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Abstract

A new approach to blind adaptation of antenna arrays is presented that
has the capability to extract PCM, AM and FDM-FM communication
signals-of-interest (SOIs) from co-channel interference environments us-
ing only known spectral correlation properties of those SOIs, i.e., with-
out using knowledge of the antenna array manifold, SOI waveform or
SOI direction-of-arrival to train ihe array. The class of self-coherence
restoral (SCORE) objective fi:nctions are introduced, and flexible algo-
rithms for adapting antenna arrays to optimize these objective functions
are developed. Using the theory of spectral correlation, it is shown via
analysis and simulation that these algorithms will maximize the SOI
SINR at the output of any antenna array when a single SOI with sclf-
coherence at a known value of frequency separation and an arbitrary
number of interferers without self-coherence at that frequency sepa-
ration are impinging on the array. Algorithm modifications are also
introduced to allow the SCORE processors to near-optimally extract
SOIs from environments containing multiple signals with self-coherence

at the same value of frequency separation.
1 Introduction

The need for blind adaptive signal extraction is growing in a num-

ber of signal processing applications. The ability to adapt a re- -

ceiver processor to remove unknown and/or time-varying distor-
tion and interference from a signal of interest (SOI) without using
knowledge of the transmission channel or waveform to train the
processor can significantly reduce cost and outage time in tele-
phony and RF communication systems. Blind adaptive process-
ing can also allow signal extraction to be performed in many other
applications where it is impractical or impossible to provide such
knowledge to the adaptive processor, e.g., in mobile radio and in
regenerative satellite communication systems, where it may be too
costly to provide an adaptive processor with a separate training
sequence for each signal received by the transponder or receiver,
and in reception of broadcast FM and in ESM/ECM systems,
where the SOI and interference waveform and channel parameters
are typically unknown and time-varying over the reception time.

Algorithms that have been developed in the past to perform
blind adaptation include property-restoral algorithms, which adapt
a receiver processor to restore a known set of SOI properties
to the processor output signal, and coherence-ezploitation tech-
niques, which exploit known spatial coherence properties of the
received channel (e.g., due to the discrete spatial distribution of
the signals sources) to adapt the receiver processor. Examples of
property restoral techniques include Sato’s algorithm [1] and the
constant modulus algorithm (CMA) (2], which have been used to
adapt equalizers and antenna arrays to blindly correct FM, PSK,
FSK and QAM signals on the basis of their low or constant mod-
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ulus, and the set-theoretic property mapping algorithms [3], which
have been used to correct signals on the basis of more general
signal modulation and channel properties. Examples of coher-
ence exploitation techniques include the generalized sidelobe can-
celler (GSC) [4] and the signal subspace techniques (MUSIC [5],
ESPRIT [6]), which have been used to adapt antenna arrays to
extract signals on the basis of their discrete distribution in the
received-signal spatial spectrum.

All of these techniques suffer from shortcomings in practice.
The convergence and capture characteristics of the property re-
storal techniques are still not well understood, a drawback that
limits the application of these algorithms in automatic (unsuper-
vised) communication systems where they must operate with a
minimum of attention. While the coherence exploitation tech-
niques are analytically more tractable, they suffer from other
problems associated with measuring the spatial spectrum of the
received signal. GSC and MUSIC, for instance, require accurate
knowledge of the array manifold to operate, which limits their ap-
plication in systems where such data is too costly or impossible to
measure (e.g., if the array geometry is changing with time), while
ESPRIT imposes a structural constraint on the sensor array that
can be very hard to satisfy in practice, and which reduces the de-
grees of freedom (null-steering capability) of the overall array by
50%. All of these techniques suffer from the additional problem
that that they are highly nondiscriminatory: in an unknown en-
vironment, the processors must extract all of the received signals
and rely on downstream processing to separate the SOIs from the
interferers. This drawback can be of critical importance in sys-
tems where the number of array sensors is high, or in applications
where only a few signals out of many are of interest to the receiver
processor.

This paper presents the new class of Self-COherence REstoral
(SCORE) algorithms, which have the potential to overcome these
limitations. A property held by most communication signals is
that they are coherent with frequency-shifted and possibly con-
jugated versions of themselves for certain discrete values of fre-
quency shift. This spectral self-coherence is commonly induced by
periodic gating, mixing or multiplexing operations at the trans-
mitter. For instance, self-coherence is induced at multiples of the
symbol rate in PCM signals and at multiples of the pilot-tone fre-
quency in FDM-FM signals, and conjugate self-coherence is com-
monly induced at twice the carrier frequency in BPSK and AM
signals.

The (conjugate) self-coherence of a received signal is degraded
if it is corrupted by additive interference that does not share that
coherence, e.g., if a PCM SOI is corrupted at the receiver by a
PCM interferer with a different symbol rate. This leads to the
new class of SCORE algorithms, which adapt a receiver processor
to restore the SOI self-coherence (and thereby reduce the inter-
ference) in the receiver output signal.
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2 The Self-Coherence Concept

A signal waveform s(t) is said to be spectrally self-coherent at
frequency separation o [8] if the correlation between s(t) and s(t)
frequency-shifted by a is nonzero for some lag 7, i.e., if

p%,(1) EN < s(t)[s(t = )]t >
= \FIS(t)l2 Seo < |8(t — 7)ei?mat|2 >
= Re(7)e” ™[R, (0) #0 (1)

at some value of 7, where < - >, denotes infinite time-averaging.
Similarly, a signal waveform s(t) is said to be spectrally conjugate
self-coherent at frequency separation « if

< s(t)[s»«(t o T)ej21rort]x >0
\/Z|s(t)|2 >0 < |*(t — T)eITE2 >y
R‘:,.(T)e'j‘"af/R,,(O) #0 (2)

at some value of 7. The functions p%,(7) and pg.(7) are re-
ferred to here as the self-coherence function and the conjugate self-
coherence function, respectively; the functions R2,(7) and R%,.(7)
are referred to here as the cyclic autocorrelation function and the
cyclic conjugate-correlation function, respectively.

The self-coherence functions and cyclic correlation functions
are developed in detail in the new theory of spectral correlation
[7,8], where it is shown that complex cyclostationary and almost-
cyclostationary waveforms exhibit self-coherence or conjugate self-
coherence at discrete multiples of the time periodicities of the
waveform statistics. This class of waveforms includes most com-
munication signals; for instance, all PCM signals exhibit self-
coherence at multiples of their baud-rate, and BPSK signals are
in addition conjugate self-coherent at twice their carrier offset.

The function |p%.)(7)* can be interpreted as a measure of
the relative strength of s(t) contained within sBI(t — T)ed?me,
where the optional conjugation (*) is only applied if conjugate
self-coherence is being measured. Using the Orthogonal Projec-
tion Theorem, s(*)(t — 7)e??™* can be represented as

SO =) = () s()

+y/1 = 12 (T €astr(2) ®3)

where s(t) and €,,+(t) are equal-power orthogonal waveforms
(R,e = 0). Consequently, s®)(t — T)ei?™* can be thought of as
a scaled and corrupted replica of s(t) with a signal-to-corruption
ratio o2 (1) /L = 1p5a (T

The utility of the self-coherence concept can best be seen in in-
terference environments. Consider the environment where a scalar
waveform z(t) is equal to a scaled SOI s(t) plus an independent
interference signal i(t), z(t) = as(t) +1(t). If s(t) is self-coherent
at frequency separation «, but i(t) is not self-coherent at «, then
the cyclic autocorrelation of z(t) is given by

>

p?a‘ (T)

R%(r) = |aPR%(r) + RE(r) = a5 (), (4)

i.e., the infinite time-averaged cyclic autocorrelation of z(t) is un-
changed by the addition of arbitrary interfererence, provided that
the interference is not self-coherent at frequency separation a.

A useful interpretation of (4) is that the frequency-shift and
(optional) conjugation operations completely decorrelate the in-
terference component of z(t) but only partially decorrelate the
SOI component of z(t). In terms of the decomposition given in
(3), z*)(t — 7)e??™* can be expressed in terms of z(t) by
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I(')(t _ T)eﬂﬂat = a,a_g(t) + ia(t) (5)
where

do = ap:s(‘)(T)‘ (6)
io(t) = a1 = o2 (1) ese(t) + Bt =)™t (1)

and where 7,(t) is uncorrelated with both s(t) and i(t). Equa-
tion (5) motivates the development of interference cancellation
techniques that use z(*)(t — 7)e??™* as the reference signal in a
conventional least-squares algorithm.

A different interpretation can be obtained by noting that the
self-coherence of z(t) in the above example is reduced when inter-
ference that is not self-coherent at « is added to the received envi-
ronment. The self-coherence strength of z(t) can be expressed in
terms of the signal-to-interference-and-noise ratio (SINR) R,/R;;
as

1Pasto ()] = IS (M [1 + SINRTY] < lo2a(M)] (®)

Equation (8) motivates the development of interference cancella-
tion techniques that extract SOIs by optimizing some direct or
indirect measure of their self-coherence.

3 The SCORE Processors

The basic SCORE processors are motivated by extending the ex-
ample given in Section 2 to the multiple sensor environment. Con-
sider the environment where a multisensor antenna array is excited
by a SOI s(t) and by background noise and co-channel interfer-
ence. If the fractional bandwidth of the receiver is small with
respect to the electrical distance between the array sensors, then
the received signal vector x(t) can be modelled by

x(t) = As(t) + I(t) 9)

where A, referred to here as the SOI aperture vector, models
the polarization and direction-of-arrival (DOA) dependent an-
tenna gains, cross-sensor phase mismatches and near-field multi-
path (scattering and mutual coupling) effects of the array, and
where interference field I(¢) models the remaining signals and
background noise received by the array.

Given this model, s(t) can be extracted from the received data
by forming a processor output signal y(t) = w'x(t) using an ap-
propriately chosen processor vector w. This is optimally accom-
plished by setting w equal to a mazimum-SINR linear combiner

wmax < Rif A o« R;xAR,, (10)
where Ryp and Ryy are the limit (infinite time-average) autocor-
relation matrices (ACMs) of the interference and received signal
vectors. These weights can also be interpreted as the optimal
solution for the least-squares cost function

(11)

where g is an arbitrary scalar gain constant. Conventional (non-
blind) methods for computing Wmax require knowledge of the
interference ACM Rjyy and/or SOI aperture vector A to imple-
ment (10), or knowledge of the SOI waveform s(t) to minimize
(11). The goal here is to find Wmax without using this knowl-
edge, i.e., to adapt w to approximate (10) using only knowledge
of the self-coherence properties of the SOI.

This can be accomplished using the interpretation of self-co-
herence given in (5)-(7). We define a reference signal r(t) by

Frg(w) < ly(t) — gs()* >

“.lm. :



r(t) £ [efx(t — r)]ei?met (12)
where vector c is referred to as the control vector and the optional
conjugation (*) is only taken if conjugate self-coherence is to be
restored. If x(¢) is modelled by (9) and s(¢) is the sole received
signal component with self-coherence (or conjugate self-coherence)
at frequency separation «, then (5)-(7) can be used to show that
r(t) decomposes into a replica of the SOI plus a corruption term
that is uncorrelated with both s(¢) and x(2)

r(t) = aas(t) + ia(t) (13)

where a, and i,(t) are given by (6) and (7), respectively, with
a = (ctA)® and i(t) = cM(2).

Equation (13) motivates the class of least-squares SCORE al-
gorithms. We define the least-squares SCORE cost function by

A
FScORE(W;€) =< ly(t) —r(d)]* >r (14)

where y(t) = wx(t) and r(t) is given by (12), and where < - >7
denotes time-averaging over interval [0, T]. Substituting (13) into
(14) and letting the averaging time grow to infinity yields

FSCORE = < y(t) —[aas(t) +ia(®)][* >ep-
= < |y(t) — aas(t)]? >e0 + < ia(t)* >c . (15)

Since i4(t) is not a function of w, it follows that (14) becomes
equivalent to the true least-squares cost function (11) and the
value of w that minimizes (14) converges to the maximum-SINR
processor as 1 — oo.

This result can be proved more directly by solving for the pro-
cessor vector wgoORE that optimizes (14) for infinite averaging
time. Minimizing (14) with respect to w yields the least-squares
SCORE algorithm

WSCORE = RixRar (16)
where Ryyx and Ry, are the sample ACM and cross-correlation
statistics computed over [0,7]. If I(t) is not (conjugate) self-
coherent at «, then as T' — oo (16) will converge to

WSCORE — gR—;,I(AR“, 9= (AYC)(*”!’;(')(T)P’ (17)
which is the maximum-SINR weight vector given by (10). Note
that w converges to the maximum-SINR solution for any value of
c, as long as c is not orthogonal to A.

The least-squares SCORE processor block diagram is shown
in Figure 1. The reference signal r(t) is generated by beamform-
ing, delaying, conjugating (if conjugate self-coherence is being ex-
ploited) and frequency-shifting the received data signal. The refer-
ence signal is then used as a training signal to adapt the processor
vector w using a block or recursive least-squares algorithm. The
only control parameters used in the processor are the control vec-
tor ¢, the delay 7, the conjugation control and the frequency-shift
a; however, only a and the conjugation control are critical to the
operation of the processor. For most communication waveforms
much latitude can be allowed in the choice of ¢ and 7; in theory
these parameters need only be chosen to yield a nonzero value of
g in (17). The frequency-shift parameter a need not be related
in any way to the bandwidth or sample rate of the receiver sys-
tem; however, care must be taken to avoid aliasing effects if the
processor is implemented in digital form and « is large.

The least-squares SCORE processor can be improved in several
ways. For instance, the strength of self-coherence at o can be
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/ Least-Squares Algorithm

w

Figure 1: Least-Squares SCORE Processor

increased by replacing the delay operator with a more general
filtering operation, i.e., by generating r(¢) using

r(t) = ["R(@)]Ve, X(t) = h(t) @ x(2) (18)
where h(t) is the control filter impulse response. The resulting

optimum weight vector then converges to )
g -

WSCORE — 9RxxA R, g = (Ale)l )?psa»d?‘ ) 19

where 3(t) is the filtered SOI. Appropriate design of the control
filter can improve the performance of the SCORE processor in the
presence of some signal types [9].

The critical dependence of the SCORE processor on the choice
of target a can also be eased somewhat by the particular choice
of least-squares algorithm used to implement (16). If an RLS al-
gorithm with a growing rectangular window is used to solve (16),
then the processor will eventually reject a received SOI if there
is any error between the SOI self-coherence frequency and the
target self-coherence frequency of the processor. In many envi-
ronments, however, the SOI self-coherence frequency will not be
known exactly. For instance, the SOI may be subject to Doppler
shift, which has the effect of shifting the conjugate self-coherence
frequency of the SOI; or the SOI may be subject to significant
carrier and timing jitter, which effectively spreads the SOI self-
coherence over a range of . The SCORE processor can be made
more tolerant to this error if a different choice of averaging win-
dow, e.g., an exponentially-decaying window, is used to compute
Ry,

The largest improvement in SCORE processor performance
can be obtained by adaptively adjusting the control vector as well
as the processor vector to some appropriate setting. An algorithm
for adapting ¢ can be developed by motivating the least-squares
SCORE algorithm from a property-restoral viewpoint. The same
value of wgoORE given in (16) results from maximizing the
strength of the cross-correlation coefficient between y(t) and r(t),

FSCORE(Wic) & |Ry[*/[RyR.]
[wiRy, |*/[WRxxW R, . (20)
iR (*) |2
_ [WiRxuc™| (21)

[wfﬁx?l [(c)Ryuc®)]

where u(t) £ %*)(t)ei2"** is defined as the control signal.
Equation (20) motivates the class of cross-SCORE algorithms.

FSCORE is an indirect measurement of the self-coherence in y(t)

at frequency separation «; it is lowered if x(t) contains interfer-
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ence that is not self-coherent at this frequency separation. In this
sense, the least-squares SCORE algorithm can be interpreted as a
method for restoring this SOI self-coherence to the processor out-
put signal. The cross-correlation coefficient is also degraded if in-
terference is present in r(¢). Consequently, maximizing ﬁSCORE
with respect to w and c should restore the SOI self-coherence in
both y(¢) and r(t). For this reason, (21) is referred to here as the
cross-SCORE objective function.

Jointly optimizing FSCORE with respect to w and c yields
the joint cross-SCORE eigenequation,

I:lxx 0 w 0 ﬁxu w
- =| 22
[ el ]l s ] e
for the maximum-eigenvalue eigenvector pair. The optimized ob-

jective function is then equal to v?. Equation (22) can also be
decomposed into separate eigenequations in terms of w and c),

/\I:'txxw =
)\Ruuc(*)

[f{qu\:}xRux]W (23)
[Ruxﬁa—olcﬁxu]c(*) (24)

where ) is related to » by A = v? and the optimized objective
function is equal to A. Algorithms for solving (22) or (23)-(24)
are referred to here as cross-SCORE algorithms.

It is easily shown that the maximum-eigenvalue eigenvectors of
(23) and (24) both converge to the maximum-SINR solution given
in (10) if s(¢) is the only received signal with self-coherence (or
conjugate self-coherence) at a. In this environment the Hermitian
matrix on the right-hand side of (23) reduces to a rank-1 matrix
as T — oo,

ReuRiiRux — gAAL g = (ATRZIA)|RE (7). (25)

For an M-element antenna array, the eigenvectors of (23) will
therefore converge to M — 1 noise-capture solutions where w is
orthogonal to A and X is equal to zero and one SOI-capture solu-
tion where w is equal to Wmax and A is approximately equal to
the transmitted SOI self-coherence,

(26)

Amax — (AfR:_ol(A) (ATR;}(A) IPgs(')|2
%0 2 < 2

— 38 ~ = N 27

(1 +7;2) (1 i 7;2) ]psf( )l ( )

where 42 is the maximum-attainable SINR of s(t) for the input
data x(t) and 42 is the maximum-attainable SINR of filtered SOI
§(t) for the filtered input data %(t). Similarly, RuxR; Ry re
duces to a rank-1 matrix in this environment as T — oo, and the
eigenvectors of (24) converge to M —1 noise-capture solutions and
one SOI-capture solution where ¢ o R;;AR;;. For this reason,
the environment where only one signal is self-coherent at the tar-
get a of the SCORE processor is referred to here as the rank-1
self-coherence environment.

4 Performance in the Rank-1 Self-Co-
herence Environment

The simulator setup for the rank-1 self-coherence environment is
as follows. A four-element circular array with a 10.24 MHz com-
plex (bandpass) bandwidth, isotropic array sensors and a half-
wavelength diameter is excited by white Gaussian noise, two PCM
SOIs, and FM and TV interference signals. Both of the PCM
signals are transmitted using Nyquist-shaped modulation pulses
with 100% rolloff (cos’(%i—) pulse frequency responses). The FM
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signal consists of a carrier frequency-modulated by a 60-552 kH;
noise-loaded baseband with a 200 kHz rms frequency deviatiop
(120-channel FDM-FM). The TV signal simulates a horizontal.
synchronization pulse-train with a 15.625 kHz line rate (CCIR
standard). The received data vector is converted to complex-
baseband representation prior to adaptive processing. The signa]
parameters are given in Table 1 (DOA denotes direction-of-arrival
and SWNR denotes signal-to-white-noise-ratio).

Table 1: Received Environment Parameters
Signal Rate Carrier | DOA | SWNR
16-QAM 3 Mb/s 0 —45° | 15 dB
BPSK 4 Mb/s 0 60° 20 dB
FM - -500 kHz | 30° 30 dB
TV 15.625 kHz 2 Mhz —110° | 40 dB

The two PCM SOIs are self-coherent at plus-or-minus their
symbol rate, with maximum self-coherence strength of 1/6 (—8 dB)
at 7 = 0. In addition, the BPSK SOI is conjugate self-coherent
at 0 kHz, with a maximum conjugate self-coherence strength of |
(0dB) at 7 = 0. The TV signal is also self-coherent at multiples of
15.625 kHz, out to the bandwidth of the synch pulse (~ 2 MHz).

The least-squares SCORE processor is implemented using an
RLS algorithm with a growing rectangular window. The weight
update formula is given by -

w(n) = g(n) Rxx(n)Rx:(n) (28)

where g(n) is a power-normalizing gain variable and ﬁ(.)(n) de-
notes correlation with time-averaging over [1,n],

Ruy(n) & kZ:: u(n — k)vi(n — k). (29)

The cross-SCORE processor is implemented using a stochastic
Rayleigh-Quotient algorithm,

c(n) = yc(n)l%ﬁ"l(n)f}ux(n)W(n—l) (30)
w(n) = gu(n)Rxx(n)Rxu(n) c(n). (31)

Equations (30)-(31) form a two-step procedure for finding the
maximum solution to (24) using a Rayleigh-Quotient (power maxi-
mization) procedure. This algorithm converges particularly quickly
in the rank-1 self-coherence environment, due to the very wide
spread between the maximum and lesser eigenvalues of (24)s

The performance measure used to judge the quality of the
processor output signal is the output SINR,

SINR £ |w'A’R,,/w'Ryiw (32)

where A and R,, are the true aperture and power of the SOI and
Ryj is the true autocorrelation matrix of the interference (noise
and other signals) in the environment.

Figure 2 shows the performance obtained using the SCORE
processors to capture the BPSK SOI. Two processor modes are
tested: a baud-rate restoral mode where « is set to 4 MHz, 7 is
set to zero (h(t) = 6(t)) and the conjugation is disabled, and a
carrier restoral mode where o and 7 are both set to zero and
the conjugation is enabled. The control vector is set to [1,0,0, 07
(isotropic antenna pattern) in the least-squares SCORE processor.

‘This Figure verifies the theoretical (infinite time-average) results

obtained in Section 3, and illustrates the differing convergence
rates of these processors. The cross-SCORE processor converges
to within 3 dB of the maximum-attainable SINR in under 100 SOI
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bauds in baud-rate restoral mode, and in under 20 SOI bauds in
carrier restoral mode. However, the least-squares SCORE proces-
sor converges much slower: the processor performance only comes
to within 5 dB of the maximum SINR after 350 SOI bauds in
baud-rate restoral mode, and fails to significantly extract the SOI
fter even 800 SOI bauds in carrier restoral mode.

Cross-SCORE:
Carrier restoral

20 dB=y Max BPSK SINR

10 dB = LS-SCORE:
Baud-rate restoral

Carrier restoral,

0dB

0 200 400 600 800
BPSK SOl Bauds (.25 psec/baud)

Figure 2: SCORE Performance for BPSK SOI

The relatively slow convergence of the least-squares SCORE
processor is due to the large uncorrelated interference component
io(t) present in the reference signal r(¢) when an arbitrary con-
trol vector is used on the control path. Until 7,(¢) is averaged
out by the correlation process, this corruption component will
have a strong effect on the adaptation of the processor weights.
This effect is greatly reduced when the control vector is also
wdapted to restore self-coherence; the dominant corruption com-
ponent remaining in r(t) after c is optimized is the irreducible
is close to

self-interference component (7), which is small if [p%.,
unity. This also explains why the cross-SCORE processor con-
verges much faster in carrier restoral mode than in baud-rate
restoral mode: the SOI conjugate self-coherence at o = 0 is six
times stronger than the SOI self-coherence at a = 4 MHz.

Figure 3 shows the performance of the cross-SCORE proces-
sor when it is configured to restore the baud-rate of the BPSK
SOI (a = 4 MHz, 7 = 0, conjugation disabled), and when it is
configured to restore the baud-rate of the 16-QAM SOI (same
7 and conjugation; o = 4 MHz). This Figure demonstrates a
key feature of the SCORE processor: the ability to sort through
interference environments and extract SOIs on the basis of their
differing self-coherence properties. When the frequency-shift is set
to 4 MHz, the SCORE processor captures the BPSK SOI; chang-
ing a to 3 MHz, however, causes the SCORE processor to reject
the BPSK SOI and capture the 16-QAM signal. In both cases the
processor converges to within 3 dB of the optimal performance
within 100 (BPSK) SOI bauds.

Figure 4 shows the performance of the carrier restoring cross-
SCORE processor for varying degree of error in the target . This
Figure illustrates the ability of the SCORE processor to tolerate
error in the assumed SOI self-coherence, a particularly impor-
tant problem when conjugate self-coherence (which is affected by
Doppler shift) is being restored by the processor. In all cases
where « is in error the processor eventually rejects the BPSK
'OL; however, as Figure 4 shows, the time required to accomplish
chis is long when the error is small. Furthermore, even when the
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error is large and the SOI capture time is short, the SINR of the
captured SOI can reach a high value before the SCORE processor
begins to reject the SOL. In many applications, this SINR will be
high enough to allow a more robust (but less discriminatory) al-
gorithm such as a CMA to take over adaptation of the array. The
capture time may also be long enough to allow the error in a to
be estimated and removed over the SOI transmission time.

SAmES

ax 16-QAM SINR

10 dB= BPSK SINR, o =4 MHz

16-QAM SINR, o =3 MHz

0dB

0 200 400 600 800
BPSK SOI Bauds (.25 usec/baud)

Figure 3: Signal Sorting Via Self-Coherence Frequency

20dB= BPSK SINR, dB

20 kHz error

10dB
0dB =
-10 dB =
40 kHz error
-20 dB ¥ T - v
0 200 400 600 800

BPSK SOI Bauds (.25 psec/baud)
Figure 4: Tolerance to Target Self-Coherence Error

5 Performance in the Rank-L Self-Co-
herence Environment

The performance of the SCORE processors in the rank-L self-
coherence environment where L signals with (conjugate) self-co-
herence at the target o are received by the array is also of im-
portance. Two environments are of particular interest: the mul-
tipath environment where L correlated signals (reflections) with
(conjugate) self-coherence at o are impinging on the array, and
the multiple-SOI environment where L uncorrelated signals with
(conjugate) self-coherence at the same « are impinging on the
array.

A comprehensive examination of the SCORE processor per-
formance in this environment cannot be reported here due to lack
of space. However, it can be shown [9,10] that the cross-SCORE
eigenequations (23) and (24) will have L linearly-independent so-
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lutions with A > 0 in these environments, correponding to cap-
ture of the L received signals that are (conjugate) self-coherent
at o« and optimal rejection of background noise and any other re-
ceived signals that are not (conjugate) self-coherent at o. More-
over, if self-coherence is being restored by the processor (conju-
gation is disabled) and the L signals are uncorrelated with each
other (multiple-SOI environment) and have distinct self-coherence
strengths, then each of these solutions will correspond to near-
optimal capture of each individual SOI. At the least, therefore,
the SCORE processor will be able to screen out interference in
environments containing multipath interference or uncorrelated
SOIs with the same self-coherence properties; in many of these
environments, the SCORE processor will also be able to separate
SOIs on the basis of self-coherence strength as well as frequency.
Figure 5 demonstrates this last property by replacing the 3 Mb/s
16-QAM SOI with a 4 Mb/s BPSK signal with 50% Nyquist rolloff
in the environment simulated in Section 4. The two BPSK sig-
nals are uncorrelated and have distinct self-coherence strengths
at @ = 4 MHz, 7 = 0 (1/6 for the SOI with 100% Nyquist rolloff
vs. 1/14 for the SOI with 5075 Nyquist rolloff); consequently, the
two highest-eigenvalue solutions to (23) should capture each of the
SOIs. This is shown in Figure 5: the eigenvector corresponding
to the largest eigenvalue of (23) captures the BPSK signal with
100% Nyquist rolloff, while the eigenvector corresponding to the
next-largest eigenvalue of (23) captures the BPSK signal with 50%
Nyquist rolloff. In both cases, the SINR of the captured signals
converge to within 3 dB of their maximum attainable value.

20 dB =y M 100% N EES“ SINR
10dB=
100% Nyq. BPSK SINR, max A
50% Nyq. BPSK SINR, next 1

T T ] T 1
400 600

BPSK SOl Bauds (.25 psec/baud)
Figure 5: Signal Sorting Via Eigenequation Solution

6 Conclusions

A new class of algorithms for blind adaptation of antenna arrays,
the self-coherence restoral (SCORE) algorithms, have been intro-
duced. Two new processor architectures, the least-squares SCORE
processor and the cross-SCORE processor have been developed,
analyzed and simulated in the rank-1 and rank-L self-coherence
environments where 1 to L signals with self-coherence or conju-
gate self-coherence at a known value of frequency separation and
arbitrary interference without (conjugate) self-coherence at that
value of frequency-shift are received by an antenna array. It has
been shown analytically and via computer simulations that the
SCORE processors will capture a SOI with maximum SINR in
the rank-1 self-coherence environment, given only knowledge of
the self-coherence properties of the SOI, e.g., the SOI symbol-rate
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or carrier frequency. It has also been shown via computer sim-
ulation that the cross-SCORE processor can capture SOIs even
if their self-coherence properties are only approximately known
(e.g., to within 4 kHz Doppler shift), and that the cross-SCORE
processor can capture SOIs with near-optimum SINR in the rank-
L self-coherence environment. These properties have been used to
demonstrate the ability of the SCORE processor to sort through
environments to extract and separate multiple PCM SOIs on the
basis of their differing symbol-rate or (if their symbol rates are
equal) differing self-coherence strength.

These results show that the SCORE approach provides a pro-
mising alternative to the existing blind adaptation techniques.
The SCORE processors have unambiguous and analytically trac-
table convergence and capture properties, giving them an advan-
tage over property restoral techniques in automatic processing ap-
plications. The SCORE algorithms also do not require knowledge
of (or impose constraints on) the sensor array geometry or individ-
ual sensor characteristics to operate, and have simple and flexi-
ble RLS-based implementations, giving them cost and complexity
advantages over the spatial coherence-exploiting techniques. The
highly discriminatory capture properties of the SCORE approach
make it ideal for directed-search applications where a few SOIs
with well-known modulation properties must be extracted from a

.dense interference environment.
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