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Abstract

It has been over 30 years since a paradigm shift from abstract stochastic
process models to more concrete Fraction-of-Time Probability models for
time-series data was called for and was supported by this journal’s editor in
chief. Yet, little, if any, detectable progress in making this transition has
occurred. This paper reviews this needed transition and attempts to facili-
tate it with a new type of stochastic process model. The primary purpose
of this model is to serve as a pedagogical tool for facilitating the conceptual
transition from the standard relatively abstract way of thinking to a more
concrete alternative. The utility of this parsimonious alternative was thor-
oughly proven when it was introduced in an advanced 1987 textbook, and the
evidence in support has continued to accumulate in subsequent theoretical
and applied research publications. But resistance to change is ever present.

Keywords: Vibration data modeling; sound data modeling; stochastic
processes; statistical inference; time-series analysis; probabilistic modeling;
ergodicity; cyclostationarity

1. Introduction

Because of the length of this introductory section, it has been partitioned
into four subsections: Foreword, Level of Presentation, Origins, and Outline.

1.1. Foreword

The standard theoretical foundation for statistical processing of persistent
signals, whether they are signals representing sound and vibration, or radio-
frequency transmission, or time series of measurements on just about any
persistent phenomenon, is presently the discrete-time and continuous-time
Kolmogorov stochastic process models and especially, but not exclusively,
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strongly ergodic and cycloergodic Kolmogorov stochastic process models sat-
isfying the axiom of relative measurability, which guarantees that limits of
time averages on functions of sample paths exist. After a brief discussion ex-
posing drawbacks of these generic models for many applications in statistical
signal processing, particularly those involving empirical data, an alternative
stochastic process model is proposed for statistically stationary signals, and
a complementary model for statistically cyclostationary signals also is pro-
posed. For these alternative models, defined first in terms of a parsimonious
construction of their samples spaces, their cumulative probability distribu-
tion functions (CDFs) are derived from Fraction-of-Time (FOT) Probability
calculations on a single member of the sample space, defined in terms of the
Kac-Steinhaus relative measure on the Real line, and they are then shown
to be valid CDFs over the entire sample space of the process. If all such
finite-dimensional CDFs are specified, then this corresponds to a complete
probabilistic model for the alternative stochastic process—equivalent to the
specification of a probability measure defined directly on the sample space.

The motivating di↵erence between Kolmogorov’s model and this alter-
native parsimonious model is that the alternative is derived from empirical
data, at least in principle. It is not posited in an abstract axiomatic manner
that typically leads to a number of conceptually confusing and often unan-
swerable questions about the behavior of the sample paths in the model.
These preferred alternative models are also complemented with another em-
pirically derived model, this one for poly-cyclostationary signals that exhibit
multiple incommensurate periods of cyclostationarity, but this model does
not have an associated sample space for reasons explained herein.

The first applications proposed on page 358 in the first chapter (Chap.
10) of the six-chapter Part II of the 1987 book [1] (available at [2, p. 8.1])
that originated the comprehensive FOT-Probability theory of cyclostation-
arity, were “mechanical vibrations monitoring and diagnosis for machinery
[from which] periodicity arises from rotation, revolution, and reciprocation
of gears, belts, chains, shafts, propellers, bearings, pistons, and so on”. By
using the non-stochastic theory developed in Part II to study another field of
applications—that of communications systems design and analysis—it was
demonstrated that exploitation of cyclostationarity through signal processing
was key to achieving substantial improvements in statistical inference. Since
that time, there has been an explosion of applied work in both communica-
tions system design and analysis and monitoring and diagnosis of rotating
machinery and many other fields of science and engineering (see bibliogra-
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phy in the encyclopedic 2019 book [3, pp. 360-362]). The seminal work on
development of the foundation and theoretical framework for signals exhibit-
ing cyclostationarity reported in [1] proved that a signal is cyclostationary
if and only if there exist nonlinear transformations of the signal that gener-
ate finite-strength additive sine-wave components. This key non-stochastic
characteristic led naturally to a comprehensive theory based on FOT Prob-
abilities, without any mention of the more abstract axiomatically defined
stochastic process. Yet, the applications of that theory have used, almost
exclusively, the unnecessarily abstract—for many applications—stochastic
process theoretical framework. This was made possible by my translation
of the FOT-Probability theory into a dual Stochastic-Process theory in a
1989 companion book for the sake of completeness. But all the practical and
pragmatic reasons given in [1] for practitioners to prefer the FOT-Probability
theory do not appear to have resulted in the paradigm shift predicted at that
time.

In this article, the conceptual and practical advantages of these three
types of alternative stochastic-process models are discussed in some detail,
and then they are done away with! That is, it is shown that the entire frame-
work of stochastic processes, particularly the standard Kolmogorov processes
with their often nonempirical abstraction, can be altogether circumvented
by using FOT-Probability models for single signals, without any reference
to stochastic processes. These single-signal models are identical to the novel
alternative stochastic process models introduced here, but they do away with
the unnecessary sample space because it is redundant. These most elegant of
models provide all the same tools for statistical analysis—including CDFs,
their derivatives—probability density functions (PDFs), temporal moments
and cumulants, spectral moments and cumulants, and so on—but without
any reference to stochastic processes and associated abstractions and confus-
ing technicalities.

In the final analysis, it is recommended that the alternative stochastic
process models introduced here be used exclusively as a pedagogical tool
that helps in understanding the circumstances under which stochastic pro-
cess models are unnecessary for statistical signal processing and probabilistic
analysis involving stationary, cyclostationary, and poly-cyclostationary sig-
nals. These circumstances are, simply stated, any situation in which stochas-
tic processes are appropriate if and only if they are ergodic or cycloergodic
or multi-cycle generalizations thereof, possibly conditioned on knowledge of
the values of random model parameters.
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In contrast, the general situation for which stochastic processes are actu-
ally required, rather than avoidable, as a mathematical basis for statistical
processing and analysis is that for which the lack of ergodicity or cycloergod-
icity is an essential characteristic. This is typically those situations for which
populations or ensembles of signals are an essential ingredient. Nevertheless,
when a stochastic process model is non-ergodic or non-cycloergodic but is
conditionally ergodic or cycloergodic—meaning conditioned on knowledge of
some finite set of parameters of the signal model, the conditional process
is ergodic or cycloergodic—and when this conditioning can be either exper-
imentally implemented or mathematically enforced in a data model, then
the conditional FOT-CDFs can be measured or calculated and used in the
same manner as CDFs for traditional stochastic processes. This enables the
incorporation of FOT-Likelihood functions in the FOT-Probability theory.

In summary, the purpose of this paper is to help those, who have been
indoctrinated in stochastic processes as the only viable analytical tool for
statistical analysis of persistent signals, to make a transition in conceptual-
ization that will enable them to replace this often unnecessarily abstract and
conceptually problematic tool with a more elegant alternative that is formu-
lated specifically for empirical data analysis. That this o↵ered help is needed
is evidenced by the passage of 35 years since a comprehensive introduction
to this alternative was published in tutorial form and a paradigm shift was
proposed; despite the passage of all this time, essentially all analysts who
publish their work continue to cling tightly to the concept of the more ab-
stract Kolmogorov model. It is the Author’s belief that this is a result of
shortcomings in education.

As a matter of fact, much applied work in engineering and other applied
fields uses probability concepts and tools, such as expected values, auto-
correlation functions, and other moments of signals, but does not actually
formulate or even explicitly assume the existence of Kolmogorov stochastic
process models for the signals of interest. It is often simply stated at the
outset of a published research work “let x(t) be a stochastic process, . . .”
with the implication being that all the underlying mathematical machinery
that may be required for the probability calculations subsequently performed
to be meaningful exists . . . when in fact it may not exist in a manner that
is consistent with the empirical data being studied or with various assump-
tions and restrictions on signals despite their being treated as if they arose
from stochastic processes. In other words, one might say that the analytical
portions of much practical work that treats signals as stochastic processes
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is a sham. The theoretical quantities, such as autocorrelation function, are
not really explicitly defined, although symbolic formulas for them are derived
through symbolic manipulation. And when it comes to implementation, these
undefined quantities are calculated from empirical data typically using time
averages in place of the undefined expected values.

Yet, work gets done, research papers get published, problems presumably
get solved and so one might ask “who cares?” The answer is that, as an
educator, I care because I know how confused students often are about the
concept and e↵ective use of the stochastic process, when times averages are
the quantities of interest in practice, and because I see confusion in the minds
of authors of applied research papers who have attempted to use stochastic
processes in their work. This confusion is often simply buried by a complete
disconnect between calculations or simply symbolic manipulations performed
using expected values and experiments performed using time averages.

History reveals that the implementation of this pending paradigm shift
has been found to be quite a challenge despite the strong support of the likes
of Phillip. E. Doak, Founding Editor of this journal with a tenure as Editor
in Chief of 40 years. On 8 March 1990, Phillip sent me his perspective on
the need for this transition, and I quote:

“In my latter years, I have become more and more convinced of the va-
lidity of his [Percy W. Bridgman, Nobel Prize Laureate] outlook. Not only
can ergodic mathematical concepts put students o↵, indeed I now believe that
for physical scientists and engineers, they are “operationally erroneous”, and
dangerous to mental health. Interpreting observations through ergodic spec-
tacles is to misinterpret what the observations really mean. Not only does it
confuse the issue, but also it inhibits the development of one’s intellectual ca-
pacity to ask the right questions about what the data means. Thus, in design,
development, and research it is a model of reality which is counterproductive
in respect to generating concepts which can lead to real progress in the real
world.”

As author of the 1987 book [1] that proposes this paradigm shift, I cannot
say it any better than this! Phillip’s informed perspective is also aligned with
that of other leaders in fields based on statistical signal processing, who—
like Phillip—have made their informed positions clear. The first mentioned
here is Professor Enders A. Robinson, originator of the digital revolution in
geophysics, and highest honored scientist in the field of geophysics. In a
published review of the book [1] [Signal Processing, EURASIP, and Journal
of Dynamical Systems, Measurement, and Control, ASME, 1990], Enders

5



wrote:
“This book can be highly recommended to the engineering profession. In-

stead of struggling with many unnecessary concepts from abstract probability
theory, most engineers would prefer to use methods that are based upon the
available data. This highly readable book gives a consistent approach for car-
rying out this task. In this work Professor Gardner has made a significant
contribution to statistical spectral analysis, one that would please the early
pioneers of spectral theory and especially Norbert Wiener.”

Similarly, the following quotation from Professor Ronald N. Bracewell–
recipient of the IEEE’s Heinrich Hertz medal for pioneering work in an-
tenna aperture synthesis and image reconstruction as applied to radio as-
tronomy and to computer-assisted tomography–taken from his Foreword to
the book [1], introducing FOT-Probability theory, makes essentially the same
point that Enders makes:

“If we are to go beyond pure mathematical deduction and make advances
in the realm of phenomena, theory should start from the data. To do oth-
erwise risks failure to discover that which is not built into the model . .
. Professor Gardner’s book demonstrates a consistent approach from data,
those things which in fact are given, and shows that analysis need not pro-
ceed from assumed probability distributions or random processes. This is a
healthy approach and one that can be recommended to any reader.”

Not to belabor the point, but even the information theorist, Profes-
sor James Massey—Professor of Digital Technology at ETH Zurich, IEEE
Alexander Graham Bell medalist and member of the National Academy of
Engineering—wrote, in a 1986 prepublication review of the book [1],

“I admire the scholarship of this book and its radical departure from the
stochastic process bandwagon of the past 40 years.”

Summing up, despite the accolades given to the proposal for a paradigm
shift, it has not yet happened. The intent of this paper is to further motivate
the community with additional assistance for understanding the merit of
the alternative to the stochastic process standard, and to introduce a new
pedagogical tool for making the transition.

1.2. Level of Presentation

The statements of theoretical results and discussion of practical ramifi-
cations provided in this article are written for statistical signal processing
engineers and like-minded time-series analysts, which may include physicists
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and other specialists in the physical sciences, and other fields where statisti-
cal analysis of empirical time-series is of interest. It is felt that mathematical
proofs at any higher level of rigor than that which is presented herein would
be distracting and are not included for this reason and others. Because the
specific reasoning given in this article is not at odds with the day-to-day
reasoning generally used by the intended audience, little of value would be
added for this audience if a more mathematically rigorous presentation were
provided. The preference acted on here is especially appropriate since the
whole point of the e↵ort leading to these new models is to show practitioners
that the substantial abstractions and unmet challenges of trying to verify
strong ergodicity or cycloergodicity of traditional stochastic process models
are in the great majority of applications nothing more than distractions from
the reality of empirical data and its processing and analysis and the more el-
egant theory that is identified here and is based on Fraction-of-Time (FOT)
Probability for single signals.

Perhaps the most important reason for not getting distracted by rigor
is that these new models are intended for only the pedagogical purpose of
providing a conceptual transition from stochastic process models to FOT-
Probability models of single signals and demonstrating that stochastic pro-
cess models are often an unnecessary abstraction: they forfeit parsimony and
mathematical elegance relative to the alternative single-signal models with
fraction-of-time probability calculated directly from the single signal.

To counter the appearance of avoiding technical detail that may be im-
portant in comparing the two approaches to stochastic process modeling dis-
cussed in this paper, a glimpse into such details is provided in this paragraph
and here and there in following sections. The Relative Measure used in [4] for
the mathematical foundation of FOT-Probability models is not sigma addi-
tive (probabilities of infinite unions of nested event sets do not all converge),
but in Kolmogorov’s stochastic process probability model, sigma additivity
of the proposed probability measure is only assumed by virtue of Axiom VI
[5]. So, this axiom does not guarantee that, for any particular stochastic pro-
cess model one adopts, the probability measure will in fact be sigma additive.
Kolmogorov simply removes the mathematically undesirable general lack of
sigma additivity of measures by axiomatically removing from consideration
all probability measures that are not sigma additive. But how often do we
encounter practitioners seeking to determine if the probability measure for
some stochastic process model they have adopted is sigma additive or even
just seeking to explicitly describe the probability measure for their adopted
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model? This is a very rare event. For the Fraction-of-Time Probability The-
ory discussed herein, an alternative restrictive assumption is required: the
undesirable general lack of relative measurability of functions of time series
is avoided by removing from consideration all time series and functions of
those time series that are not relatively measurable. Such prohibited time
series can be constructed, but they also can be considered to be contrived
though an application of such contrived functions to secure communications
has been proposed [4, Sec. 7]). This restriction to relative measurability is
also required of the sample paths of ergodic stochastic processes, because
sample-path time averages cannot converge to expected values if they do not
converge at all. These restrictions are discussed further in [4].

In many applications, one starts with a finite-length record of empirical
data. All that is actually required in many studies is that it be considered
conceivable that there exists a mathematical model of an infinitely long data
record that is consistent in some appropriate sense with the empirical data
record. It is only in a minority of applied fields where more analytically
oriented work is being done that an explicit specification of a mathematical
model of an infinitely long signal is required.

1.3. Origins

The three-decade history from the 1930s through the 1950s of time-
average statistical theory of time series is traced in [6] but the first approach
to more comprehensive Fraction-of-Time Probabilistic Modeling of signals
seems not to have been introduced until the concise publications of Bren-
nan [7] and Hofstetter [8] in the 1960s. This approach was later developed
independently and more comprehensively, including extension/generalization
from stationarity to cyclostationarity, with in-depth application to the theory
of statistical spectral analysis by myself in 1987 [1] (see also [9]). In the early
1980s, as I was writing the textbooks [1] and [10], I discovered the earlier
work [7] and [8] as a result of discussions with Professor Thomas Kailath of
Stanford University. I added to the Introduction in my book draft citations
of this relatively unknown work from two decades earlier. As discussed in the
present article and in more depth at the University of California, Davis web-
site [2], earlier work on time-average theory, including [7] and [8], appears
to have been largely forgotten as the stochastic process bandwagon trend
developed.

The time-average approach was the starting point for the use of statisti-
cal time-series analysis in physics but has been largely ignored for well over
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half a century by many college instructors and criticized by some mathe-
maticians for supposedly being non-rigorous. However, it has recently been
shown by Leśkow and Napolitano to have a rigorous basis in measure the-
ory, using mathematical tools dating back to the work of Kac and Steinhaus
in 1938 [11]. This basis for measure-theoretic rigor underlying Fraction-
of-Time Probability Theory was apparently lost track of in the shadow of
Kolmogorov’s contributions earlier the same decade. But, well over half a
century later, it was uncovered by Leśkow and Napolitano in 2006 [4], where
a more complete list of early (1920s to 1940s) contributors to time-average
statistical theory is given (see also [3] by Napolitano).

1.4. Outline

1. Introduction

2. Historical Perspective

3. Results

3.1 Kolmogorov’s model of a stochastic Process

Birkho↵’s Ergodic Theorem for Discrete Time
Birkho↵’s Ergodic Theorem for Continuous Time

3.2 The Measure Theory of FOT-Probability
3.3 Definition of Stationary FOT-Stochastic Process

Stationary FOT Ergodic Theorem
Relation to Wold’s Isomorphism

3.4 Comparison of Kolmogorov and FOT stochastic Process Models
3.5 Definition of Cyclostationary FOT- Stochastic Process

Cyclostationary FOT Cycloergodic Theorem

3.6 The FOT-Probability Model for Almost Cyclostationary Processes
3.7 Cycloergodicity for Multiple Incommensurate Periods

How to Generalize Birkho↵’s Ergodic Theorem

3.8 Purely Empirical FOT-Probability Models for Regular Cyclicity
3.9 Purely Empirical FOT-Probability Models for Irregular Cyclicity
3.10 The Weakness of Mean-Square Ergodicity
3.11 Optimum and Adaptive Statistical Inference

4. Discussion of Results

5. References
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2. Historical Perspective

To put this proposed evolutionary step in larger perspective, some stages
of signal modeling that this community has passed through over the last
century are briefly summarized. Time-series analysis goes back more than a
century, but the time of R. A. Fisher one century ago seems to be a turning
point when broader theoretical frameworks began to be formulated. This
includes most notably Fisher’s Principle of Maximum Likelihood, which is
among the most commonly used optimization criteria for designing statis-
tical inference and decision rules—algorithms—in use today within the sta-
tistical signal processing community. This includes both signal-parameter
estimation and signal detection and classification. Predating Fisher by two
centuries was Thomas Bayes, who gave birth to the theory of Minimum-Risk
Statistical Inference and Decision (which addresses the same or similar sig-
nal parameter estimation and signal detection and classification problems
that Maximum-Likelihood addresses, but with the added axiom that prior
probabilities [prior to experimentation including observation or data collec-
tion] are assumed to exist). More recently, just preceding the middle of last
century, Norbert Wiener used his developing statistical theory of single time
functions (signals) to derive what we now call the Wiener Filter and related
linear time-invariant signal processors, using a time-average counterpart of
the Bayes Minimum-Risk design criterion, where risk was specified to be
expected squared error, reformulated as time-averaged squared error. This
was the continuous-time counterpart of Carl Friedrich Gauss’s discrete least-
squares optimization criterion used two centuries ago. Wiener’s time-average
theory and its applications to the nascent field of statistical communication
theory was given a boost in visibility and further developed in 1960 with the
publication of a book by one of Wiener’s previous students at M.I.T, Yuk
Wing Lee [12]. That same year, David Middleton’s landmark book An In-
troduction to Statistical Communication Theory was published. In contrast
to Lee’s book, Middleton’s was solidly based on the theory of stochastic
processes. It had been said to cover a panoramic view unmatched by any
other publication in the field [13]. This book was likely instrumental in ce-
menting the place of the stochastic process in statistical signal processing.
Middleton states in his preface “The mathematical exposition is for the most
part heuristic”. Although he does favor obtaining autocorrelation functions
from signal models using time-averaging, he then takes an expected value
to obtain an ensemble autocorrelation. Because of this approach, he misses

10



the fact that some of his signal models are cyclostationary, not stationary.
Nevertheless, he does note that, in general, his approach produces stationary
autocorrelations for nonstationary processes. This precedes more theoret-
ical work decades later on what are called asymptotically mean-stationary
processes, which includes as special cases cyclostationary and almost cyclo-
stationary processes. Middleton, however, does not adopt the Kolmogorov
model for stochastic processes. He uses heuristics instead.

Contemporaneously with Wiener in the 1930s and 1940s, Kolmogorov in-
troduced the now-standard theory of the stochastic process as a probabilistic
model for time-series. Also contemporaneous was the establishment of Infor-
mation Theory by its originators, Harry Nyquist, Ralph Hartley, and Claude
Shannon during the 1920s – 1940s. The landmark event establishing the
discipline of information theory and bringing it to immediate worldwide at-
tention was the publication of Claude E. Shannon’s classic paper ”A Mathe-
matical Theory of Communication” in the Bell System Technical Journal in
1948. This theory is strongly probabilistic. From 1960 forward, Wiener’s
time-average approach quickly faded into the background, and Kolmogorov’s
expected-value approach grew into the standard we use today. It is conceiv-
able that this was in large part a result of the boom that information theory
initiated and possibly also a result of the mathematical rigor of Kolmogorov’s
book on the theory of stochastic processes. Interestingly, though, informa-
tion theory involving signals is valid for time-average probabilities, not just
ensemble-average probabilities, as discussed further on in this paper.

What has for almost a century been referred to as statistical time-series
analysis has increasingly come to be relabeled statistical signal processing,
perhaps because of the lead electrical engineers have taken in developing the
technology used for implementation. This field of study, born within the
field of electrical engineering, was originally based in large part on what is
called statistical communication theory, which arose out of the work of Wiener
and his contemporaries but was reformulated in terms of expected values
and stochastic process models. This theory is more probabilistic than it is
statistical, yet it is called a statistical theory by the authors of classic books
on the subject, written starting in the 1950s-1960s, particularly Middleton’s
book. Middleton is, however, precise in his distinction between statistical and
probabilistic quantities. But, over time, the language has become less precise.
Today, the terms signal and time series are often used interchangeably by
more broadly educated practitioners, with some preference given to time
series by statisticians and preference given to signals by engineers, especially
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electrical/electronics engineers. The primary di↵erence between time-series
analysis and signal processing is that, prior to the communications technology
revolution, the term signal was not yet being used for essentially any time-
record of data. Some authors reserve the term time series for discrete-time
data.

In communication theory, the stochastic process model of signals was
adopted because a key concept was to design inference-making algorithms
that optimized expected performance (minimized expected cost, which is the
definition of Bayesian Risk). That is, performance was to be optimized over
the population or ensemble of all sample paths of a stochastic process model
of a type of signal of interest. For example, in telecommunications, the
Wiener filter—according to modern theory—was the solution to minimum-
mean-squared-error estimation of a transmitted signal, given a corrupted
version of that signal obtained from a remote receiver. Thus, the statistical
averaging of interest, performed by the expectation operation, was performed
for example over all speech to be telecommunicated (referring back to the
early days of Bell Telephone Laboratories), as well as all noise corrupting
the transmitted signal. This eventually included all speaker physiologies,
all languages, and all accents. Standardized fixed population-statistics com-
puted empirically and expected values were used for designing channel filters
and equalizers, which themselves were fixed or manually adjustable. But, as
technology progressed, fixed optimum solutions began to be replaced with
adaptive solutions that automatically optimized performance for each and
every single signal. This required working with statistics obtained from time
averaging single signals, not ensemble averaging multiple signals. This gave
impetus to preferring ergodic stochastic process models for signals because
then solutions implemented with algorithms that computed and used time-
average statistics gave good approximations to the ensemble-averages dealt
with in the mathematical models used for deriving the algorithms, and this
rendered the stochastic process theory, in which electrical engineers were be-
ginning to be indoctrinated, adequate for these. But despite ergodic theory,
most users did not know how to test their mathematical signal models for
strong ergodicity. Birkho↵’s ergodic theorem provided the ergodicity condi-
tion only in terms of the abstract mathematical probability measure defined
(possibly only generically specified) in terms of a function of arbitrary sub-
sets in a sigma field—the mathematical sample space—which also was defined
(often only generically specified) in terms of sample paths often having no ex-
plicit description, e.g., interfering signals known only by their power spectral
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densities. So, the ergodicity condition was rarely able to be tested. Empirical
data was of no use for this purpose because the condition involves only the
abstract probability measure; it’s a property of the mathematical model, not
the empirical data. Practitioners often just invoked the Ergodic Hypothesis
and typically left it untested. This is discussed early on by Middleton and
remained the status quo up to and including today. But, once ergodicity was
invoked, the stochastic process model was, in principle, no longer the most
appropriate model, as explained in this paper and its references. With time-
averages of primary concern, population averages became, in principle but
often unknowingly, irrelevant, and the abstraction of stochastic processes be-
came unnecessary and nothing more than a distraction—something not rec-
ognized by most users. Although Middleton uses time averages, especially
for calculating autocorrelation functions and associated quantities, before he
takes the expected value, he does not appear to comment on the broader
concept of FOT-Probability.

Although 35 years have passed since a comprehensive development of an
alternative probability theory for random signals that is based entirely on
time averages was published in textbook form [1], this alternative theory
has been largely ignored by all but a small minority of users of stochastic
processes. For instructors of courses on statistical signal processing, teaching
this alternative requires an introductory textbook, since the only textbook
available [1] is written for advanced students. Similarly, a 2nd book (not
a textbook with exercises) treating this alternative theory that appeared
just two years ago is written for experts or at least mathematically mature
readers.

This stagnation in statistical signal processing pedagogy in universities
occurred even though this simpler more transparent theory was proven in [1]
to be analogous and actually operationally equivalent to the probability the-
ory based on abstract and, one might even say, mysterious ergodic stochastic
process models and, with regard to calculations, yields the same results in all
cases for which relative measurability is assumed, which is necessary for the
ergodic theorem to prove that expected values can be approximated by time
averages. It is hoped that the pedagogical approach taken in this paper,
whereby alternative stochastic process models are introduced as a concep-
tual transition from Kolmogorov’s abstract stochastic process to concrete
FOT-Probability models for single signals will spark interest in universities
in developing new introductory courses based on the time-average theory of
signals. Some of the many practical advantages of doing so are discussed in
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this article.
To be especially clear at the outset about limitations of FOT-Probability

Theory, the particularly important area of statistical inference and decision-
making based on time-series observations is briefly discussed. Generally
speaking, FOT-Probability models are well matched to what might be loosely
called non-parametric inference and decision, for which no use is made of as-
sumed functional forms of Cumulative Distribution Functions (CDFs) of the
data with or without known, unknown, or random parameters of the func-
tional form; the only CDF used is that measured from the observed time-
series data. The complementary area of statistical inference and decision-
making denoted with the adjective parametric partitions into two general
types, one of which is accommodated by FOT-Probability models and the
other of which is not.

The type of parametric statistical inference and decision making that is
not accommodated by FOT-Probability theory is that which is based on
non-ergodic stochastic process models and some ergodic models for which
probability functions, including CDFs or possibly just some moments, for
the data conditioned on knowledge of some model-parameter values and/or
hypotheses are needed but cannot be measured or calculated from a model for
the observed data. Such cases can arise in Maximum-Likelihood Methods and
Bayesian Minimum-Risk Methods of inference and decision making. If such
parameters are modeled as random variables, the data must be considered
to have arisen from a non-ergodic process since observation of one record
of data cannot be used to learn about the influence of other values of the
parameters that did not occur in the record of data. For example, if received
data consists of signal plus noise under one hypothesis and noise only under
an alternative hypothesis, the stochastic process model for the data that is
not conditioned on a specific hypothesis cannot be ergodic.

In contrast to these parametric methods based on non-ergodic models,
there is a type of parametric inference and decision making that is based
on formulaic data models (sample-path models) in which the values of some
parameters are unknown but are not treated as random variables. These are
stochastic process models that are known only partially. For such models, one
can in principle use the expectation operation to mathematically calculate
the dependence of theoretical probability functions, such as moments, on the
unknown parameters and then equate these theoretical moments to measured
sample moments, and finally solve these equations, when possible, for the
unknown parameters. This is called the Method of Moments for inferring
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parameter values.
Popular sample-path models used in the Method of Moments are autore-

gressive (AR), moving average (MA), and ARMA models and their periodic
and poly-periodic generalizations. All such parametric methods are accom-
modated by the theory of FOT-moments associated with FOT-probabilities,
for which the expected values in the Method of Moments are replaced with
limits of time averages, and the empirical counterparts that were equated
with expected values are finite-time averages that are equated with the limits
of time averages. A survey of FOT parametric statistical spectral analysis
is available in [1]; see also [3], [14], [15]. In addition, a radically di↵erent
method of moments that has not yet been thoroughly evaluated is described
in [2. p. 11.4].

3. Results

3.1. Kolmogorov’s model of a stochastic Process

We are interested here in discussing alternatives to both the discrete- and
continuous-time versions of Kolmogorov’s 1933 definition [5] of a stochastic
process consisting of a sample space (the set of all sample paths, or signal
realizations), a sigma field of subsets (events) in the sample space with a
sigma algebra, and a probability measure on the event sets. These “sigma”
requirements, meaning “convergence requirements for countably infinitely
many operations”, derive from Kolmogorov’s Axiom VI in his definition of a
stochastic process. In practice, the specification of a particular probability
measure is rarely carried out because this is a di�cult mathematical chal-
lenge for which there is no recipe. Sometimes practitioners will specify some
lower order CDFs or Probability Density Functions (PDFs) as a half-hearted
attempt. In the special case of a Gaussian process, the specification of the
2nd-order CDF or PDF is all that is needed to derive from it all orders of
CDFs and PDFs. Once all orders are specified, one can invoke the Kol-
mogorov Extension Theorem to conclude that the measure for the sample
space has been e↵ectively, if not explicitly, specified.

Although there exist a modest number of well-known specifications of
probability measures for stochastic processes, it is fair to say that in much
practical work the probability measure for a stochastic process is rarely spec-
ified; as a consequence, Axiom VI can only rarely be tested. Consequently,
it is common practice to simply assume Axiom VI is satisfied by the selected
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model and proceed to use the consequences of that axiom in performing
calculations involving infinite sums—not a particularly justifiable approach.

In other cases, practitioners will construct a formulaic model of a stochas-
tic process as some combination of specified deterministic functions and some
random variables. For example, essentially all digital communications signal
models are specified in this manner. Similarly, vibrations from, say, bear-
ing faults in rotating machinery are sometimes modeled as the response of a
specified linear time-invariant dynamical system to a nearly periodic train of
impulses, with one or two associated random parameters. For time-varying
RPM, the impulse rate varies in proportion to the RPM. This typically pro-
vides no insight into the probability measure for the process but does often
enable the practitioner to calculate some moments and/or cumulants and,
much less frequently, some CDFs or PDFs. In a number of cases for which
statistical inference using the stochastic process model is of interest, it su�ces
to calculate only the PDF for the observed data, conditioned on knowledge
of the random variables in the model that are to be estimated, or conditioned
on hypotheses to be tested. This can be adequate for deriving maximum-
likelihood inference rules and in some cases minimum-Bayes-Risk inference
rules.

In summary, it is a relatively rare occasion when Kolmogorov’s model of
a stochastic process is able to be specified and used for time-series analy-
sis, aka statistical signal processing. A particularly egregious consequence of
this common practice is having to assume that an adopted and possibly only
partially specified model is strongly ergodic. This assumption, when valid,
enables one to accurately approximate expected values, calculated from the
model, using time averages on su�ciently long finite segments of a single
realization of the signal being modeled. Without actually knowing that the
model used for calculating expected values is ergodic, such time averages may
or may not be accurate approximations. In fact, without the added assump-
tion, which is typically ignored, that limits of time averages of sample paths
exist, the ergodic hypothesis—whether true or false—does not guarantee that
expected values can be approximated by time averages.

The above less-than-desirable situation concerning the use of Kolmogorov’s
stochastic process model has been tolerated for nearly a century now. Ev-
idently, we’ve “gotten by” despite the unsavory facts summarized above.
Nevertheless, there do exist alternative approaches to modeling signals for
purposes of statistical inference and analysis. The purpose of this paper is
to present such a model—the FOT-Probability model of a single signal—and
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explain how it relates to Kolmogorov’s model and how much easier it is to
use in practice in a more justifiable manner for applications in statistical
signal processing, where complete mathematical specifications of stochastic
processes a la Kolmogorov is not possible. It should however be mentioned
here that the FOT-Probability model can be used for statistical inference
and decision-making involving likelihood functions only when such likelihood
functions can be measured or calculated as conditional FOT-PDFs. This is
further discussed in Section 4.

An event set A for some specified event, such as the event that a stochastic
process takes on a value exceeding unity at time 1 sec, is the set of all sample
paths for which this event occurs. For the purpose at hand, let Tt(A) denote
the time-translation set-operator that shifts, by any real number t 2 R,
typically representing time, all sample paths in an event set A, and let Tn(B)
denote the discrete-time counterpart for any integer n 2 Z. Following are
the two ergodic theorems that are assumed to apply in many applications:

Birkho↵ ’s Ergodic Theorem for Discrete Time (BET–DT)
Consider a discrete-time Kolmogorov stochastic process with integer-

valued time, satisfying Kolmogorov’s six defining axioms [5], for which all
event sets E that are translation-invariant, Tn{E} = E for all integers n,
have probabilities of either P (E) = 0 or P (E) = 1. By Birkho↵’s 1931
Ergodic Theorem [16], this stochastic process is ergodic w.p.1, and is also re-
ferred to as strongly ergodic. Birkho↵’s ergodicity condition here is necessary
for discrete-time-averages of functions of the stochastic process to converge,
with probability equal to one (w.p.1 ), to the corresponding expected values,
as the averaging time approaches infinity.

Birkho↵ ’s Ergodic Theorem for Continuous Time (BET–CT)
Consider a continuous-time Kolmogorov stochastic process, satisfying

Kolmogorov’s six defining axioms [5], for which all event sets E that are
translation-invariant, Tt{E} = E for all real t, have probabilities of either
P (E) = 0 or P (E) = 1. By Birkho↵’s 1931 Ergodic Theorem [16], extended
from discrete- to continuous-time (e.g., page 1 of [17]), this stochastic process
is ergodic w.p.1, and is also referred to as strongly ergodic. Birkho↵’s ergod-
icity condition here is necessary for continuous-time-averages of functions
of the stochastic process to converge, w.p.1, to the corresponding expected
values as the averaging time approaches infinity.

These theorems require an additional axiom, here labeled Axiom VII, or
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they require a proof of a proposition in order to provide the desired necessary
and su�cient condition for strong ergodicity. Without this Axiom VII or a
proof of the proposition, these theorems are not applicable in the way they
have been applied for many years. This needed axiom or proof guarantees
that the limits of the time averages of interest in practice exist. If they
do exist, then the ergodic theorem establishes that they equal w.p.1 the
corresponding expected values. For discrete time, this proposition has been
proved at least in some cases such as for finite-alphabet processes. As per
my knowledge, it may or may not have been proved for continuous time. The
proposition can be stated as follows: For an ergodic Kolmogorov discrete-
time (continuous-time) process, the samples paths of well-behaved functions
of the process are relatively measurable, as defined below.

One example of a su�cient condition for existence of the continuous-time
average, which has been assumed in the early work on ergodic theorems, like
Birkho↵’s work (cf. [16] and references therein) is that the function of time
is any well-behaved function of the positions of the particles of a dynamical
system described by di↵erential equations for which the sum of kinetic ener-
gies of all the particles in the system is time invariant. Unfortunately, this is
typically not an appropriate model for the manmade signals used in commu-
nication systems and also not appropriate for many other applications like
rotating machinery fault diagnosis and monitoring, and biological signals.

3.2. The Measure Theory of FOT-Probability

The material in this subsection is taken from [4], also cf. [3, Chap. 2]. Let us
consider the set A 2 BR, where BR is the �-field of the Borel subsets on the
real line and let µ be the Lebesgue measure on the real line R. The relative
measure of A is defined by Kac and Steinhaus [11] as follows

µR(A) , lim
T!1

1

T
µ (A \ [t0 � T/2, t0 + T/2]) (1)

provided that the limit exists. In such a case, the limit does not depend on
t0 and the set A is said to be relatively measurable (RM). For example, given
a function x(t), the event set A consisting of all the time points on the real
line for which some event involving x(t) occurs has Fraction-Of-Time (FOT)
Probability given by µR(A), provided that A is relatively measurable.

Let x(t) be a Lebesgue measurable function on the real line. The function
x(t) is said to be relatively measurable [11] if the set {t 2 R : x(t)  ⇠} is
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RM for every ⇠ 2 R � N0, where N0 is at most a countable set of points.
Each RM function x(t) generates the function

Fx(⇠) , µR({t 2 R : x(t)  ⇠})
= lim

T!1

1

T
µ ({t 2 [t0 � T/2, t0 + T/2] : x(t)  ⇠})

= lim
T!1

1

T

Z t0+T/2

t0�T/2

u(⇠ � x(t)) dt

(2)

at all points ⇠where the limit exists. In this equation, u(⇠) denotes the unit
step function:u(⇠) = 1 for ⇠ � 0 and u(⇠) = 0 for ⇠ < 0.

The function Fx(⇠) has all the properties of a valid cumulative distribu-
tion function (CDF), except for the right-continuity property (at points of
discontinuity). It represents the fraction-of-time (FOT) that the function
x(t) is below the threshold ⇠, as illustrated in Fig. 1. For this reason, Fx(⇠)
is referred to as the FOT- distribution of the function x(t).

Since the relative measure of every finite set is zero, the relative measure
of every finite-energy or transient function x(t) has the trivial distribution
function Fx(⇠) = u(⇠). Only finite-average-power or persistent functions,
such as almost periodic functions, can have a non-trivial FOT-distribution.

Fig. 1 The measure of the set {t 2 [t0 � T/2, t0 + T/2] : x(t)  ⇠} (the length
of the thick line) divided by the total time T is the fraction of time that the
function x(t) is below the threshold ⇠ as t ranges over [t0 � T/2, t0 + T/2] .
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If x(t) is a relatively measurable persistent function and not necessarily
bounded and g(·) is a well-behaved function, then the following Fundamental
Theorem of Time Averages [1] can be verified [4, Theorem 3.2]

lim
T!1

1

T

Z t0+T/2

t0�T/2

g(x(t)) dt =

Z

R

g(⇠) dFx(⇠) (3)

where the first integral in the left member is in the Lebesgue sense and does
not depend on t0, and the integral in the right member is in the Riemann-
Stieltjes sense. When Fx(⇠) is di↵erentiable, its derivative, denoted by fx(⇠),
is the probability density function, and dFx(⇠) can be replaced in the right
member with fx(⇠)dx, in which case the integral is in the Riemann sense.

From this theorem, it follows that the infinite-time average is the expec-
tation operator for the FOT-distribution Fx(⇠) and for every bounded x(t)
we have

hx(t)it ⌘ lim
T!1

1

T

Z t0+T/2

t0�T/2

x(t) dt =

Z

R
⇠ dFx(⇠) (4)

The analogy between FOT-Probability and Kolmogorov probability [1], [9]
is evident.

For a 1st-order strict-sense stationary process X(t) with distribution
FX(⇠) , P [X(t)  ⇠], the stochastic counterpart of the above time-average
definition of the distribution is

FX(⇠) = E{u(⇠ �X(t))} (5)

where E{·} is the expected value operation, which equals the limit ensemble
average operation, and which replaces the time average operation used in
the FOT-Probability approach. Similarly, the Kolmogorov counterpart of
the Fundamental Theorem of Time Average is the following Fundamental
Theorem of Expectation

E{g(X(t))} =

Z

R
g(⇠) dFX(⇠). (6)

A necessary and su�cient condition for the relative measurability of a func-
tion is not known. However, if x(t) is a bounded function, the existence of
the time average

lim
T!1

1

T

Z t0+T/2

t0�T/2

xp(t) dt. (7)
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for every positive integer p is a necessary condition for the relative measura-
bility of x(t). In addition, it follows from the Fundamental Theorem of Time
Average that, if x(t) is continuous and bounded and the left-hand side of the
equation

lim
T!1

1

T

Z t0+T/2

t0�T/2

xp(t) dt =

Z

R
⇠p dFx(⇠) (8)

exists for every positive integerp, then x(t) is relatively measurable, and the
above equation is valid.

As a final remark, it is noted that the absence of right-continuity of the
FOT-distribution is not important in applications where integrals in dFx(⇠)
are of interest. For stochastic probability, the right-continuity of the distribu-
tion is a consequence of the assumed �-additivity of the probability measure
P .

The preceding theory has a completely analogous discrete-time counter-
part, which can be obtained by simply replacing integrals over continuous
time with sums over discrete time [3, Chap. 2]. The same terminology is
used. For example, the relative measure of a finite set A is defined by

µR(A) , lim
N!1

1

2N + 1
# (A \ [n0 �N, n0 +N ]) (9)

where #(A) is the counting measure of the finite set A, which equals the
number of elements in A.

We can now proceed with the definition of the stationary FOT-stochastic
process. As above, x(t) represents a persistent relatively measurable real-
valued function of time defined over the entire real line and xn represents
a persistent relatively measurable real-valued sequence indexed by discrete
time over the entire set of integers.

Multiple functions are said to be Jointly Relatively Measurable if they
each are relatively measurable, meaning there FOT-CDFs exist, and their
joint FOT-CDFs exist.

3.3. Definition of Stationary FOT- Stochastic Process

Def. S1: The Sample Space of the Stationary FOT-Stochastic Process is
comprised of all the time translates of a single relatively measurable discrete-
or continuous-time sample path (persistent real-valued function of a real
variable), x, subject to the constraint that replications are disallowed (no
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two sample paths can be identical):

⌦d = {{xn�!;n 2 Z};! 2 Z},
⌦c = {{x(t� !); t 2 R};! 2 R} (10)

Def. S2: The probability of any relatively measurable subset of elements
from the sample space index set R or Z, called an event, is the value of the
relative measure of that set.

Def. S3: The FOT-CDF of any relatively measurable discrete- or continuous-
time function, f [x](t) or f [x]n, which is jointly relatively measurable, for
m real-valued time points {t1, t2, t3, ..., tm} or m integer-valued time points
{n1, n2, n3, ..., nm}, respectively, of the Stationary FOT- Stochastic Process
x(t) or xn is the relative measure of the event set

Ec
m , {! 2 R; f [x](t1 � !)  ⇠1,

f [x](t2 � !)  ⇠2, ..., f [x](tm � !)  ⇠m}
(11a)

or

Ed
m , {! 2 R; f [x]n1�!  ⇠1,

f [x]n2�!  ⇠2, ..., f [x]nm�!  ⇠m}
(11b)

for all real-valued m-tuples {⇠1, ⇠2, ⇠3, ..., ⇠m}.

It follows from Def. S3 that the 1st order FOT-CDF for a continuous-time
stationary FOT process is given explicitly by the formula

Fx(⇠) , µR({t 2 R : x(t)  ⇠})
= lim

U!1

1

U
µ ({t 2 [t0 � U/2, t0 + U/2] : x(t)  ⇠})

= lim
U!1

1

U

Z t0+U/2

t0�U/2

u(⇠ � x(t))dt

(12)

for all real ⇠, and similarly for higher-order FOT-CDFs; and, for discrete-
time, the FOT-CDF is given by

Fx(⇠) , µR ({n 2 Z : xn  ⇠})
= lim

N!1

1

2N + 1
# ({n 2 [n0 �N, n0 +N ] : xn  ⇠})

= lim
N!1

1

2N + 1

n0+NX

k=n0�N

u (⇠ � xn)

(13)
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As another example, for m = 2,we have the 2nd order FOT-CDF

Fx(⇠1, ⇠2) , µR({t 2 R : x(t+ t1)  ⇠1,
x(t+ t2)  ⇠2}}

= lim
U!1

1

U
µ({t 2 [t0 � U/2, t0 + U/2] : x(t+ t1)  ⇠1, x(t+ t2)  ⇠2})

= lim
U!1

1

U

Z to+U/2

to�U/2

u (⇠1 � x(t+ t1)) u (⇠2 � x(t+ t2)) dt

(14)
for all real ⇠. Note: The constraint in Def. S1 that disallows replications in
the sample space also disallows constant signals, which are a degenerate case
of stationary signals. A viable alternative is to remove this constraint.

The probability of the entire sample space of the Stationary FOT-Stochastic
Process is equal to 1, meaning every experimental outcome for this model is
one of the members of the sample space. That is, for a discrete sample space
⌦N

d with a finite number N of translates, the probability of each translate is
1/N and since these translates are mutually exclusive events, the probability
of the entire set of N translates is the sum over N probabilities, each equal
to 1/N , which sum equals 1. In the limit, as the number of translates N
included in the sample space approaches infinity, we get the result that the
probability of each sample path is 0 and the probability of the total sample
space ⌦d is 1. Similarly, for a continuous sample space, the probability of
each sample path is 0, because the relative measure of a single point on the
real line is 0, and the probability of the total sample space ⌦c is 1, because
the relative measure of the entire real line is 1.

For this FOT-stochastic process, any one of the translates, {x(t � !) :
t 2 R} for any particular ! 2 R or {xn�! : n 2 Z} for any particular ! 2 Z,
can be taken as the Sample Space Generator. In practice, the sample space
generator would be taken to be the single observed signal, conceptually ex-
tended from the finite observation interval to the real line, or to the integers;
and when a formulaic specification of the process is made, the sample space
generator would be obtained from the formula for any specified set of random
samples of the random functions in the formula. So, given a specification of
one sample path, we have a specification of the entire sample space. Here are
some examples that are commonly encountered in communications systems
and various other applications.
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Example 1: Binary Amplitude-Modulated Pulse-Train Signal

x1(t) =
+1X

k = �1

akp1(t� kT1)

where {ak} is a sequence of i.i.d. (in the FOT-Probability sense) binary-
valued (±1) numbers and p1(t) is an absolutely integrable pulse of essentially
arbitrary shape, and T1 is a real number.

Example 2: Amplitude-Modulated Sine-Wave Carrier Signal

x2(t) = a2(t) cos(2⇡f2t+ ✓2)

where a2(t) is an FOT-stationary Gaussian signal with some specified contin-
uous FOT power spectral density function, and f2 and ✓2 are real numbers.

Example 3: Amplitude-Shift Keyed Sine-Wave Carrier Signal

x3(t) =
+1X

k = �1

akp3(t� kT3) cos(2⇡f3t+ ✓3)

where {ak} is a sequence of i.i.d. (in the FOT-Probability sense) binary-
valued (±1) numbers and p3(t) is an absolutely integrable pulse of essentially
arbitrary shape, and f3 and ✓3 are real numbers.

Example 4: Phase-Modulated Sine-Wave Carrier Signal

x4(t) = a4 cos(2⇡f4t+ ✓4(t))

where a4 is a real number, ✓4(t) is an FOT-stationary Gaussian signal, with
some specified FOT power spectral density function that has been passed
through a zero-memory nonlinear device that is linear with slope of 1 over
the domain [�⇡, ⇡] and has output of �⇡over the domain [�1,�⇡] and +⇡
over the domain [⇡,+1].

Example 5: Multiplexed Signal with two independent (in the FOT Proba-
bility sense) components

x5(t) = x2(t) + x4(t)
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There are numerous examples of calculations of FOT probabilistic pa-
rameters for formulaic specifications like those in the above examples; the
first extensive catalog appeared in the book [1] and this was recently sup-
plemented with additional examples in the book [3]. The great majority of
these are calculations of cyclic autocorrelations and cyclic spectra (spectral
correlation functions), but there are also some examples of calculations of
higher-order moments and cumulants, both temporal and spectral types, cf.
[19]. Calculations of cumulative FOT-Probability distribution functions are
less common. The reason is undoubtedly a result of the e↵ort required. It is
more practically feasible to use computer simulations to numerically evaluate
FOT-CDFs.

Stationary FOT Ergodic Theorem:

1. Every Stationary FOT-Stochastic Process is Strongly Ergodic, by con-
struction, meaning the infinite time averages of relatively measurable
functions of the process exist and are independent of the particular
sample paths selected and are equal to the expected values of those
functions obtained using the FOT-CDF or FOT-PDF.

2. Every Finite-Ensemble Average of every function of a Stationary FOT-
Stochastic Process is identical to a Finite-Time Average of that func-
tion.

The validity of this theorem follows directly from the Definitions. It is
noted here that ensemble averages are typically conceived of as being per-
formed on randomly selected ensemble members, which do not occur in any
ordered fashion. In contrast, time averages are typically performed on time-
ordered time samples or time translates. Item b) in this theorem does not
assume any ordering. However, when one approaches the question of conver-
gence of time averages as the length of averaging time approaches infinity,
time ordering is desirable and typically assumed (e.g., as in a Riemann inte-
gral), but no such ordering can be assumed for random selection of ensemble
members. To avoid the technical details involved here (which are of no prag-
matic interest), Item b) addresses only finite averages and, like Item a), states
a fact that is obvious from the construction of the sample space.

Relation to Wold’s Isomorphism
Wold introduced an isomorphism in 1948 [20], which is referred to here

in its extended form that accommodates continuous-time processes, between
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(1) the sample space of a stochastic process, defined to consist of the col-
lection of all time translates of a single time function, including that time
function itself, and (2) this single time function. This isomorphism estab-
lishes a distance-preserving relationship between the stochastic process, with
its definition of squared distance as the ensemble-averaged squared di↵erence
between two processes, and a single sample-path of that stochastic process,
with its definition of squared distance as the time-average of the squared dif-
ference between two sample-paths. This mapping between the metric space
of a stochastic process and the metric space of a single sample path therefore
preserves distance and is consequently an isomorphism. The above sample
space is identical to that in Def. S1 for a Stationary FOT-Stochastic Process.
By complementing this sample space with an FOT-Probability measure satis-
fying Defs. S2 and S3, we obtain a Stationary FOT-Stochastic Process. Wold
did not take this step, and—according to my literature search—apparently
did not pursue the conceptual path taken in the present article.

3.4. Comparison of Kolmogorov and FOT-Stochastic Process Models (The
Magic Hand)

To illustrate how simple the sample space of a stationary FOT-stochastic
process is, compared with one of the simplest examples of the sample space
of a Kolmogorov process, consider an infinite sequence of statistically inde-
pendent finite-alphabet real-valued equally probable symbols, with alphabet
size K. The Kolmogorov sample space for a finite sequence of length N con-
tains KN distinct sequences and the probability of each is (1/K)N . The
probability of the entire sample space is the sum of the probabilities of the
KN mutually exclusive and exhaustive sample paths, each having probability
(1/K)N , which sum equals 1. In the limit, as the sequence length approaches
infinity, we get the result that the probability of each sample path is 0 and
the probability of the total sample space is 1. This sample space includes as
a strict subset the entire FOT sample space generated from any one of the
Kolmogorov sample paths. The Kolmogorov probability of this FOT sample
space is the limit, as N approaches infinity, of N(1/K)N . Therefore, the
Kolmogorov probability of the entire FOT sample space is 0. This is a result
of the fact that the sample space represents a single signal—a single infinite
sequence of K�ary symbols, not all possible infinite sequences of K�ary
symbols. The Kolmogorov sample space apparently contains not only the
FOT sample space of all translates of one infinite sequence, but also contains
the FOT sample spaces of all translates of every possible infinite sequence
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of K�ary symbols. Despite the huge di↵erence in the sizes of these two
sample spaces, as N approaches infinity, it is interesting to note that the
FOT probability of a subsegment comprised of a specific sequence of length
N occurring over the lifetime of the function is (1/K)N , and this is the same
as the probability of selecting a sample path from the corresponding Kol-
mogorov stochastic process that possesses a particular subsegment of length
N comprised of this specific sequence. Because the time position in a sta-
tionary time series or a stationary stochastic process is of no probabilistic
consequence, the di↵erence in sizes of these sample spaces appears to be of no
consequence unless one is interested in studying populations of time series.
As a reminder, the Birkho↵ ergodic theorem guarantees that the time av-
erage of every sample path in this immense sample space equals w.p.1 the
expected value and this equals w.p.1 every ensemble average. This mysteri-
ous result is not necessary in practice; it is not a prerequisite for having a
probability theory for time-series analysis. The much simpler FOT- stochas-
tic process will do for types of applications described earlier in this paper,
for which populations of signals are not of primary interest, and further in
this Results section, and this means that the entire stochastic process con-
cept can be discarded for these types of applications and replaced with a
single signal and its FOT-probability model. Sample spaces are then irrel-
evant. The cost of abandoning the Kolmogorov stochastic process model
is that the FOT-Probability measure is in general not sigma-additive, and
the corresponding FOT-expectation operation is not in general sigma-linear.
However, the utility of these sigma properties exists only when performing
calculations involving infinitely many subsets of the sample space or sums
of infinitely many functions of the process. Moreover, to benefit from these
properties, one must verify that a specified probability measure does indeed
exhibit these assumed properties. This is rarely done in practice, except when
well-known probability measures, like the Gaussian, which have already been
verified, are adopted. But there are no models for manmade communications
signals in use that are Gaussian and the same is apparently true for models
of naturally occurring biomedical signals, and signals of many other origins.
If there is not a large number of independent samples of random variables
added together to form a random variable to be modeled, there is generally
no reason to expect that random variable to be Gaussian.
Another way to compare these two models of stochastic processes is as fol-
lows. Consider, as an example, a Bernoulli sequence with parameter p =
0.3. This is a sequence of statistically independent binary random variables
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with values of 0 and 1 having probabilities of 0.3 and 0.7, respectively. A
sample path for the Kolmogorov model is denoted by x(n,!), where n is
integer-valued and ! also need only take on a countable infinity of values,
and can therefore be taken to be integer valued. The values this function
of two integer variables can take on are 0 and 1. The specification of the
actual infinitely large 2-dim array of 0’s and 1’s is such that every possible
sequence of 0’s and 1’s is included once and only once. So, the specification
of the sample space is simply exhaustive. But there is a specification of a
probability measure for this function of ! for subsets of values of n. The
measure tells us the limit, as the number of randomly selected values of !
approaches infinity, of the relative frequency of sets of 0’s and 1’s at these
subsets of discrete time points that will occur as outcomes. This probability
measure is like a magic hand that guides the selection of experimental out-
comes so that at each time point 1’s are selected in 70% of the experimental
outcomes and 0’s are selected in 30% of the outcomes. And, for example,
the pair of adjacent outcomes of 0 followed by 1 are selected in (0.3)(0.7) =
21% of the outcomes. There is an inherent abstractness here, which I call
a magic hand. It cannot in general be made concrete or given a concrete
interpretation. And it is not a property of the sample space. It is simply a
specified rule regarding the randomly selected outcomes of an experiment.

It should be clarified here that the strong law of large numbers [5] es-
tablishes that averages over ensembles of random samples converge to ex-
pected values w.p.1 not because of replication in the sample space (which
is not allowed), but rather because of the magic hand. Replications of en-
tire sample paths occurring with non-zero probability are disallowed in the
Kolmogorov model, as they are in the FOT model; however, for any finite
set of time samples, the same finite set of sample path values can occur in
infinitely many distinct sample paths all of which di↵er in at least some of
the values at other time points. But the numbers of these partial replicas
are determined by nothing more than combinatorics. In contrast, the rela-
tive frequency of occurrence in random samples of sets of process values at
subsets of time points is determined by only the magic hand. This fact is
often not recognized in the literature. For example, even the classic book by
Middleton [13, Sec. 1.3, pp. 26-27] includes invalid attempts at explaining
the convergence of ensemble averages to expected values in terms of replica-
tions of sample paths in the sample space. Similarly, for the sample space
defining the FOT-stochastic process (e.g., continuous time), replications like
{x(t � !1); t 2 R} = {x(t � !2); t 2 R}, !1 6= !2, are disallowed (Def. S1)
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because they do not produce what we think of as random functions since
they imply x(t) is simply periodic with period = |!1 � !2|.

In contrast to the Kolmogorov sample space for the Bernoulli process,
a sample path for the corresponding FOT-stochastic process is given by
(with some abuse of notation) {x(n,!);n,! 2 Z} = {x(n� !);n,! 2 Z)}
and this function x(n) takes on values of 0 and 1. Given a single sample
pathx(n)on the integers, we have a full but non-exhaustive specification of
x(n,!) throughout the entire sample space (2 dim array). Because of this,
there is no need for a magic hand. We can derive the probability measure
by simply calculating (in principle, at least) the limit of the relative frequen-
cies of 1’s in x(n). Any statistical dependence of these binary variables in
the sequence also can (in principle, at least) be calculated from joint FOT-
probabilities. Work on designing sequences that exhibit specified relative
frequencies can be found in the early literature (cf. references at [2]).

The above discussion illustrates that the details and level of abstrac-
tion of the Kolmogorov stochastic process model are often not observed in
applied work in statistical signal processing. Consequently, there is little
pragmatic justification for continuing to hang on to the baggage (abstrac-
tion) that comes with this standard model when populations of signals are
not of primary concern, when we have the much simpler and more concrete
alternative, the FOT-Probability model for single signals.

3.5. Definition of Cyclostationary FOT- Stochastic Process

Def. CS1: The Sample Space of the Cyclostationary FOT-Stochastic
Process with Period T is comprised of all the time translates, by integer mul-
tiples of the period, of a single relatively measurable discrete- or continuous-
time sample path (persistent real-valued function of a real variable), x, sub-
ject to the constraint that replications are disallowed (no two sample paths
can be identical):

⌦d = {{xn�!T ;n 2 Z};! 2 Z},
⌦c = {{x(t� !T ); t 2 R};! 2 Z} (15)

The period T can be any real number for continuous-time processes but must
be an integer for discrete-time processes with time index set equal to the set
of all integers Z.

Def. CS2: The probability of any relatively measurable subset of ele-
ments defined by some common property the sample paths share, from the
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sample space index set Z, called an event, is the value of the relative measure
of that set. (If the function x exhibits statistical cyclicity with period T, then
probabilities of time-translated events will, in general, vary periodically in
the translation parameter. Otherwise, the probabilities will be translation
invariant—a degenerate case of periodicity.)

Def. CS3: The FOT-CDF of any relatively measurable discrete- or
continuous-time function, f [x](t) or f [x]n, which is jointly relatively mea-
surable, for m real-valued time points {t1, t2, t3, ..., tm} or m integer-valued
time points {n1, n2, n3, ..., nm}, of the Cyclostationary FOT-Stochastic Pro-
cess x(t) or xn, with Period T , is the relative measure of the event set

Ec
m , {! 2 Z; f [x](t1 � !T )  ⇠1,
f [x](t2 � !T )  ⇠2, ..., f [x](tm � !T )  ⇠m}

(16a)

or

Ed
m , {! 2 Z; f [x]n1�!  ⇠1,

f [x]n2�!  ⇠2, ..., f [x]nm�!  ⇠m}
(16b)

for all real-valued m-tuples {⇠1, ⇠2, ⇠3, ..., ⇠m}, and all these FOT-CDFs are
periodic functions of time: If {t1, t2, t3, ..., tm} is replaced with {t1 + T, t2 +
T, t3 + T, ..., tm + T} or, if {n1, n2, n3, ..., nm} is replaced with {n1 + T, n2 +
T, n3 + T, ..., nm + T}, the FOT- CDF remains unchanged.

It follows from Def. CS3 that the first-order FOT-CDF for a continuous-
time cyclostationary FOT process is given explicitly by the formula

Fx, T (⇠, t) , µR({n 2 Z : x(t� nT )  ⇠})
= lim

N!1

1

2N + 1
#({n 2 [n0 �N, n0 +N ] :

x(t� nT )  ⇠})

= lim
N!1

1

2N + 1

n0+NX

n = n0�N

u (⇠ � x(t� nT ))

(17)

for all real t and ⇠, and similarly for higher-order FOT-CDFs (cf. Eq. (14));
and the first order FOT-CDF for a discrete-time FOT process is given ex-
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plicitly by the formula

Fx,T (⇠, n) , µR({n 2 Z : xk�nT  ⇠})
= lim

N!1

1

2N + 1
#({n 2 [n0 �N, n0 +N ] : xk�nT  ⇠})

= lim
N!1

1

2N + 1

n0+NX

n = n0�N

u (⇠ � xk�nT )

(18)

for all real ⇠ and all integers n. In contrast to the periodicity, with a single
period, of these FOT-CDFs, the FOT-CDFs for a stationary FOT-stochastic
process remain unchanged for all real-valued or integer-valued T. They are
periodic with every period and are therefore time-invariant.

Note: The constraint in Def. CS1 that disallows replications in the sample
space also disallows periodic signals, which are a degenerate case of cyclosta-
tionary signals. A viable alternative is to remove this constraint.

For this FOT-stochastic process, any one of the translates, {x(t�!T ) : t 2
R} for any particular ! 2 Z or {xn�!T : n 2 Z} for any particular ! 2 Z, can
be taken as the Sample Space Generator. Observe that, whereas the sample
space for the stationary FOT process is uncountably infinite for continuous
time, it is only countably infinite for the continuous-time cyclostationary
FOT process.

Although not immediately obvious, a single sample-space generator (a
single signal) can, in general, generate a stationary FOT process or a cyclo-
stationary FOT process with any one of multiple incommensurate periods.
If the single signal exhibits no cyclostationarity, all the FOT- CDFs will
be time-invariant and identical. If the single signal exhibits only one period,
then its cyclostationary FOT-CDF with this period will be periodic, not time-
invariant and it will therefore be distinct from the stationary FOT-CDF. And
if the single signal exhibits two incommensurate periods, the sample space
generator can generate a time invariant FOT-CDF and two distinct periodic
FOT-CDFs, by using di↵erent sets of translation amounts. And so on. For
the five example signal models specified above, we have the following results
for the distinct FOT-CDFs that can be produced from each signal.

Example 1: x1(t) has stationary FOT-CDF and one cyclostationary FOT-
CDF with period T = T1

Example 2: x2(t) has stationary FOT-CDF and one cyclostationary FOT-
CDF with period T = 1/2f2
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Example 3: x3(t) has stationary FOT-CDF and multiple cyclostationary
FOT-CDFs with periods T (j) = 1/(2f3 + j/T3) for possibly all integersj,
assuming that f3 and 1/T3are incommensurate

Example 4: x4(t) has stationary FOT-CDF and one cyclostationary FOT-
CDF with period T = 1/2f4

Example 5: x5(t) has stationary FOT-CDF and multiple cyclostationary
FOT-CDFs with periods T (j) = 1/(nf2+mf3) for possibly all pairs of integers
(n, m) (except those for which (n2,m2) = (kn1, km1) for any integer k) if
f2 and f3 are incommensurate; otherwise just one cyclostationary FOT-CDF
with period T = 1/nf2 = 1/mf3 for the smallest pair of integers n,m for
which this equality holds.

Cyclostationary FOT Cycloergodic Theorem:

1. Every Cyclostationary FOT-Stochastic Process is Strongly Cycloer-
godic, by construction, meaning the infinite time averages, with cyclo-
stationarity period T , of relatively measurable functions of the process
exist and are independent of the particular sample paths selected and
are equal to the time-periodic expected values of those functions ob-
tained using the periodic FOT-CDF or FOT-PDF.

2. Every Finite-Ensemble Average of every function of a Cyclostationary
FOT- Stochastic Process is identical to a Finite-Time Periodic Average
of that function.

The validity of this theorem follows directly from the Definitions. It is
noted here that ensemble averages are typically conceived of as being per-
formed on randomly selected ensemble members, which do not occur in any
ordered fashion. In contrast, time averages are typically performed on time-
ordered time samples or time translates. Item b) in this theorem does not
assume any ordering. However, when one approaches the question of conver-
gence of time averages as the length of averaging time approaches infinity,
time ordering is desirable and typically assumed, but no such ordering can be
assumed for random selection of ensemble members. To avoid the technical
details involved here (which are of no pragmatic interest), Item b) addresses
only finite averages and, like Item a), states a fact that is obvious from the
construction of the sample space.
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3.6. The FOT-Probability Model for Almost Cyclostationary Processes

For each value of t, the indicator function u(⇠ � x(t)) takes on values of
only 0 and 1 for all real ⇠, and its range is therefore contained in the closed
interval [0, 1]. It is easy to demonstrate graphically that, for each t and for
all real ⇠2 and ⇠1, if ⇠2 � ⇠1, then u(⇠2 � x(t)) � u(⇠1 � x(t)). Therefore,
for each value of t, u(⇠ � x(t)) is a nondecreasing function of ⇠. Also, since
⇠ � x(t) < 0 (or > 0) for all finite x(t) when ⇠ = �1 (or ⇠ = 1), then
u(�1� x(t)) = 0 (and u(1� x(t)) = 1). Consequently, for each value of
t, u(⇠ � x(t)) is a valid cumulative probability distribution function (CDF)
of the variable ⇠; for all integer-valued time t, this is a discrete-time-indexed
set of CDFs and, for all real-valued time t, this is a continuous time-indexed
set of CDFs.

It can be shown that any discrete or continuous average of CDFs {CDFn :
n = 1, 2, ..., N} or {CDF (t) : 0  t  T}, such as

1

N

NX

n = 1

CDFn or
1

T

Z T

0

CDF (t)dt

is also a valid CDF. The above facts hold true for any finite-order CDF for
{x(t+ ti) : i = 1, 2, ..., I}, not just the first-order CDFs referred to above.

In the limit as the averaging interval covers all time, as in the third line
of Eq. (12) or Eq. (13), these averages over the Indicator-Function CDFs
are referred to as stationary CDFs of the function x(t). This is in agreement
with the definition of a stationary FOT-Stochastic process given in Section
3.3. Similarly, for averages of the form shown in the third line of Eq. (17) or
(Eq. 18), the limits are periodic in time with period T and, if not equal to a
constant independent of t, are referred to as t cyclostationary CDFs of the
function x(t). This is in agreement with the definition of a cyclostationary
FOT-Stochastic process given in Section 3.5.

The stationary CDF defined by Eq. (12) or Eq. (13) is what is called the
constant component of the erratically fluctuating Indicator-function CDF,
and the cyclostationary CDF defined by Eq. (17) or Eq. (18) when these
are not t�invariant is what is referred to as the periodic component of the
erratically time fluctuating indicator-function CDF. When the stationary
CDF is subtracted from the erratically fluctuating Indicator-function CDF,
the di↵erence, referred to as the residual, contains no constant component.
Similarly, the residual for the periodic component of the erratically time
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fluctuating indicator-function CDF contains no periodic component with the
same period.

The preceding reinterpretation of the CDFs for stationary and cyclosta-
tionary FOT-Stochastic processes reveals how to define almost cyclostation-
ary CDFs for functions of time that exhibit statistical cyclicity with multi-
ple incommensurate periods, even though we do not know how to construct
a corresponding FOT-type of stochastic process model because we do not
know how to specify the appropriate sample space to accommodate multiple
incommensurate periods of cyclicity.

We begin with a little background information on almost periodic func-
tions. An almost periodic function Q(t)is one that admits a Fourier series
representation of the form

Q(t) =
X

↵

q↵ exp{i2⇡↵t} (19a)

where the index ↵ ranges over a countable (possibly countably infinite) set. In
the mathematics literature, various distinct types of almost periodic functions
have been defined. In the simplest of terms, they di↵er from each other in
the sense in which the above Fourier series representation converges, and the
sense in which the formula

q↵ = lim
U ! 1

1

U

Z U/2

�U/2

Q(t) exp{�i2⇡↵t}dt (19b)

for the Fourier series coe�cients converges (cf. [3, Appendix B]). Almost
periodic functions are literally nearly periodic, which can be expressed math-
ematically (cf. [3, Appendix B]).

If all the values of ↵are integer multiples of a single value ↵o = 1/To, for
which To is called the period, then Q(t) is a periodic function with period To.
This is a degenerate form of almost periodicity. More generally, because the
set of values of ↵ is countable, there exists an at-most-countable set of in-
commensurate periods {Tk} such that the above Fourier series representation
can be re-expressed as

Q(t) =
X

k

X

j

qkj exp{�i2⇡(j/Tk)t}

= q0 +
X

k

[Qk(t)� q0]
(20a)
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where Qk(t)is periodic with period Tk,

Qk(t) =
X

j

qkj exp{i2⇡j/Tk} = Qk(t+ Tk)

= lim
N ! 1

1

2N + 1

NX

n = �N

Q(t+ nTk)
(20b)

and qk0 = q0 for all k. Periods are incommensurate if no two periods have a
ratio that is a rational number.

In the event that the almost periodic function Q(t)exhibits only a finite
number of incommensurate periods {Tk : k = 1, 2, 3, ..., K}, then we have a
degenerate case of almost periodicity that is called Poly-periodicity.

Returning to almost cyclostationary CDFs, the set of almost periodic
functions of time of interest here are

Q(⇠, t) =
X

↵

q↵(⇠) exp{i2⇡↵t} (21a)

for each and every real value of ⇠. The Fourier coe�cients in this expression
are given by

q↵(⇠) = lim
U ! 1

1

U

Z U/2

�U/2

u(⇠ � x(t)) exp{�i2⇡↵t}dt. (21b)

We shall use the notation

Q(⇠, t) ⌘ Fx(⇠, t) ,
X

↵ 2 A

F ↵
x (⇠) exp[i2⇡↵t] (21c)

and

q↵(⇠) ⌘ F ↵
x (⇠) , lim

U ! 1

1

U

Z U/2

�U/2

u(⇠ � x(t)) exp{�i2⇡↵t}dt (21d)

to be more consistent with the discourse in earlier sections. Then it follows
from Eq. (20) that

Fx(⇠, t) ,
X

↵ 2 A

F ↵
x (⇠) exp[i2⇡↵t]

= F 0
x (⇠) +

X

k 2 Z

(
X

j 2 Z

�
F j/Tk
x (⇠) exp[i2⇡(j/Tk)t]� F 0

x (⇠)
�
)

= F 0
x (⇠) +

X

k 2 Z

�
Fx,Tk

(⇠, t)� F 0
x (⇠)

 
(22)
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The set of frequencies A = {↵} are called the Cycle Frequencies ; they are
in general harmonics of the fundamental frequencies {1/Tk}associated with
each periodic component. Unless otherwise stated, the set A contains all
cycle frequencies for which the Fourier component F ↵

x (⇠) is not identically
zero.
The Fourier coe�cient functions {F ↵

x (⇠)}comprising the almost cyclostation-
ary CDF are complex-valued and are therefore not themselves CDFs. They
are, however, a generalization referred to as complex cumulative distributions
with range confined to the unit disc in the complex plane instead of the unit
interval of the real line as for real CDFs.
For the special case in which an almost cyclostationary CDF Fx(⇠, t)is de-
generate in the sense of being poly-periodic, this CDF and the underlying
function x(t)are both referred to as being poly-cyclostationary. An example
of this type of function is one for which all finite-order CDFs are Gaussian
and have poly-periodically time-varying mean(t)and cov(t, t+⌧) for all time-
separations ⌧ , with the collection of periods {Tk(⌧)} over all real ⌧being finite.
For poly-cyclostationary CDFs, the sum over the index kin the second and
third lines of Eq. (22) ranges over only a finite subset of the integers Z; how-
ever, the harmonic indexjfor each of the periods Tkin their finite set must
range over all integers. No integer value ofjfor which the associated Fourier
coe�cient F j/Tk

x (⇠)is not identically zero can be omitted from the sum, with-
out possibly violating the defining properties of a CDF (cf. [3, Chap 2]). An
exception is the case for which the entire term in Eq. (22) with any specific
period index k = kois omitted, provided that 1/Tko is incommensurate with
not only all{1/Tk; k = 1, 2, 3, . . }but also with all the integral linear combi-
nations I1/T1 + I2/T2 + I3/T3 + . . . for all integers {Iq : q = 1, 2, 3, . . .}. [3,
Chap. 2]. This means that all but a finite set of the countably infinite set of
periods {1/Tk}can be omitted provided that this requirement is met for all
omitted periods.
In other words, for a non-degenerate almost cyclostationary function x(t),
exhibiting a countably infinite number of periods {Tk}of cyclicity, it is pos-
sible to extract a poly-periodic component with any finite (size K) subset
of these periods from its indicator-function CDF of first order, u(⇠ � x(t)),
or of any finite order, and the result will be a valid CDF, assuming the en-
tire poly-periodic component with the specified periods is extracted and any
frequencies contained in the residual are incommensurate with all integral
linear combinations I1/T1 + I2/T2 + I3/T3 + . . . + IK/TK}.
Although the cyclostationary, polycyclostationary, and almost-cyclostationary

36



CDFs defined up to this point cannot have arbitrarily selected non-zero terms
in their complete Fourier series omitted without possibly violating the re-
quired properties of the CDF, any terms can be omitted while still retaining
an important property that CDFs possess, which is referred to as the Fun-
damental Theorem of Almost-Periodic Component Extraction. To prove this
theorem, we first consider a generalization of the Fundamental Theorem of
Time Averages Eq. (3).

Let g({x(t)})be a well-behaved real-valued function of {x(t)}, of the form

g({x(t)}) = g(x(t+ t1), x(t+ t2), ..., x(t+ tm)), (23)

for any finite positive integer m and any set of m time samples {ti : i =
1, 2, ...,m}and all real-valued time t 2 S for some intervalS(finite or infinite)
of the real line. Let P be an orthogonal projection operator, to be applied
to g({x(t)}), for projection onto some linear subspace of functions of t on S.
Also, consider the set of projections of the indicator-functions

FP(⇠, t) , P

"
mY

i = 1

u(⇠i � x(t+ ti))

#
(24)

for all real m-tuples ⇠.

Fundamental Theorem of Orthogonal Projection of Functions of a
Function:

The projection P [g({x(t)})] of any function g({x(t)}) of the form in Eq.
(23) can be calculated from the set of projected indicators functions FP(⇠, t)
for all real ⇠ as follows:

P [g({x(t)})] =

Z
g(⇠1, ⇠2, ..., ⇠m)d

mFP(⇠, t)

=

Z Z
...

Z
g(⇠1, ⇠2, ..., ⇠m)fP(⇠1, ⇠2, ..., ⇠m)d⇠1d⇠2...d⇠m

(25)
where fP(⇠1, ⇠2, ..., ⇠m) is the density function corresponding to the distribu-
tion function:

fP(⇠1, ⇠2, ..., ⇠m) ,
@m

@⇠1@⇠2...@⇠m
FP(⇠, t). (26)

Examples of this theorem for m = 1 include the following special cases of
Fundamental Theorems of Almost-Periodic Component Extraction:
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1. Stationary Component Extraction (cf. Eq. (12)):

P [g({x(t)})] , lim
U ! 1

1

U

Z t0+U/2

t0�U/2

g({x(t)})dt

2. Cyclostationary Component Extraction (cf. Eq. (17)):

P [g({x(t)})] , lim
N!1

1

2N + 1

n0+NX

n = n0�N

g({x(t� nT )})

3. Almost Cyclostationary Component Extraction (cf. E2. (21)):

P [g({x(t)})] ,
X

↵ 2 A

g↵x exp[i2⇡↵t]

where

g↵x , lim
U ! 1

1

U

Z t0+U/2

t0�U/2

g({x(t)}) exp{�i2⇡↵t}dt

and A is a countably infinite set of any real numbers including any
incommensurate numbers.

4. Poly-Cyclostationary Component Extraction: Same as Example (3)
but for (a) only a finite set A of real numbers or (b) a countably infinite
set A, each member of which is an integer multiple of one of only a finite
set of incommensurate fundamental frequencies {1/Tk; k = 1, 2, ..., K}.

Other examples can include subspaces that are finite dimensional or that
contain only functions having time domains that are finite intervals of the
real line (cf. [ 2, page 3.5]). Interestingly, this theorem is valid for projections
that do not produce CDFs (cumulative probability distribution functions);
this includes some cases within Example (4) and an unlimited number of
other examples. A frequently used subspace projection in statistical signal
processing is that spanned by a subset of eigenvectors of the signal’s covari-
ance matrix. Thus, the fundamental theorem of time averaging is a special
case of this more general theorem for more general projections. Neverthe-
less, the Projections must be orthogonal projections in order to apply the
above theorem. (Non-orthogonal projections do not extract components of
a function, because the residual still includes some of this same component.)
For example, sinusoids with incommensurate frequencies are not orthogo-
nal over any finite-length interval of time. Therefore, finite-time CDFs can
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be orthogonal projections only if all sinusoidal components are harmonics
of a single fundamental frequency; i.e., they must be cyclostationary, not
poly-cyclostationary, and the time-interval over which the CDF is defined
must be an integral number of periods. The required modification of the
basis functions {exp[i2⇡↵t]} to render the above theorem applicable for any
finite-length time interval is described in Section 3.8.

Outline of Proof of Fundamental Theorem of Orthogonal Projec-
tion of Functions of a Function:

The density function on the RHS of Eq. (24) is given by

fP(⇠1, ⇠2, ..., ⇠m) ,
@m

@⇠1@⇠2...@⇠m
FP(⇠, t)

=
@m

@⇠1@⇠2...@⇠m
P

"
mY

i = 1

u(⇠i � x(t+ ti))

#

= P

"
@m

@⇠1@⇠2...@⇠m

mY

i = 1

u(⇠i � x(t+ ti))

#

= P

"
mY

i = 1

�(⇠i � x(t+ ti))

#

(27)

where the order of the projection operation on a function of t and ⇠ for each
value of ⇠ and the di↵erentiation operation on this function of t and ⇠ for
each value of t have been interchanged. Substituting this into the RHS of
Eq. (24) yields

P [g({x(t)})] =

Z
g(⇠1, ⇠2, ..., ⇠m)d

mFP(⇠, t)

=

Z
g(⇠1, ⇠2, ..., ⇠m)P

"
mY

i = 1

�(⇠i � x(t+ ti))

#
d⇠1d⇠2...d⇠m

= P

"Z
g(⇠1, ⇠2, ..., ⇠m)

"
mY

i = 1

�(⇠i � x(t+ ti))

#
d⇠1d⇠2...d⇠m

#

= P [g(x(t+ t1), x(t+ t2), ..., x(t+ tm))]
(28)

where the order of the projection operation on the slice of the function of
t and ⇠ for each value of ⇠ and the integration operation on a slice of this
function of t and ⇠ for each value of thave been interchanged. Here, the final
line in the RHS is the definition of the LHS; so Eq. (24) is verified.
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3.7. Cycloergodicity for Multiple Incommensurate Periods
Many communications signals with sample paths specified formulaically ex-
hibit cyclostationarity with multiple incommensurate periods (they are poly-
cyclostationary or almost cyclostationary, but not purely cyclostationary or
purely stationary) and, as shown by Boyles and Gardner in 1983 [21], they can
be tested for what is here called Sinusoidal Ergodicity (SE). This means some
such processes can exhibit the strong sinusoidal ergodic properties required
to support the commonly assumed convergence of estimates of sinusoidal
components (which are typically called cyclic components) of their almost-
periodically time-varying probabilistic parameters, such as cyclic autocorrela-
tions and cyclic spectral densities (also called spectral correlation functions).
However, these processes cannot be included in the traditional ergodic theory
stemming from Birkho↵ ’s work or its extension to the cycloergodic theory
of cyclostationary processes of Boyes and Gardner. This is mathematically
proved in [21] and illustrated with the example of a Bernoulli process with a
periodically time-varying probability of success having its period incommen-
surate with the sampling-time increment. What has essentially invariably
been done since the introduction of almost cyclostationary processes in 1978
[22] is to specify such processes in a formulaic manner (e.g., Examples 3 and
5 above) and to then invoke a strong cycloergodic hypothesis, sometimes
based on the demonstration of a much weaker form of cycloergodicity, such
as cycloergodicity in the mean square sense. But we are now going to go
beyond this by building on the concepts introduced in earlier sections.
The sample spaces for the cyclostationary FOT- stochastic processes reveal
why there cannot exist a single FOT-stochastic process with more-than-one
incommensurate period : A single sample space cannot consist of only trans-
lates of one period if it also consists of only translates of another incommen-
surate period. What one must therefore do with the FOT model introduced
in Section 3.6 is to introduce a unique sample space for each and every in-
commensurate period of cyclostationarity of interest for a single record of
data or a single formulaic model. However, this is just a conceptual aid. For
operational purposes, all one needs is the formula for almost cyclostationary
CDFs given in Section 3.6 (third line of Eq. (22) and the method presented
in Section 3.5 for calculating cyclostationary CDFs for each period. This
calculation can be empirical, using a record of observed data, or it can be
performed mathematically using a formulaic specification of the time series.
This, in turn, provides insight into how to generalize Birkho↵’s ergodic the-
orem to accommodate almost cyclostationary processes of the Kolmogorov
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type, as explained next.
But first, let us sum up the situation for formulaic FOT-Probability mod-
els for almost cyclostationary time series. Deterministic periodicity with
multiple periods, combined in a sample-path formula (such as those in Ex-
amples 1 – 5), with stationary FOT time-series components, provides the
basis for constructing the CDFs or PDFs from FOT calculations using the
time-series model. Nonlinear functions of a time series whose sample-path
formula contains multiple periodicities contain in general not only harmonics
not originally present, of the fundamental frequencies originally present, but
also linear combinations with integer-valued coe�cients, of all these harmon-
ics. Consequently, in constructing the CDFs for such a time series, it must be
assumed at the outset that the CDFs will contain sinusoidally time-varying
components with all these various mixed frequencies.

How to Generalize Birkho↵ ’s Ergodic Theorem for Continuous-
Time Almost Cyclostationary Kolmogorov Stochastic Processes
The content of this section does not contribute to the primary objective of
this article, but it does follow easily from the concepts introduced in the pre-
vious section and it does provide a genuine generalization of ergodic theory of
stationary and cyclostationary processes to poly-cyclostationary and almost
cyclostationary Kolmogorov stochastic processes. Strong Cycloergodic theory
of Kolmogorov stochastic Processes, which extends and generalizes existing
ergodic theory, is developed in [21], where it is shown that sinusoidal and
periodic components of time-varying probabilistic parameters can be consis-
tently estimated w.p.1 from time averages on one sample path. It is also
established that a strong theory of cycloergodicity inclusive enough to cover
all applications of practical interest had, at that time, not yet be shown to
exist. Moreover, it is shown that such a theory cannot presuppose the ex-
istence of a dominating stationary measure, as does the theory presented
therein. Nevertheless, it would appear that it can be argued that because a
continuous-time cyclostationary process can be characterized as a discrete-
time vector-valued (or function-valued) stationary process, Birkho↵’s Er-
godic Theorem [16] for scalar-valued discrete-time stationary processes, if
generalized to vector-valued processes, leads to a completely analogous cy-
cloergodic theorem for continuous-time cyclostationary processes. The vector
(or function), at any discrete time equal to an integer multiple of the period of
cyclostationarity, consists of the infinite set of process values over the period
between that discrete time and the previous discrete time.
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Furthermore, it is shown in [23, Chap. 7] and refs. therein that Birkho↵’s
ergodic theorem has been extended from stationary to asymptotically mean-
stationary (AMS) discrete-time processes. This extension guarantees the
existence of consistent estimators for the discrete-time averages of time-
varying probabilistic parameters, such as probability density functions. Be-
cause almost-cyclo-stationary (ACS) discrete-time processes are AMS, this
extended theorem applies to discrete-time ACS processes (and the same
might well be true for continuous-time ACS processes after discrete-time
sampling) but it does not apply directly to estimation of the sinusoidal and
periodic components of almost-periodically time-varying probabilistic param-
eters.
Nevertheless, [23, Chap. 7] does discuss ergodicity of N�stationary discrete-
time processes, which are N -dimensional vector-valued representations for
discrete-time cyclostationary processes with period N . Furthermore, the
discrete-time infinite-dimensional vector-valued process described above that
represents a continuous-time scalar-valued process is AMS if that continuous-
time process is ACS (which includes, as special cases, poly-cyclostationary,
cyclostationary, and stationary processes).
Consequently, for any selected period of a continuous-time ACS process, one
can form a discrete time vector-valued AMS process as explained above.
Then the time average of a probabilistic parameter of this vector-valued pro-
cess will equal the periodic component of the corresponding probabilistic
parameter of the original ACS process. In this way any periodic component
for any real-valued period Tof the almost periodically time-varying proba-
bilistic parameters of the original scalar-valued continuous-time ACS process
can be guaranteed to be consistently estimable by applying the proposed er-
godic theorem to the infinite-dimensional vector-valued discrete-time AMS
process.
It follows that the discrete-time AMS version of the Birkho↵ ergodic the-
orem can be extended / generalized to accommodate cycloergodicity for
continuous-time ACS processes by requiring that the ergodicity condition
for discrete-time AMS processes be satisfied by the vector-valued representa-
tion for each and every period Tof the continuous-time process. In addition,
there appears to be a partially cycloergodic version of this proposed theo-
rem that requires the ergodicity condition for some but not all periods be
satisfied.
This leaves one class of ACS processes for which a cycloergodic theorem re-
mains to be proposed, and this is the class of discrete-time processes having
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measures that possess non-zero sinusoidal components with sine-wave fre-
quencies that are incommensurate with the time-sampling rate. Some such
processes do indeed allow for consistent estimation of such sinusoidal compo-
nents, but others do not. A necessary and su�cient condition for consistent
estimation has apparently not yet been proposed but the Author suspects
one will be discovered by following ideas in the present paper.

3.8. Purely Empirical FOT-Probability Models for Regular Cyclicity

As explained below, we can obtain finite-data probability models by using
the FOT-CDF formula (21d) in Section 3.6, but without taking the limit as
the averaging time approaches infinity, and still get CDFs that are exactly
constant (using only ↵ = 0) or periodic (using only ↵ = j/T for all integers
j) or poly-periodic (using only ↵ = j/Tk for all integers j and any finite set
of incommensurate real-valued periods {Tk : k = 1, 2, ..., K}) for continuous
time. However, if we use more than a finite number of integers j we cannot
properly call the CDF empirical. So, we consider here only finite numbers of
cycle frequencies. However, omission of some cycle frequency harmonics of a
periodic component for which the Fourier coe�cients are not identically zero
renders the formula for the CDF only approximate. Such approximations do
not necessarily retain all the characteristic properties of valid CDFs, such as
having range confined to the closed interval [0,1].
Nevertheless, it is expected that the approach with finite numbers of harmon-
ics for continuous time can produce accurate approximations if the number is
su�ciently large. In addition, the Fundamental Theorem of Orthogonal Pro-
jection of Functions of a Function does apply to such approximate Empirical
FOT-CDFs using only ↵ = 0 or ↵ = j/T and ↵ = �j/T for finite numbers of
integers j because such CDFs are still valid orthogonal projections on finite
intervals (of length equal to an integral number of periods T ).
More generally, the program of calculation for any probabilistic parameters,
such as joint moments, using a finite segment of data x(t), is that every-
where the data occurs, in the infinite-interval formula for the probabilistic
parameter of interest [1], for some function of the data that is of interest,
such as a lag product, the time support of that data is windowed to the
finite observation interval, just like what is done in the conventional cor-
relogram & cyclic correlogram, and periodogram & cyclic periodogram [1].
Then the time-invariant Fourier coe�cient of the sinusoidal component, with
frequency ↵ of interest, of the function of the time series over the finite obser-
vation window is extracted and multiplied by exp[i2⇡↵t] (with t extending
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over the reals) in the usual manner, but without the limit as integration time
approaches infinity. These components when added together for all detected
or selected cycle frequencies comprise an almost periodic function over all
time and, when restricted to the finite time support of the function of the
data, comprise an approximation to that function. The approximation is
not a least-squares fit because the sinewave components are not mutually
orthogonal except over the entire real line unless their frequencies are com-
mensurate. It also does not equal the limit almost periodic component, but
it would hypothetically converge to it as the observation time approaches
infinity, provided that the function is relatively measurable. But the theory
does not use the limit together with conditions for or assumptions of con-
vergence in the limit. It simply uses the finite time statistics (approximate
Fourier components) that are artificially extended over all time. These ex-
tracted almost periodic representations can be used just as they are used
in the limit theory (while recognizing that there are some approximations
involved) and can be calculated from either a finite-time record ofx(t)or an
explicit mathematical model of x(t).

Nevertheless, the finite-harmonic component extracted from the data can
be made a least-squares fit by simply recognizing that because the harmonic
frequencies {↵j} in the extracted component

JX

j=�J

F ↵j
x (⇠) exp[i2⇡↵jt]

are not integer multiples of the fundamental frequency that is the recip-
rocal of the length of the time interval of the data, the basis functions
{exp(i2⇡↵jt);�J  j  J} are not orthonormal and therefore are not self-
reciprocal, but there reciprocal basis {✓l(t) : �J  l  J} can be calculated
using the inverse of the Gram matrix as follows:

✓(t) = G�1e(t)

where e(t) is the column vector with elements {exp(i2⇡↵jt);�J  j  J},
✓(t) is the column vector with elements {✓l(t) : �J  l  J}, and G�1 is
the inverse of the Gram matrix G with jlth element

Gjl ,
Z U/2
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ej(t)e
⇤
l (t)dt
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Then by replacing (1/U){exp(�i2⇡↵jt);�J  j  J} with {✓l(t) : �J 
l  J} in Eq. (21d) and omitting the limit operation, Eq. (21c) becomes the
least-squares-fitting finite-harmonic component of the time varying indicator
function u(⇠�x(t)) for each value of ⇠. In this case, the entire component of
interest is extracted from the indicator function: the residual contains none
of this component. In order for the extracted component described above to
be real-valued, it is required that ↵�j = �↵j .

The data windowing used does not a↵ect the theoretical equality of the
two calculations of an extracted component—one from a finite-time data
record and the other from a mathematical formula for the data—provided
that the data record is producible from the mathematical model, except for
the di↵erence between the values of the random elements in the mathematical
model and the actual values of those elements in the record of data, such
as the amplitude sequence in an amplitude modulated periodic pulse-train
signal. The link here, which replaces the ergodic theorem, is the assumption
that the single data record is indeed a segment of one translate of a single
time series and that the functions of this time series that are of interest are
relatively measurable. This then enables a standard type of argument that
agreement between the two methods of calculation can be made as close as
desired to each other and to their infinite-time limit by using a long-enough
finite-segment of data [4].

All the usual tools still apply. For example, the proof of the central
limit theorem for FOT- probability [24] is applicable to the theory for finite
records by simply arguing that for any arbitrarily small error, epsilon, in
equality between the limit quantity (Gaussian distribution) and the measured
quantity, one can in principle choose a finite record length that is long enough
to achieve an error size not exceeding epsilon.

There’s nothing here of any technical sophistication. The novelty is in
recognizing that finite-time FOT models that are precisely stationary or poly-
cyclostationary can be constructed from a finite record of data, and these
models can be used for all the usual probability calculations to within some
finite accuracy determined by the length of the data segment and particular
cycle frequencies used. The sensitivity of the accuracy to the numbers of
harmonics of each fundamental frequency that are used increases as the de-
gree of nonlinearity of the function of the data increases. A second-order lag
product, for example, has a low degree of nonlinearity, but the step discon-
tinuities of the indicator function used to calculate CDFs results in a high
degree of nonlinearity.
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In the Fourier-coe�cient formulas for the function (of the data) of interest,
consisting of a lag product of any finite order, the time-shifted finite segments
of data will force the integrand to be zero outside of a subinterval defined by
the intersection of the time-translated finite-segment support intervals and
the integration interval. Assuming all time-shifts of interest are much smaller
than the segment length, this approach is acceptable. But it will window the
n�dim space of n time shifts. Assuming desired spectral resolution width in
any spectral parameters (PSD, SCF, Poly-Spectra, etc.) is larger than the
reciprocal of the smallest value,U �max {|ti � tj|}, for data-segment length
U , where {ti} denote the lag values, the achieved spectral resolution can be
acceptable. Ideally, we’d like this smallest value to be much larger than the
coherence length of x(t) (here meant to be the time separation between time
samples that is just large enough to result in negligible statistical dependence)
to ensure statistical reliability.
A refinement that should moderately improve reliability and reduce bias is
to truncate the integration interval involving time-shifts {ti} to the closest
integer multiple of 1/↵ that does not exceed U � max {|ti � tj|}. For more
detail on the definitions of finite-time FOT CDF’s, see [2, p.3.5].

3.9. Purely Empirical FOT-Probability Models for Irregular Cyclicity

Cyclicity is ubiquitous in scientific data, but for many if not most natural
sources of data, the cyclicity is irregular: the period of cyclic time-variation
itself changes with time, slowly in some applications and rapidly in others.
One approach to accommodating this is to restrict cyclostationarity mod-
eling to data segments that are short enough for the period to be treated
as if it were constant. A more general and less restrictive approach is to
hypothesize that the irregularity results from a time-warping of an otherwise
regular cyclicity. This is true for some irregularly cyclic data sources and
not true for others, such as rotating machine vibrations with time-varying
rotational speed as explained in [14]. Fortunately, there is a middle ground of
natural sources of data for which the irregular cyclicity—though irregularly
fluctuating too rapidly to treat as locally regular—is due to time warping
of otherwise regular cyclicity and the rate of variation of the warping func-
tion is slow enough to be tracked. A broadly applicable approach to doing
this is introduced in [14] and is based on the concept of property-restoral
adaptation.

Methodology and algorithms for such adaptation are presented therein for
restoral of regular cyclicity. The adaptation process produces both a time-
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dewarped version of the original data, which is more nearly cyclostation-
ary, and explicitly identifies the dewarping function. In some applications,
identification of the warping function inherent in the data, by inverting the
identified dewarping function, is the end goal for this time-series analysis;
in other cases, further time-series analysis that exploits the restored cyclo-
stationarity is the end goal. In this latter case, by preprocessing data that
exhibits irregular cyclicity to restore cyclostationarity enables the user to go
on to construct cyclostationary FOT-Probability models. These models can
be used directly for some applications and can be time-warped to obtain
irregularly cyclic probability models. A generally applicable rule of thumb
for predicting how well this methodology can perform is described in [14] in
terms of a comparison between (1) what can be called the coherence time (or
statistical dependence time) of the data or the data memory length and (2)
the constancy time (reciprocal of some measure of the rate of time variation)
of the warping function. Best performance is expected when (2) exceeds (1)
by a factor much larger than unity. This is akin to the well-known concept of
local stationarity but generalized to local cyclostationarity and similarly for
the more esoteric and less precisely defined concept of local ergodicity gener-
alized to local cycloergodicity. But fortunately, such abstractions are avoided
when using FOT-Probability models. Complementary work on property-
restoral de-warping has been conducted in [25] and references therein, and
[2, pp. 4.2, 4.3].

3.10. The Weakness of Mean-Square Ergodicity

For readers who have been indoctrinated in stochastic process theory, a
question that might be arising at this point is: “where does the concept
of mean-square (m.s.) ergodicity and ergodicity in probability (weak ergod-
icity), as distinct from the ergodicity w.p.1 or strong ergodicity discussed
above, arise in the considerations discussed in the earlier sections of this
paper?”. Typical engineering textbooks, such as the popular book by A.
Papoulis [26], do not treat strong ergodicity. The fact of the matter is that
m.s. and weak ergodicity and their extension / generalization to m.s. and
weak cyclo-ergodicity introduced by Boyles and Gardner [21] (see also [3]) is
of some use in analytical work. But it must be realized that these forms of
ergodicity are much weaker than strong ergodicity. For example, m.s. ergod-
icity guarantees that the squared di↵erence between a time average and an
ensemble average (both possibly modified for cyclostationarity) goes to zero
in the limit as averaging time approaches infinity, but only on average over
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the typically infinite ensemble. Therefore, this di↵erence need not go to zero
for many members of the ensemble. And these members need not be exotic
as may those that may be present but are ignored by using the w.p.1 (with
probability one) modifier of equality. One might think that because squared
error cannot be negative, the average squared error can be zero only if every
individual error is zero. But this is not true because we are considering in-
finitely many errors and every individual sample path occurs with probability
zero: It gets zero weight in the weighted average that is the expected value.
This is easier to see for temporal mean squared error. For continuous-time
averages, a countably infinite number of errors can be non-zero while the av-
erage is still equal to zero. Although less commonly known, the average over
all time can be zero even if the error at an uncountably infinite number of
times is non-zero. The error can be non-zero throughout any finite interval,
while the average error over all time is zero. Such are the vagaries of infinity.
Consequently, signal processing engineers designing algorithms based on a
theory of expected performance using a model that is only m.s. or weakly
ergodic can be surprised by the occurrence of sample paths for which time
averages di↵er greatly from the expected values used in the design.

3.11. Optimum and Adaptive Statistical Inference

If a signal processing algorithm for statistical inference adapts to the
data as time progresses, it will adapt using its own time-averages, not ex-
pected values. This suggests that FOT-Probability analysis of the solutions
that adaptive algorithms converge to might be more relevant than stochastic
probability analysis. Yet, the opposite is apparently true for investigating the
convergence process itself, since this process is transient, not persistent, and
can be modeled as a non-ergodic stochastic process but cannot be usefully
modeled in terms of FOT-Probability cf. [27] and [28].

Examples of fixed optimum vs. adaptive algorithms are fixed Wiener fil-
ters vs. adaptive filters using least-mean-squares (LMS) or recursive least
squares (RLS) adaptation algorithms or some type of property-restoral (PR)
adaptation algorithm. Also, for parameter estimators, detectors, and classi-
fiers, as well as filters, there are fixed optimized implementations and there
are adaptive implementations using, for example, PR algorithms such as
modulus-restoral and cyclostationarity-restoral algorithms [29].

Besides the issue of deciding what type of probability model to use for
design and analysis of adaptive signal processing algorithms, similar questions
arise for optimum algorithms, such as optimum filters. That is, one can
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minimize time-averaged squared error using an FOT-Probability model or
minimize expected squared error using a stochastic process model. If the
stochastic process model is strongly ergodic, the solution and performance of
the optimum filter will be the same (w.p.1) as it is for an FOT-Probability
model for a sample-path of that process. However, if the model is only mean-
square ergodic, the solutions and performances will be equal only in the sense
of zero mean-squared di↵erences. However, if the stochastic process model is
non-ergodic, there is no known time-series model for which the solution and
performance obtained using FOT-Probability would be the same. It comes
down to the question “what does the practitioner want to model: averages
over time or averages over ensembles?” It depends on the application and
real-world objectives. The teachings in our colleges today presuppose that
only stochastic process models and associated theory need be learned. This
is a mistake that needs to be rectified.

4. Discussion of Results

We have known for nearly a century that Birkho↵’s Ergodic Theorem, ex-
tended from discrete-time to include continuous-time, provides a condition on
the sample space and probability measure of Kolmogorov’s generic stochas-
tic process model that makes convergent time-averages of measurements on
(functions of) the process converge, with probability equal to 1 (w.p.1), to
expected values of those measurements. And, we also have known all this
time that Kolmogorov’s Law of Large Numbers proves that ensemble averages
converge to expected values w.p.1. However, practitioners using these results
are generally unable to understand, with any appreciable level of intuition,
why these equalities between fundamentally di↵erent entities are valid.

In contrast, the alternative and greatly simplified stochastic process mod-
els introduced in this paper are transparent. It is obvious why time averages
equal ensemble averages, because the sample space consists of time-translated
versions of a single signal, and it is obvious why these both equal expected
values defined in terms of Fraction-of-Time Probability.

In applications where we are interested in only ergodic processes, there
does not appear to be any pragmatic reason for adopting the complicated ab-
stract Kolmogorov model of a stochastic process instead of the simpler more
concrete alternative stochastic process model. In fact, once we’ve accepted
the alternative model as su�cient for our purposes, we can take the next step
of recognizing that this alternative model is identical to the entity comprised
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of a single signal and its Fraction-of-Time (FOT) Probabilities which are de-
rived directly from this single signal. The conclusion is that sample spaces
and stochastic processes are unnecessary unless non-ergodic models of data
are the entities of interest, in which case Kolmogorov’s model may be a good
choice.

This is a situation where a pragmatic person would ask “what’s the point
of teaching students of statistical signal processing about the strongly ergodic
Kolmogorov stochastic process model as a tool for problem solving, with its
unnecessary abstraction and its ergodic hypothesis which can almost never
be tested in practice, when the model of a single time series (a persistent
function of time), together with the concrete time-average operation is oper-
ationally equivalent? If we hold to the principle of scientific parsimony and
we value mathematical elegance and we act logically and rationally, shouldn’t
we terminate this nearly-one-century-long practice immediately? It is rele-
vant here that it has been said:

If elegance in science is just an attractive attribute, then elegance is not
a necessary goal but simply something to be admired when it happens. How-
ever, if elegance is a requisite feature of good science, then the characteristics
defining elegance deserve the same attention given to scientific rigor.

To be sure the ramifications of what is stated above are understood by
the reader, it is also stated explicitly here, and shown in [1] (see also [9]
and [15, Chap. 1]) that the temporal-expectation (time-average) operation
behaves just like the stochastic-expectation operation and produces all prob-
abilistic quantities we are familiar with: cumulative probability distribution
functions, probability density functions, moments, characteristic functions,
cumulants, etc. For example, both operations obey a Fundamental Theorem
of Expectation. It’s just that:

For temporal expectation, the term probability means (1) Fraction of Time
(FOT) of occurrence of an event at a set of times with specified time-separations,
over all translations of that set covering the temporal lifetime of the time se-
ries, instead of (2) fraction of repeated experiments (each producing a time-
series over a full lifetime) for which an event occurs at a particular set of
times.

There are two exceptions to this equivalence, and they are the sigma
linearity property of expectation and the relative measurability property of
single time functions; these properties are simply dictated by the creators
of these two models: the first by the Kolmogorov Axiom VI and the second
by the Kac-Steinhaus Axiom of Relative Measurability. Axiom VI may or
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may not be satisfied by a stochastic process model that some practitioner
specifies. And relative measurability is not necessarily satisfied by all the
time-series models practitioners may specify. For example, the samples paths
of a strongly ergodic continuous-time stochastic process are not necessarily
relatively measurable; so, this property must be assumed (call it Axiom VII)
for the strongly ergodic stochastic process for continuous time if the limits of
time averages in the Birkho↵ ergodic theorem are to exist. Although there’s
no question that sigma additivity of probability measures and sigma linearity
of expectation can be useful mathematically, users can rarely verify that
the models they use actually exhibit these properties. Nice mathematical
properties for both stochastic processes and single time functions come at a
cost of restricted applicability. This is the nature of models, especially those
involving infinity. It is not necessarily a basis for arguing the superiority
or inferiority of the ensemble-average theory over the time-average theory.
More in-depth analysis of this topic is provided in [6]. But it is important
to mention here that just because the use of the relative measure (time-
averaging operation) does not generally enable the user to interchange the
limit in the time-averaging integral with the summation over a countable
infinity of additive terms does not mean that one cannot proceed with such
a calculation. It’s just that the interchange of operations must be executed
before an attempt to take the limit is made. In some cases, this is required
only for the limit that defines the time average; in other cases, it may be
required also for a limit that defines an infinite summation.

For example, some continuous-time functions for which averages over dis-
crete times exist may not be relatively measurable on the real line and there-
fore may not be averageable over all real time. This requires the addition
of a 7th axiom to Kolmogorov’s stochastic process model to accommodate
Birkho↵’s ergodic theorem for continuous time averages. As another exam-
ple, the Channel Coding Theorem of Information Theory cannot be based on
FOT-Probability because it is formulated in terms of a non-ergodic stochastic
process: The stochastic-process output from any and every random channel
except for a random time-delay, is non-ergodic, regardless of whether or not
the channel input is ergodic. (The random-delay exception is not allowed for
cycloergodicity.) For example, Middleton’s classic models of non-Gaussian
noise are non-ergodic, because these noise models depend on random time-
invariant parameters such as the random number of noise sources seen by the
receiver and their random locations relative to the receiver (see, for example,
[18], and references therein).
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As another example, the theories of maximum-likelihood parameter esti-
mation and hypothesis testing are based on the likelihood function, which is
the PDF of the observed data, conditioned on each specific hypothesis and/or
hypothetical parameter value of interest. Also, Bayesian minimum-risk pa-
rameter estimation and hypothesis testing inference rules can be expressed in
terms of likelihood functions. Consequently, these theories and methodolo-
gies can only be based on FOT-Probability if conditional FOT-Probabilities
and/or PDFs can be experimentally measured or mathematically calculated
from mathematical sample-path (time function) models of the data. Fre-
quently this can indeed be done as demonstrated with many examples in [1],
[3], [15]. However, it cannot always be done.

Motivated by a full recognition of the issues surfaced in the above discus-
sion in this Section 4 and underscored by a deep appreciation for the rami-
fications to the practice of statistical signal processing design and analysis,
I developed the comprehensive theory and methodology of FOT-Probability
and statistical spectral analysis that is presented in the 35-year-old book [1].
This book extends and generalizes the theory from stationary time series to
cyclostationary, poly-cyclostationary, and almost cyclostationary time series,
which provide higher fidelity models of many time series encountered in en-
gineering and the sciences, where there is some form of underlying statistical
cyclicity. This extension / generalization of theory and method has engen-
dered many new and higher-performing signal processing algorithms over the
last 35 years—the application to random vibrations from rotating machinery
being one of many applications. The similar-vintage book [10] provides the
theory of the stochastic-process counterpart of cyclostationarity. A much
more recent and more comprehensive book on both the stochastic-process
and time-series models is also available [3] and is recommended. This latter
book is encyclopedic and is the most scholarly treatment of cyclostationarity
available today.

So, the failure of the community to adopt the more pragmatic and less
abstract data models delineated in this literature is not due to any lack
of theoretical foundation or lack of detailed theoretical and methodologi-
cal framework built upon that foundation for conducting statistical signal
processing design and analysis. It is solely due to indoctrinated people’s
propensity to avoid changing their ways of thinking. It has been more than
a century since the celebrated physicist Max Planck wrote [2, p. 7.1]:

“A new scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents eventually die, and
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a new generation grows up that is familiar with it.”
To my knowledge, stochastic process models of speech have not proven to

be of much use in practice, but this makes speech a useful example here for
illustrating the problems that can arise when using stochastic process models
that are not ergodic.

Non-ergodic models of signals do have their uses. Specifically, when im-
portant conditions of an experiment change from one trial of the experiment
to another, the impact revealed in an ensemble average of these changes
cannot be determined from a time average on the time series from a sin-
gle experimental trial. In the case of speech, the character of speech di↵ers
from one speaker to another due to physiological, language, accent, and even
emotional-state di↵erences. So, an ergodic stochastic process model is inap-
propriate. If one wants to design a speech processing algorithm that provides
optimum performance averaged over all speakers in a diverse group, a non-
ergodic stochastic process model for the speech can, in principle, be used.
However, if one wants to design a data-adaptive algorithm that provides op-
timum performance for each and every speaker, then the expected values
analytically derived from a non-ergodic model are irrelevant to the design,
analysis, and performance of the algorithm. The speech statistics required by
the algorithm are learned and adapted to for each individual signal. If prob-
ability models are to be useful for studying the output time series converged
to by an adaptive speech processor, they would have to be FOT-Probability
models.

The same remarks apply for applications involving communications chan-
nels that introduce noise or interfering signals that is collectively modeled in
terms of multiple noise and/or signal sources, random in number, and with
multiple locations, random in their coordinates, relative to the receiver [18].

To illustrate how far the proposed paradigm shift can take us, its exten-
sion from time-series models of infinite length to those of finite length, which
is introduced in Section 3.8, is briefly resurfaced here.

Finite-time time-average statistics are ubiquitous in statistical signal pro-
cessing algorithms, and such algorithms are typically implemented with DSP
software and/or hardware, which greatly facilitates adaptivity. The potential
for considerably higher fidelity of the FOT-Probability models and the fact
that these models, using idealized infinite-time averages follow essentially all
the same rules for finite mathematical manipulation as do stochastic process
models, should encourage DSP algorithm designers to use FOT-Probability
models in place of the traditional stochastic process models. And it is impor-
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tant to note that, as discussed in this paper, the Fundamental Theorem of
Time Averaging applies to not only limits of time-average statistics but also
finite-time averages: it applies to completely empirical quantities! Yet, there
is a caveat: For the models derived from finite-time averages, some properties
of the expectation and infinite-time-average models are only approximated.
This appears to be more of an issue with poly-cyclostationary models, less so
with cyclostationary models, and even less so with stationary models. This
is due, at least in part, to the loss of the exact orthogonality of the harmonics
of 1) a periodic function on a finite interval that is not an integer multiple
of the period, and 2) a poly-periodic function on all finite intervals, and also
due to the loss of exact statistical independence of random time series on all
finite intervals. Consequently, the accuracy of these approximations becomes
an important issue. Another-finite-window e↵ect, which applies to all three
classes of time series mentioned here is the “edge e↵ects” on a convolution
operation. The finite-time statistics like autocorrelation do not exactly obey
the elegant input-output relation for convolution. But, again, these e↵ects
become negligible for su�ciently long time-segments of data; that is, long
relative to the memory length of the convolution. The detailed definitions of
the cumulative CDFs and their moments and other probabilistic functions
for finite-time segments of data are provided at [2, p. 3.5].

The di↵erence between the terms statistical and probabilistic are pointed
out here for further clarity. Probabilities and probabilistic parameters, such
as means, variances, correlations, probability densities, etc., defined in terms
of mathematical expectation calculated from mathematic models of stochas-
tic processes, are theoretical or mathematical constructs. They come from
within our heads through our imagination or as solutions to mathematical
equations. In contrast, averages of empirical measurements, such as estimates
of these theoretical quantities, are statistics. They can be obtained from finite
ensemble averages derived from repeated experimentation or from finite-time
averages performed on a single time series of measurements. This di↵erence
is often ignored in the terminology chosen by users of these tools. This can
cause the same type of confusion as that resulting from use of theoretical
stochastic process models for implementations based on time-averages from
single time series. Because stochastic processes are mathematical entities, no
actual single signal can ever be considered to be ergodic or non-ergodic. It is
a real statistic, not an imaginary probability model. For example, the Statis-
tical Theory of Communication and Information Theory are both primarily
probabilistic theories, but they do deal with statistics to some extent. When
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the focus is on statistics in communications, the traditional name for these
theories is appropriate, but many if not most books on this subject focus
on probabilities. In contrast, turbulence studies are especially interested in
ensembles, for example, all aircraft of a specified design in all operational
environments, or even a single aircraft in all operational environments. Here
the ensemble in the definition of a stochastic process can be real, not just
imagined. Yet, the stochastic process models used in turbulence studies
are not real, only the finite ensembles of actual measured turbulence—the
statistics—are real. The example set in Middleton’s classic book [13], of
being consistently clear about this distinction, has not been as diligently fol-
lowed as would behoove the statistical signal processing community. It is my
belief that the all-too-common lack of distinction between probabilities and
statistics is a clear reflection of the confusion caused, at least in part, by the
abstraction of the stochastic process model that engineers are indoctrinated
in.

Despite this little mini-lecture, the strict rule distinguishing between
probabilities and statistics is violated in the case of FOT-Probabilities, and
this is what makes these probabilities so relevant to practice. Except for the
assumption of infinitely long time series, FOT-probabilistic quantities are
indeed empirical and are therefore statistics. And, for the FOT-Probabilities
defined for finite-segments of data at [2, p. 3.5], they are statistics without
any exceptions.

Before closing this discussion, the topic of fixed optimum vs adaptive al-
gorithms for signal processing is briefly revisited. The technology of signal
processing has evolved rapidly and exhibited many advances in capability
over the last several decades, and education in this technology has stayed
at the forefront. However, this cannot be said with as much conviction of
education in the theoretical tools used for advancing this field. Our engi-
neering programs may be keeping up to date on adaptive signal processing
algorithms, but they are stuck teaching stochastic processes now much as it
was done five decades ago—except for a shift from mostly continuous-time
signal models to mostly discrete-time signal models—even though the the-
ory of FOT-Probability models that is often more relevant to adaptive signal
processing was made available 35 years ago [1], [9].

The entire subject of this article is but one example of a philosophical
challenge of great practical import which we face every day in every endeavor:
distinguishing between models of reality that our brains create and the real
thing—reality itself, which can be quite elusive in some cases. People gener-
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ally act on the basis of their models of reality for better or for worse. The
e↵ectiveness of interpersonal communication, for example, is dictated by the
models in terms of which the communicators think. If their models di↵er
too much, they will likely not communicate well. Further discussion of the
impact, of the challenge to better match models with reality, on the conduct
of science is available at this University of California, Davis website [2, p. 7].

4.1. Conclusions

The traditional generic Kolmogorov model for stochastic processes con-
sists of a generally abstract ensemble of sample paths (realizations) of the
process together with a probability measure on the event sets in the sample
space. The process is defined by six axioms which, for many applications,
cannot all be verified for specific models adopted for use in practice.

The Birkho↵ ergodic theorem establishes a condition on the measure in
the Kolmogorov model under which probabilistic parameters of the model,
such as mean, covariance, probability density functions, etc., can be ap-
proximated by time averages on a single sample path from the ensemble.
However, the measures for models specified in practice often cannot be ex-
plicitly determined and therefore cannot be tested for Birkho↵ (strong) er-
godicity. Practitioners generally consider the probability measure and the
measure property of ergodicity to be mysterious. And they often resort to
simply hypothesizing, without verification, that the model they adopt satis-
fies Kolmogorov’s six axioms and Birkho↵’s condition on the measure that
guarantees ergodicity.

Not only do these practical limitations exist for stationary models, but
similar limitations also exist for cyclostationary and poly-cyclostationary
models and models that are potentially ergodic or cyclo-ergodic.

To address this disconnect between today’s practice in statistical signal
processing and traditional theory, new stochastic process models are proposed
in this paper. These models are less abstract than the Kolmogorov model
and they can, in fact, be derived directly from empirical data consisting of
a single time series or from formulaic models for time series. Consequently,
ergodicity and cycloergodicity are automatic and conceptually transparent
in these new parsimonious models.

The parsimonious models avoid substantive conceptual challenges that
often cannot be met in practice and that cause confusion when practition-
ers attempt to invoke theoretical properties of the standard models in their
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work on empirical data (see [6] for an in-depth discussion and mathematical
treatment).

Although these new models entail, for each stochastic process of inter-
est, a recipe for specifying a sample space and the equivalent of a probability
measure which is automatically ergodic or cyclo-ergodic, the recommendation
herein is to use these new models for only pedagogical purposes of under-
standing the relationship between the old (Kolmogorov) and the new models,
and otherwise do away with the entire concept of sample spaces and stochas-
tic processes. That is,

the recommendation for operational use is to adopt in place of the new
stochastic process models the completely equivalent concept of a single empir-
ical time series of data or a formulaic model of such and the set of cumulative
probability distributions of all orders of interest (or, moments, or cumulants,
or characteristic functions of all orders of interest), each of which is derived
directly from the data or formulaic model using nothing more than time aver-
ages. In this formulation, the probability of an event involving the time series
is defined to be the fraction of time, over the lifetime of the time series, that
the event of interest occurs.

Previous publications have demonstrated in great detail that this concrete
alternative approach is operationally equivalent to the abstract stochastic
process approach for processes that are stationary or cyclostationary and
ergodic or cyclo-ergodic. So, there is no penalty for the conceptual advantages
o↵ered by this alternative approach for this class of processes.

Only when non-ergodic models are specifically of interest is there a pos-
sible need to use the more abstract traditional stochastic process approach.
This includes all nonstationary processes that are not cyclostationary, poly-
cyclostationary, almost cyclostationary, asymptotically mean-stationary, or
asymptotically mean-cyclostationary because no such process can be ergodic
or cyclo-ergodic.

It is the intent of this paper to assist readers in recognizing the pragmatic
benefits of moving toward a paradigm shift in the teaching and practice of
statistical signal processing for all applications in which the class of models
delineated here are of interest. It follows as a consequence that this paradigm
shift also entails separate treatment of the complementary class of models
for which stochastic processes are or may be essential: the non-ergodic (and
non-cyclo-ergodic) process models.
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