outperform conventional methods in some signal envi-
ronments. However, in these comparisons it has al-
ways been assumed that the array calibration data
were known exactly, an assumption that does not hold
in many environments in practice due to physical per-
turbations of the sensors, component drift, and so on.

The effects of erroneous array calibration data on
conventional methods have been investigated [8, 9],
and techniques for mitigating them (sometimes re-
ferred to as self-calibration methods) have been pro-
posed [10, 11, 12]. Primarily, these studies have fo-
cused on analyzing and improving the resolving power
of conventional direction-finding (DF) methods. The
alternative approach taken in this paper is to recognize
that the signal-selective DF methods such as Cyclic
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MUSIC and Cyclic Least Squares inherently mitigate
the effects of calibration error in some environments
simply by reducing the number of signals that must be
simultaneously spatially resolved.

This paper is organized as follows. In Section II the
relevant properties of cyclostationary signals are re-
viewed prior to their use in Section III where the Cyclic
MUSIC method for signal-selective DF is summarized.
The results of computer simulations are presented in
Section IV to demonstrate that Cyclic MUSIC can tol-
erate much greater calibration error than conventional
MUSIC. Conclusions are drawn in Section V.

II Cyclostationarity

In this section the most relevant concepts from the
theory of cyclostationarity are reviewed prior to their
use in Section III. More detailed treatments can be
found in [13, 14, 15].

A vector-valued complex envelope z(n) exhibits
cyclostationarity if it is correlated with either a
frequency-shifted version of itself (i.e., if it exhibits
spectral coherence) for any nonzero frequency shift o
or a conjugated and frequency-shifted version of itself
for any frequency shift a. Mathematically, this cor-
relation (or spectral coherence) is expressed in terms
of the cyclic autocorrelation matrix R4 (7) or the
cyclic conjugate correlation matrix Rg4.(7), respec-
tively, where
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with (f(n))y = 'JIVZnN.—__ol f(n) and where ()T and
(-) denote the matrix transposition and matrix con-
jugate transposition operators, respectively. The val-
ues of o for which either of these correlation matri-
ces are nonzero are the cycle frequencies of the signals
comprising z(n). Since (1) and (2) can be reinter-



preted as the Fourier coefficients for the matrices of
conjugate and non-conjugate lag-product waveforms
z(n)z(n — 7)7 and z(n)z(n — 7)T, then it can be
seen that x(n) exhibits cyclostationarity (or spectral
coherence) with cycle frequency « if and only if the
lag-product waveforms contain finite-strength additive
sine-wave components with frequency a. That is, cy-
clostationarity means that sine-waves can be generated
by multiplying the signal by a delayed and possibly
conjugated version of itself, even though the signal it-
self might not contain any finite-strength additive sine-
wave components.

Most digital communication signals exhibit cyclosta-
tionarity as a result of the periodic sampling, gating,
keying, and mixing operations in the modulator. For
example, the cycle frequencies of BPSK are equal to
the doubled carrier frequency offset, harmonics of the
baud rate, and sums and differences of these. More
specifically, if ¢(n) contains a BPSK signal having car-
rier offset f. (relative to the center of the reception
band which is downconverted to zero) and baud rate
fo, then R34 (7) is not identically zero for o = kf;
for integers k, and Rgz.4.(7) is not identically zero for
a = 2f. + kfy for integers k. The useful values of
7 in the correlation matrices are typically between 0
and 1/(2fy). A case of particular interest in this paper
is the fact that for a scalar BPSK signal s(n) having
carrier frequency offset f,, the magnitude of the cyclic
conjugate correlation Riff(T) is maximized at 7 = 0
regardless of the pulse shape.

Measurements of these two types of cyclic correla-
tions are useful because they select contributions from
only the signal components that exhibit the specified
cyclostationarity property and discriminate against all
others. This is analogous to the property that mea-
surements of the correlation between a desired signal
corrupted by additive interference and noise and an un-
corrupted version of the desired signal (e.g., a training
signal) select only the contributions from the desired
signal and discriminate against all others. The utility
of exploiting cyclostationarity to gain signal-selectivity
has been demonstrated for many applications, includ-
ing adaptation of antenna arrays [16, 17], estimation
of directions of arrival [1, 2, 3, 4, 5, 6, 7], estimation
of time difference of arrival [18], detection [19], and
others [13, 15].

IIT Cyclic MUSIC

In this section the Cyclic MUSIC method for DF
is summarized, and it is explained why it can be more
robust to calibration error than conventional DF meth-
ods.

Under the narrowband assumption (which does not

preclude the presence of non-sinusoidal signals as dis-
cussed in [20, 7]), the complex envelope x(n) of the
M-element sensor array data can be expressed as

z(n) = A(©) s(n) +i(n) (3)

where the columns of A(©) = [a(6,),---,a(fL)] are
the true array response vectors for directions @ =
[01,-+,82], s(n) = [s1(n),--- ,s5(n)]” is the corre-
sponding vector of signals, and #(n) denotes the noise.

Given N time samples (0), - -+, £(N—1), the Cyclic
MUSIC algorithm estimates the directions of arrival of
the Lo, < L signals having cycle frequency a as follows:

1. Compute R:,m () or R;z. (1) for an appropriate
value of 7 using the finite-time-average versions of
(1) or (2), respectively.

2. Compute the singular  value decom-
position USVH of either R;n-(r) or R;w('r),
and partition U as [U,, U,] where U, and U,
are M x L, and M x (M — L,) matrices of left
singular vectors that correspond to the L, most
dominant and M — L, least dominant singular val-
ues, respectively.

3. Find the L, highest peaks in Py() = “U” a(e)“
or the M — L, lowest valleys in P,(f) =
”de(G)“, where a(f) is the assumed array re-
sponse vector for direction 4.

Several performance advantages of Cyclic MUSIC
over conventional DF methods derive from its signal-
selectivity: 1) in some applications, the number L, of
signals having cycle frequency o can be less than the
number L of all signals, so spatial resolution require-
ments and computational requirements are reduced; 2)
more signals than sensors can be present so long as
L, < M; and 3) the spatial characteristics of the noise
can be arbitrary. For example, in the scheme [17] for
substantially increasing the capacity of a land mobile
cellular radio system by using blind adaptive spatial
filtering, Cyclic MUSIC could be used to estimate the
approximate directions of arrival at the base station
of the signals from the mobile users for the purposes
of carrier frequency assignment and cell-to-cell hand-
off, and the relevant operating parameters would be
Lo =1,L = 48, and M < 64 (e.g., M = 8); in this
rapidly changing dense environment, it seems unlikely
that any conventional DF method would be able to
obtain acceptable accuracy and reliability.

In the presence of array calibration error, an addi-
tional benefit of signal selectivity and the associated
reduction in spatial resolution requirements becomes



apparent. Since it is substantially more difficult to
resolve the directions of two closely spaced sources in
the presence of calibration error than it is to accurately
estimate the direction of one source in the presence of
calibration error, it would appear that any reduction in
the number of sources that must be spatially resolved
should yield a significant increase in performance. This
proposition is substantiated by the results of computer
simulations in Section IV.

IV  Simulation Results

In this section the sensitivity of the MUSIC and
Cyclic MUSIC algorithms to perturbations in the po-
sitions of the sensors is investigated using computer
simulations.

A uniform linear array having 8 sensors nominally
separated by half of a wavelength receives 4 spectrally
overlapping BPSK signals that all have baud rate equal
to 1/4 of the sampling rate and signal-to-noise ratio
of 10 dB. Two of the signals have zero carrier offset
from the center of the receiver band and arrive from
8 degrees and 2 degrees, respectively. The third and
fourth signals have carrier frequencies that are offset
from the center of the receiver band by 1/10 and 2/10
of the sampling rate and arrive from 16 degrees and -6
degrees, respectively. Zero-mean complex white Gaus-
sian noise that is uncorrelated from sensor to sensor is
also present. The Cyclic MUSIC algorithm is applied
using Rpz.(0) with @ = 0 and L, = 2 to perform
DF on the two signals having zero carrier frequency
offset (Lo = 2), whereas MUSIC must spatially re-
solve all 4 signals (L = 4). By using L, = 1 and
a=2x1/10or a = 2 x 2/10, Cyclic MUSIC could be
used to find the directions of the other two signals one
at a time. The choice of @ = 0 and the directions of
arrival were made so that Cyclic MUSIC would not be
given an unfair advantage (e.g., having to resolve the
two most widely separated signals instead of the two
most narrowly separated, or having to find the direc-
tion of one source instead of two). For both methods,
the correlation matrices are estimated from 8192 time
samples of received data. At the start of each of the
100 independent trials conducted, the true sensor coor-
dinates (p1,41), - -+, (Pm,Gm ) are perturbed from their
assumed positions (p1,41), -+, (Pm,qnm) by indepen-
dent identically distributed Gaussian random variables
(6p1,6¢1), -+, (6pm,b8qm) having zero mean and vari-
ances E {(6pm)?} = E{(6gm)?} = B? wavelength?
and E {(6pm)(8gm)} = 0:

(ﬁm’ qm) = (pm +6pm, m + 5qm).

As [ increases in magnitude, the perturbations become
more severe.

The largest bias among the two directions of arrival
found by Cyclic MUSIC is plotted versus the perturba-
tion parameter 8 in Figure 1. The largest bias among
the four directions of arrival found by MUSIC is also
shown there. From the figure it can be seen that the
largest bias incurred by Cyclic MUSIC does not exceed
the minimum angular separation of the sources (6 de-
grees) for B < 0.05, whereas the comparable limit for
conventional MUSIC is 3 < 0.005. The mean-squared
errors are not shown because they are dominated by
the bias.
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Figure 1: Maximum bias in degrees of direction esti-
mates for MUSIC and Cyclic MUSIC for source direc-
tions of 8, 2, 16, and -6 degrees versus the standard
deviation § of sensor coordinates.

If the sources are brought closer together (8 deg.,
o deg., 12 deg., and 1 deg. instead of 8 deg., 2 deg.,
16 deg., and -6 deg., respectively), then the benefits
of signal-selectivity become even more pronounced as
shown in Figure 2. MUSIC is unable to resolve the sig-
nals even when no calibration error is present (3 = 0),
whereas Cyclic MUSIC continues to perform properly
for all # < 0.01. The mean-squared errors are not
shown because they are again dominated by the bias.

Although results for perturbations in sensor posi-
tion only are shown here, the results for perturbations
in the sensor phases are qualitatively similar: Cyclic
MUSIC can tolerate perturbations that are approxi-
mately ten times as large as those that MUSIC can
tolerate in the two environments considered.

V Conclusions

In this paper it has been shown that Cyclic MU-
SIC can be more robust to calibration error than MU-
SIC when only a subset of signals exhibit cyclosta-
tionarity with the specified cycle frequency. In par-
ticular, Cyclic MUSIC can tolerate perturbations in
sensor position or phase that are approximately ten
times as large as those that MUSIC can tolerate in



100

~ 10 MUSIC

8

&

) 1

8

A 01 Cyclic MUSIC

R 0 0.001 0.01

Beta

0.1 1

Figure 2: Maximum bias in degrees of direction esti-
mates for MUSIC and Cyclic MUSIC for source direc-
tions of 8, 5, 12, and 1 degrees versus the standard
deviation (3 of sensor coordinates.

the two environments considered. These results im-
ply that cyclostationarity-exploiting methods might be
more amenable than conventional methods to imple-
mentation in practical environments where thermal ef-
fects, component drift, and mechanical disturbances
exist. A related implication is that self-calibration
methods applied to cyclostationarity-exploiting meth-
ods might be able to correct larger errors than could
be expected for conventional methods.
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