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Abstract 

A concise review of the long evolution of the study of cycles in time-series data is provided as a basis for 

explaining the relationship between the half century of work on cycles by William A. Gardner between 

1972 and the 2024 and the classical work of mathematicians and scientists throughout the preceding 

century including especially Norbert Wiener (generalized harmonic analysis, optimum filtering, 

nonlinear system identification), and also D. Brennan (Fraction-of-Time Probability), Ronald Fisher 

(cumulants), Lars Hanson (generalized method of moments), E.M. Hofstetter (Fraction-of-Time 

Probability), Andrei Kolmogorov (stochastic processes), Karl Pearson (method of moments), Arthur 

Schuster (periodogram), Thorvald Thiele (cumulants), John Wishart (cumulants), Herman Wold (hidden 

periodicity and disturbed harmonics), and many others who contributed to the theory of stationary 

stochastic processes and various topics in statistical signal processing based on the stationary process 

model. 

Introduction to Cycles 

The following introduction to the topic of the present essay was written by Herman O. A. Wold in 1968, 

as the opening paragraph in his survey contribution to the topic “Cycles” in the Encyclopedia of the 

Social Sciences [1]. 

 

Cycles, waves, pulsations, rhythmic phenomena, regularity in return, periodicity—these notions 

reflect a broad category of natural, human, and social phenomena where cycles are the 

dominating feature. The daily and yearly cycles in sunlight, temperature, and other geophysical 

phenomena are among the simplest and most obvious instances. Regular periodicity provides a 

basis for prediction and for extracting other useful information about the observed phenomena. 

Nautical almanacs with their tidal forecasts are a typical example. Medical examples are pulse 

rate as an indicator of cardiovascular status and the electrocardiograph as a basis for analysis of 

the condition of the heart.  

The study of cyclic phenomena dates from prehistoric times, and so does the experience that the 

area has dangerous pitfalls. From the dawn of Chinese history comes the story that the 

astronomers Hi and Ho lost their heads because they failed to forecast a solar eclipse (perhaps 
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2137 b.c.). In 1929, after some twelve years of promising existence, the Harvard Business 

Barometer (or Business Index) disappeared because it failed to predict the precipitous drop in the 

New York stock market. 

The purpose of this brief essay is to put into perspective the breakthrough made in the mid-1980s in the 

modeling of and statistical inference based on time-series data exhibiting cyclic behavior. Up until this 

breakthrough, statistical models for cycles—as a complement to nonstatistical cycles modeled, for 

example, by differential equations—had been studied analytically using crude mathematical models for 

more than a century but had not moved beyond the following two models: 1) the sum of one or more 

periodic time series and a featureless (randomly fluctuating, erratic, unpredictable, stationary) times 

series, often referred to as noise, which sum is amenable to more than just temporally local prediction, 

and 2) the response of a linear time-invariant resonant dynamical systems, mathematically modeled as a 

convolution, driven by a featureless time series, which response is amenable to only local prediction, 

because the apparent cycles are not true cycles. In a hypothesis testing setting, the null hypothesis (the 

alternative to models 1) or 2)) is an unpredictable nonstationary time series that may appear from time 

to time to exhibit cyclicity but that, upon closer inspection, is found to exhibit no true cycles and no 

substantive predictability. However, model 2) can be considered to be included in the null hypothesis 

since the disturbed harmonics produced by this model do not represent true cycles, and predictability is 

relatively limited. For an illustrative discussion of the general problem of cycles from a historical 

perspective, the reader is referred to Appendices 1 – 3, which consist of excerpts from Wold’s article, 

“Cycles” [1]. 

The first method that emerged for analysis of data according to model 1), at the turn of the 19th Century, 

is the periodogram (the squared magnitude of the Fourier transform of a finite-length times series of 

data, normalized by the length of the data segment) which was followed by a variety of what were 

termed high-resolution and super-resolution model fitting methods beginning around mid-20th Century. 

The periodogram was proven to be the set of sufficient statistics for Maximum Likelihood (ML) 

estimation of the period of a cycle due to a single sinewave in additive white Gaussian noise (AWGN) 

and the amplitude and phase of the Fourier component at the detected period are ML estimates of a 

sinusoid with that period. The complexity of the generalization to ML estimation for multiple sinusoids 

in AWGN, especially those with cycle periods that are not substantially different, led to a wide variety of 

alternative model fitting method, which are surveyed in [3, chap 9], where Gardner introduces the use 

of the FOT probability model to circumvent the unnecessary abstraction of the stochastic process model 

(cf. [4]) which dominated the literature on this topic essentially to the extent of complete exclusion of 

the FOT probability model once the stochastic process had been introduced.   Data following model 2) 

were referred to as disturbed harmonics and were analyzed primarily by methods developed specifically 

for Autoregressive Models (AR) and AR-Moving Average (ARMA) models. These models were initially 

implicitly based on the FOT model (i.e., on time averages of lag products, not probabilistic expected 

values) but soon transitioned to the stochastic process model.  
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Review of Cyclostationarity 

In 1985 and 1987, two analytical books by William A Gardner [2], [3] appeared, and introduced the first 

comprehensive theoretical investigations of two new classes of models which he termed 4) 

cyclostationary time series exhibiting a single periodicity and its generalization to 5) almost-

cyclostationary time series exhibiting multiple incommensurate periodicities, that is, multiple 

incommensurate periods of statistical cyclicity. (For a finite number of incommensurate cycles, Gardner 

later introduced the more specific term poly-cyclostationary.) Book [2] introduced these models in terms 

of stochastic processes and briefly explained their duals defined in terms of time averages instead of 

expected values, and [3] maintained close ties to empirical data by developing a comprehensive theory 

based on times averages alone or, equivalently, Fraction-of-Time (FOT) probabilities. The term statistical 

cyclicity means that precise cycles appear only in averages performed on the data, not in the raw data 

itself, which may or may not exhibit imprecise cycles. For the stochastic process model, these averages 

are expected values of functions of the data, which can be approximated with averages over statistical 

samples from a population of data sets. For the alternative non-stochastic model, these averages are 

ideally infinitely long time averages of functions of the data, which can be approximated by finite-time 

averages. The two models are dual and, in addition, they are essentially equivalent for a very special 

subclass of stochastic processes that satisfy the ergodic hypothesis [2, chap 8]. 

The original models 1) and 2) were first described prior to the advent of the concept of a stochastic 

process and later were replaced with stochastic-process alternatives. The two new models 4) and 5), 

which generalize models 1) and 2), were first treated comprehensively almost simultaneously in both 

forms, stochastic and non-stochastic, in [2], and the non-stochastic alternative was greatly expanded on 

in [3], because of its parsimony and more direct relevance to most applications—those for which only a 

single time series of measurements is available instead of a set of multiple statistical samples of time 

series from a population which is the situation originally motivating the stochastic process model. There 

were a few isolated journal papers prior to (and cited in) [2], [3], [5] and which briefly treated what were 

called periodically correlated stochastic processes, but there had been no attempt to develop a 

comprehensive theory of these stochastic processes, and not even a mention of the alternative theory 

of non-stochastic models for non-population time series first proposed in [2],[3] (cf. [4],[6]-[8]) let alone 

non-stochastic models for periodically and almost periodically time varying higher-than 2nd order 

moments, cumulants, and probability density functions. There also were a few isolated papers on 

stochastic cyclostationarity in the Russian literature that are cited in [5].  The fundamental concept 

underlying (almost) cyclostationarity does not require the concept or mathematical model of a 

population of time series and a corresponding stochastic process. Rather (almost) cyclostationarity can 

be defined in terms of time-series models consisting of (almost) periodically time-varying FOT 

probability density functions defined independently of the probability space notion upon which the 

stochastic process is defined. The reader is referred to [7] for a discussion of the underlying measure 

theory foundation for FOT probability, and to [4], [8] for discussions of the key mathematical differences 
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between FOT probability, which is constructed from a single time series, and Kolmogorov’s abstract 

axiomatically defined probability theory, which is defined in terms of what is called a probability space. 

Periodically (and almost periodically) time varying moments and cumulants can be characterized in 

terms of FOT probability. The breadth of this class of models and the phenomena to which they apply 

dwarfs the earlier models of cycles of type 1) referred to above. In fact, the model 1) is the most 

elementary example of a cyclostationary time series—so elementary that it does not need the 

mathematical machinery of FOT probability to analyze.  

More specifically, in the model of type 1) a true cycle corresponds to a periodic mean and, in the model 

of type 2), an apparent but not true cycle corresponds to damped oscillation of the autocorrelation 

function of the process. In cyclostationary (or almost cyclostationary) processes, any order moment or 

cumulant can be periodic (or almost periodic with multiple incommensurate periods). For example, a 

cyclostationary process or time series can have a constant (time-invariant) mean and constant variance, 

but a periodic covariance producing cycles in coherence time; or it can have 1st and 2nd order moments 

all of which are constant, but periodic higher-order moments or cumulants. In general, (almost) 

cyclostationary processes have (almost) periodic joint probability density functions. 

Gardner’s more general FOT probability model of cycles does not rely on a hypothetical deterministic 

model (a periodic function or a convolution) mixed with or driven by a featureless noise. Rather, it 

constructs the model from time averages of functions of the time series. This model can consist of FOT 

probability density functions, joint moments of multiple time samples with any time separations, 

corresponding joint cumulants, etc. Nevertheless, the FOT probability model can be derived from a 

mathematical model of deterministic dynamics driven by featureless noise, in term of the FOT model of 

such noise, which is typically chosen to be a series of statistically independent identically distributed (in 

the FOT probability sense) variables. Several examples are listed below: 

1) A piecewise constant time series with transitions once every period and with constants given by 

a stationary sequence. This model has constant mean and variance, but periodic covariance. The 

stationary sequence can be, for example, a featureless noise with known FOT probability, such 

as independent identically distributed variables.  

2) A product of a deterministic periodic sequence and a stationary sequence (e.g., featureless 

noise) with known FOT probability. If this stationary noise is white, so too is the cyclostationary 

time series.  

3) A marked and filtered Poisson point process (e.g., a detected photon stream) with average rate 

of occurrence of points that is a deterministic periodic function. The stationary sequence of 

random marks on the pulse shapes produced by the filter can be, for example, a featureless 

noise or an information bearing signal, as in optical communications systems.   

4) A resonant dynamic system, with periodically time-varying resonant frequency and/or damping 

factor, driven by featureless noise. 
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5) A pulse stream with random amplitudes (e.g., featureless noise) and periodically time varying 

pace and/or duration.   

The books [2] and [3], and a lifetime of follow-on work by the Author, comprehensively reviewed in [6], 

substantially extends and generalizes: Herman Wold’s and George Yule’s work on hidden periodicities 

and disturbed harmonics [1], [6, p. 4.1]; Norbert Wiener’s work on Generalized Harmonic Analysis of 

stationary time-series [9] (generalized to spectral correlation analysis of cyclostationary and almost 

cyclostationary time series [6, p. 2.1] and further generalized from 2nd-order joint moments to higher 

order moments and joint probability densities [6, p. 2.1]); Wiener’s minimum time-averaged-squared-

error (MTASE) linear time-invariant filtering of stationary time series [10] (generalized to periodically 

and almost periodically time-variant linear filtering of cyclostationary time series [6, p.2.5.1]); the body 

of work by Wiener and his team of PhD students at M.I.T. (cf. Zadeh’s integrative formulation [11] and 

Materra’s comprehensive review [6, p. 11.7]) on nonlinear system identification (reformulated in terms 

of fraction-of-time- probability and  generalized from time invariant to (almost) periodically time variant 

nonlinear systems [6, p. 2.5.3]); and the work of many on blind channel identification/equalization 

(generalized from stationary to cyclostationary channel inputs thereby enabling measurement of phase 

as well as magnitude of the transfer function [6, p. 2.5.3]). Gardner’s work also creates a parsimonious 

alternative to Andrei Kolmogorov’s theory of Stochastic Processes [12], based on Gardner’s concept of 

(almost) periodic fraction-of-time probability [6, p. 3], which is based on Gardner’s non-population 

alternative to relative frequency for cyclostationary time series (a generalization of Brennan’s and 

Hofstetter’s early work on stationary time series [13],[14]), which also introduces an entirely innovative 

meaning of cumulants of non-population cyclostationary and almost cyclostationary time series [6, p. 

2.1], the original meaning having been introduced by Thorvald Thiele in the late 19th Century (cf. [15]) 

and called semi-invariants and later termed cumulants by Ronald Fisher and John Wishart.   

In addition, Gardner’s work extended and generalized the work of many on periodogram-based 

methods, following Arthur Schuster’s introduction of the periodogram [16], for power spectral density 

estimation; that is, generalized to cyclic-periodogram-based methods for spectral correlation density 

estimation [2, p. 331], [3, p. 385].  

Most recently, Gardner has furthered his earlier work on cyclostationarity by introducing a radically new 

Method of Moments (MoM) for model parameter estimation [17], [6, p. 11.4] as a competitive 

alternative to Karl Pearson’s classic MoM (cf. [18]) from the turn of the 19th Century (1894) and Lars 

Hansen’s 1982 Generalized MoM [19].  

The only other comprehensive treatment of Gardner’s theory of cyclostationarity appeared over 3 

decades after publication of his two books in an unusually scholarly and encyclopedic treatment in a 

2019 book by Antonio Napolitano [20], who cites Gardner’s founding work over 580 times.   
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The treatment of statistical time-series analysis in Gardner’s two mid-1980s books is the first to argue at 

length that cyclostationarity modeling of time series data was missing from the preceding century of 

work on hidden periodicities, and a half century of work on disturbed harmonics; and that, from the 

mid-20th Century on, there is no apparent reason for this shortcoming in the development of time-series 

models and analysis other than the convenience of the availability of a mathematical theory of 

stationary stochastic processes and the fact that a seemingly harmless technique promoted by Blackman 

and Tukey in 1958 [2, page 357] can be used to render stationary a stochastic process otherwise 

exhibiting what became known as cyclostationarity—a property that had been intentionally avoided 

following Kolmogorov’s introduction three decades earlier of stochastic processes. This “harmless” 

technique, called phase randomization [21], can indeed be quite harmful in terms of yielding higher-

than-minimum-Bayes-risk statistical inferences based on the time series and its stationarized model [2], 

[3], and in terms of the masking of key properties, such as spectral correlation, the separability of 

spectral correlation among additive mixtures of time-series—often referred to as signals—and the 

separability of such signals themselves, and more general insight into statistical inference involving 

cycles [22]- [24].  

In Wold’s 1968 encyclopedia article [1], it is acknowledged that interest in the study of cyclicity waned 

following the transition from classical time-series analysis to the stationary stochastic process 

framework. This was an unfortunate setback in time series analysis of cycles that Gardner attributes to 

what Professor James Massey [6, p. 9.1] referred to as “the stochastic process bandwagon” in his review 

of the book [3] (cf. [6, p. 4]). 

Almost thirty years after writing the treatise [3] on Regular Cyclostationarity (including Regular Almost 

Cyclostationarity), Gardner gave consideration to the alternative class of cyclostationarity 

complementary to regular cyclostationarity, which he termed Irregular Cyclostationarity (and irregular 

almost cyclostationarity).  In 2015, the original unpublished version of the 2018 publication [25], as well 

as this 2018 article itself, revealed how to extend the cyclostationarity paradigm from regular to 

irregular cyclostationary times series. Irregular cyclostationarity is predominant in scientific data of 

natural origin in contrast to engineering data where cyclostationarity is often “manufactured” and 

intentionally made regular. Examples arise in communication systems design and analysis where the 

cyclicity in otherwise stationary data is intentionally introduced at the transmitter so that it can be used 

to advantage at the receiver for extracting the information content in the transmitted signal. Other 

examples arise in rotating machine monitoring and fault diagnosis where cyclicity is unavoidably 

introduced by motions of machine components such as rotating crankshafts, reciprocating pistons, and 

revolving bearings in internal combustion engines and electric motors and generators, including hydro-

electric and wind turbines. This field of application of Gardner’s theory was first proposed by Gardner in 

[3] and has since become a major field of study based on his theory. 

https://ieeexplore.ieee.org/document/1096810
https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-018-0564-6
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Irregular cyclicity is specifically defined in [25] to be regular cyclicity after it has been subjected to time 

warping. This excludes other forms of departure from exact cyclicity that cannot be so modeled (e.g., 

pace-irregular pulsed time series described in [25], which arise in rotating machinery with time varying 

but non-periodic rpm. Irregular cyclicity is the more tractable departure of the two because it is 

amenable to mathematical modeling in terms of regular cyclostationarity and because irregular 

cyclostationary time series can be exactly or approximately converted to regular cyclostationarity. This 

work applies also to irregular almost cyclostationarity provided that all cycles are subjected to the same 

time warping. The model for irregular cyclostationarity generalizes the concept of a cycle which, by 

definition, is an exact periodicity to a special type of irregular cycle which is a time-warped periodicity. 

This significantly broadens the type of phenomena that can be advantageously modeled and predicted. 

Not available in the open academic literature is decades of Gardner’s and his research team’s work 

applying his theory of cyclostationarity to the development of signal processing algorithms for signals 

intelligence for purposes of national security (cf. [26], [6, p. 12]). This work, reported in numerous 

treatises prepared for the government, revolutionized this field of study resulting in significant 

improvements in signals intelligence capability [6, quotation by Nelson Blackman on page 9.1]. 

Gardner’s theory is also a cornerstone of today’s work on spectrum sensing and management by 

spectral correlation analysis (cyclic spectrum analysis) as well as power spectral density estimation for 

cognitive radio systems [6, p. 11.1], [27]. 

Most recently, in 2024, Gardner, in collaboration with Napolitano, applied the FOT-probability model—

as an alternative to the stochastic process model—to revisit the pros and cons of a spectrum estimation 

technique known as the multi-taper method (MTM) originally introduced by D. J. Thomson in 1982 [28], 

in comparison with classical methods (CMs) based on time averaging and/or frequency smoothing 

periodograms. The results of this work contradict the literature on this subject where superiority of the 

MTM over CMs is claimed [27]. This work illustrates the benefits achievable through simplified 

conceptualization by replacing the unnecessarily abstract stochastic process model with Gardner’s 

parsimonious FOT probability model. 

Conclusion 

Many fields of application of the theory and methodology of (almost) cyclostationarity, other than those 

mentioned above, are listed in [6, pages 1, 4] and [20, chaps 7 (sec. 6), 9,10]. A concise list of Gardner’s 

specific mathematical contributions to the theory and methodology based on his FOT-probability 

approach to non-population times series exhibiting cyclostationarity is provided in Appendix 4, which 

also addresses applications. Other unifying contributions to time series analysis made by Gardner also 

are outlined in Appendix 4.  A detailed list of applications of cyclostationarity to a variety of fields of 

science and engineering is presented in Appendix 5.  
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The concise review provided by this essay illustrates Gardner’s unusual approach to furthering our 

understanding of theory and methodology for statistical time series analysis. To quote the late Enders A. 

Robinson, past Professor of Geophysics at Columbia University, past Member of the National Academy 

of Engineering, and highest honored scientist in the field of geophysics, borrowing from his letter of 

reference to a Department Chairperson at University of California, Davis, on behalf of Professor Gardner 

[6, p. 9.1]: 

From time to time it is good to look back and see in perspective the work of those people who 

have made a difference in the engineering profession.  One of the important members of this 

group is William A. Gardner. 

Professor Gardner has the ability to impart a fresh approach to many difficult problems. William 

is one of those few people who can effectively do both the analytic and the practical work 

required for the introduction and acceptance of a new engineering method. His general 

approach is to go back to the basic foundations and lay a new framework. This gives him a way 

to circumvent many of the stumbling blocks confronted by other workers . . . 

I am particularly impressed by the fundamental work in spectral analysis done by Professor 

Gardner. Whereas most theoretical developments make use of ensemble averages, he has gone 

back and reformulated the whole problem in terms of time-averages. In so doing he has 

discovered many avenues of approach which were either not known or neglected in the past. In 

this way his work more resembles some of the outstanding mathematicians and engineers of the 

past. This approach took some courage, because generally people tend to assume that the basic 

work has been done, and that no new results can come from re-examining avenues that had 

been tried in the past and then dropped. William’s success in the approach shows the strength of 

his engineering insight. He has been able to solve problems that others have left as being too 

difficult. It is this quality that he so well imparts to his students, who have gone forth and solved 

important and far-reaching problems in their own right. 

To provide a more concrete perspective on the substantial work on cycles that preceded the 

breakthrough in the mid-1980s, the reader is referred to [1]; also, a concise summary of the treatise [1] 

is provided in Appendices 1 - 3.  

This essay is concluded here with a coarse timeline of the progression of recorded thought about cycles 

and corresponding data models from basic interest in cycles to the most sophisticated mathematical 

models yet to be devised: 

o 2000 BC: Interest in the General Notion of Cycles  
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(see excerpt from Wold [1] in the first paragraph of the present essay) 

o 1700s AD: Hidden periodicities  

(Euler, Lagrange; see [3, p. 2]) 

o 1927: Disturbed Harmonics  

(Yule; see [3, p. 14]) 

o 1975 – 1978: Precursor to Regular (Almost) Cyclostationarity  

(Gardner; see [5], [21])  

o 1985 – 1987: Regular (Almost) Cyclostationarity  

(first in-depth treatises: Gardner; see [2, Chap 13], [3, Part II) 

o 2015 – 2018: Irregular Cyclostationarity [Gardner; see [25] and, for follow on work, see 

Napolitano, [29]) 

 

____________________________________ 

APPENDIX 1. H.O.A. Wold on Cycle 

The following excerpt from Wold’s encyclopedia article [1] on cycles provides an interesting discussion 

of the nature of the problem of detecting cycles and predicting the future. Several figures and equations 

that are present in [1] have been omitted from this excerpt without significantly detracting from the 

value of the discussion for the purposes of the present article. Similarly, in a few places, words (not 

italicized) have been inserted to facilitate comprehension where figures or equations have been 

omitted, as shown with a strikethrough line. 

Cyclic phenomena are recorded in terms of time series. A key aspect of cycles is the degree of 

predictability they give to the time series generated. Three basic situations should be 

distinguished: 

(a) The cycles are fixed, so that the series is predictable over the indefinite future. 

(b) The cycles are partly random, so that the series is predictable only over a limited future. 

(c) The cycles are spurious—that is, there are no real cycles—and the series is not predictable. 

For the purposes of this article the term “cycle” is used in a somewhat broader sense than the 

strict cyclic periodicity of case (a). 

https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-018-0564-6
https://ieeexplore.ieee.org/document/7982741
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Limited and unlimited predictability 

The fundamental difference between situations (a) and (b) can be illustrated by two simple 

cases. 

The scheme of “hidden periodicities.” Suppose that an observed time series is generated by two 

components. The first is strictly periodic, with period length p, so that its value at time t + p is 

equal to its value at time t. The second component, superimposed upon the first, is a sequence of 

random (independent, identically distributed) elements. Thus, each term of the observed series 

can be represented as the sum of a periodic term and a random one. 

Tidal water is a cyclic phenomenon where this model applies quite well (see Figure 1). Here the 

observed series is the measured water level at Dover, the strictly periodic component represents 

the lunar cycle, 12 hours and 50 minutes in length (two maxima in one lunar day), and the 

random elements are the irregular deviations caused by storms, random variations in air 

pressure, earthquakes, etc. 

The periodic component provides a prediction— 

Hypothetical data. An unbiased predicted value for a future time with expectation equal to that 

future value of the periodic component, and with prediction error equal to the random element. 

The difficulty is that the periodic component is not known and must be estimated empirically. A 

simple and obvious method is that of Buys Ballot’s table; each point on the periodic component is 

estimated by the average of several points on the observed series, separated in time by the 

length of the period, p, where p either is known or is assessed by trial and error. The larger is the 

residual as compared to the cyclic component, the longer is the series needed to estimate with 

confidence the cyclic component. 

The approach of hidden periodicities may be extended, with two or more periodic components 

being considered. Tidal water again provides a typical illustration. In addition to the dominating 

lunar component, a closer fit to the data is obtained by considering a solar component with 

period 183 days. 

In view of its simplicity and its many important applications, it is only natural that the approach 

involving strictly periodic components is of long standing. A distinction must be made, however, 

between formal representation of a series (which is always possible), on the one hand, and 

prediction, on the other. Under general conditions, any series, even a completely random one, 

can be represented by a sum of periodic components plus a residual, and if the number of 



11 of 36 
 

periodic components is increased indefinitely, the residual can be made as small as desired. In 

particular, if each of the periodic components is a sine or a cosine curve (a sinusoid), then the 

representation of the observed series is called a spectral representation. Such a representation, it 

is well to note, may be of only limited use for prediction outside the observed range, because if 

the observed range is widened, the terms of the representation may change appreciably. In the 

extreme case when the observations are all stochastically independent, the spectral 

representation of the series is an infinite sum of sinusoids; in this case neither the spectral 

representation nor alternative forecasting devices provide any predictive information. 

Irregular cycles. Until rather recently (about 1930), the analysis of oscillatory time series was 

almost equivalent to the assessment of periodicities. For a long time, however, it had been clear 

that important phenomena existed that refused to adhere to the forecasts based on the scheme 

of hidden periodicities. The most obvious and challenging of these was the sequence of some 

twenty business cycles, each of duration five to ten years, between 1800 and 1914. Phenomena 

with irregular cycles require radically different methods of analysis. 

The scheme of “disturbed periodicity.” The breakthrough in the area of limited predictability 

came with Yule’s model (1927) for the irregular 11-year cycle of sunspot intensity (see Figure 2). 

Yule interpreted the sunspot cycle as similar to the movement of a damped pendulum that is 

kept in motion by an unending stream of random shocks. [See the biography of Yule.] 

The sharp contrast between the scheme of hidden periodicities and the scheme of disturbed 

periodicity can now be seen. In the hidden periodicities model the random elements are 

superimposed upon the cyclic component(s) without affecting or disturbing their strict 

periodicity. In Yule’s model the series may be regarded as generated by the random elements, 

and there is no room for strict periodicity. (Of course, the two types can be combined, as will be 

seen.) 

The deep difference between the two types of model is reflected in their forecasting properties 

(see Figure 3). The time scales for the two forecasts have here been adjusted so as to give the 

same period. In the hidden-periodicities model the forecast over the future time span has the 

form of an undamped sinusoid, thus permitting an effective forecast over indefinitely long spans 

when the model is correct. In Yule’s model the forecast is a damped sinusoid, which provides 

effective information over limited spans, but beyond that it gives only the trivial forecast that the 

value of the series is expected to equal the unconditional over-all mean of the series. 

Generalizations. The distinction between limited and unlimited predictability of an observed 

times series goes to the core of the probability structure of the series. 
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In the modern development of time series analysis on the basis of the theory of stochastic 

processes, the notions of predictability are brought to full significance. It can be shown that the 

series yt under very general conditions allows a unique representation, known as predictive 

decomposition, where (a) the two components are uncorrelated, (b) one component Φt is 

deterministic and the other Ψt is nondeterministic, and (c) the nondeterministic component 

allows a representation of the Yule type. In Yule’s model no Φt component is present. In the 

hidden-periodicities model Φt, is a sum of sinusoids, while Ψt is the random Φt residual. 

Generally, however, Φt although deterministic in the prediction sense, is random. 

The statistical treatment of mixed models like this (1) involves a variety of important and 

challenging problems. Speaking broadly, the valid assessment of the structure requires 

observations that extend over a substantial number of cycles, and even then the task is difficult. 

A basic problem is to test for and estimate a periodic component on the supplementary 

hypothesis that the ensuing residual allows a nondeterministic representation, or, more 

generally, to perform a simultaneous estimation of the two components. A general method for 

dealing with these problems has been provided by Whittle (1954); for a related approach, see 

Allais (1962). 

Other problems with a background in this decomposition occur in the analysis of seasonal 

variation [See Time series, article on Seasonal adjustment]. 

Other stochastic models. Since a tendency to cyclic variation is a conspicuous feature of many 

phenomena, stochastic models for their analysis have used a variety of mechanisms for 

generating apparent or genuine cyclicity. Brief reference will be made to the dynamic models for 

(a) predator-prey populations and (b) epidemic diseases. In both cases the pioneering 

approaches were deterministic, the models having the form of differential equation systems. The 

stochastic models developed at a later stage are more general, and they cover features of 

irregularity that cannot be explained by deterministic methods. What is of special interest in the 

present context is that the cycles produced in the simplest deterministic models are strictly 

periodic, whereas the stochastic models produce irregular cycles that allow prediction only over 

a limited future. 

Figure 4 refers to a Consider the stochastic model given by M. S. Bartlett (1957) for the dynamic 

balance between the populations of a predator—for example, the lynx—and its prey—for 

example, the hare. The data of the Bartlett’s graph are artificial, being constructed from the 

model by a Monte Carlo experiment. The classic models of A. J. Lotka and V. Volterra are 

deterministic, and the ensuing cycles take the form of sinusoids. The cyclic tendency is quite 

pronounced in Figure 4, but at the same time the development is affected by random features. 
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After three peaks in both populations, the prey remains at a rather low level that turns out to be 

critical for the predator, and the predator population dies out. 

The peaks that have been observed in Figure 5 poliomyelitis data mark the severe spells of 

poliomyelitis in Sweden from 1905 onward. The cyclic tendency is explained, on the one hand, by 

the contagious nature of the disease and, on the other, by the fact that slight infections provide 

immunity, so that after a nationwide epidemic it takes some time before a new group of 

susceptibles emerges. The foundations for a mathematical theory of the dynamics of epidemic 

diseases were laid by Kermack and McKendrick (1927), who used a deterministic approach in 

terms of differential equations. Their famous threshold theorem states that only if the infection 

rate, ρ, is above a certain critical value, ρo, will the disease flare up in epidemics. Bartlett (1957) 

and others have developed the theory in terms of stochastic models; a stochastic counterpart to 

the threshold theorem has been provided by Whittle (1955). 

Bartlett’s predator-prey model provides an example of how a cyclic deterministic model may 

become evolutive (nonstationary) when stochasticized, while Whittle’s epidemic model shows 

how an evolutive deterministic model may become stationary. Both of the stochastic models are 

completely nondeterministic; note that the predictive decomposition (1) extends to 

nonstationary processes. 

The above examples have been selected so as to emphasize that there is no sharp demarcation 

between cycles with limited predictability and the spurious periodicity of phenomena ruled by 

randomness, where by pure chance the variation may take wavelike forms, but which provides 

no basis even for limited predictions. Thus, if a recurrent phenomenon has a low rate of 

incidence, say λ per year, and the incidences are mutually independent (perhaps a rare epidemic 

disease that has no aftereffect of immunity), the record of observations might evoke the idea 

that the recurrences have some degree of periodicity. It is true that in such cases there is 

an average period of length 1/λ between the recurrences, but the distance from one recurrence 

to the next is a random variable that cannot be forecast, since it is independent of past 

observations. 

A related situation occurs in the summation of mutually independent variables. Figure 6 shows a 

A case in point as is observed in a Monte Carlo experiment with summation of independent 

variables (Wold 1965). The similarity between the three waves, each representing the 

consecutive additions of some 100,000 variables, is rather striking. Is it really due to pure 

chance? Or is the computer simulation of the “randomness” marred by some slip that has 

opened the door to a cyclic tendency in the ensuing sums? (For an amusing discussion of related 

cases, see Cole’s “Biological Clock in the Unicorn” 1957.) 
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Figure 6 also gives, in the A series of wholesale prices in Great Britain, an provides an example of 

“Kondratieff waves”—the much discussed interpretation of economic phenomena as moving 

slowly up and down in spells of some fifty years. Do the waves embody genuine tendencies to 

long cycles, or are they of a spurious nature? The question is easy to pose but difficult or 

impossible to answer on the basis of available data. The argument that the “Kondratieff waves” 

are to a large extent parallel in the main industrialized countries carries little weight, in view of 

international economic connections. The two graphs have been combined in Figure 6 in order to 

emphasize that With regard to observed waves of long duration it is always difficult to sift the 

wheat of genuine cycles from the chaff of spurious periodicity. [See the biography 

of Kondratieff.] 

The bibliography for Wold’s article [1] is included here in Appendix 3.  

 

APPENDIX 2:  Further Remarks on Cycles from H.O.A Wold  

Cycles are of key relevance in the theory and application of time series analysis; their difficulty is 

clear from the fact that it is only recently that scientific tools appropriate for dealing with cycles 

and their problems have been developed. The fundamental distinction between the hidden-

periodicity model, with its strict periodicity and unlimited predictability, and Yule’s model, with 

its disturbed periodicity and limited predictability, could be brought to full significance only after 

1933, by the powerful methods of the modern theory of stochastic processes. 

On the basis of the FOT theory and methodology of interest in this article, as an alternative to the 

stochastic process, the veracity of the above phrase “could be brought to full significance only after 

1933, by the powerful methods of the modern theory of stochastic processes” is questionable—the only 

randomness in the stochastic models discussed by Wold that cannot be incorporated in this 

parsimonious alternative are those which render the stochastic processes non-ergodic; namely, any 

time-invariant random parameters in the models discussed. 

On the applied side, the difficulty of the problems has been revealed in significant shifts in the 

very way of viewing and posing the problems. Thus, up to the failure of the Harvard Business 

Barometer the analysis of business cycles was essentially a unirelational approach, the cycle 

being interpreted as generated by a leading series by way of a system of lagged relationships 

with other series. The pioneering works of Jan Tinbergen in the late 1930s broke away from the 

unirelational approach. The models of Tinbergen and his followers are multirelational, the 

business cycles being seen as the resultant of a complex system of economic relationships. 

[See Business cycles; Distributed lags.] 
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The term “cycle,” when used without further specification, primarily refers to periodicities in time 

series, and that is how the term is taken in this article. The notion of “life cycle” as the path from 

birth to death of living organisms is outside the scope of this presentation. So are the historical 

theories of Spengler and Toynbee that make a grandiose combination of time series and life cycle 

concepts, seeing human history as a succession of cultures that are born, flourish, and die. Even 

the shortest treatment of these broad issues would carry us far beyond the realm of time series 

analysis; this omission, however, must not be construed as a criticism. [For a discussion of these 

issues, see Periodization.] 

Cycles vs. innovations. The history of human knowledge suggests that belief in cycles has been a 

stumbling block in the evolution of science. The philosophy of the cosmic cycle was part of Stoic 

and Epicurean philosophy: every occurrence is a recurrence; history repeats itself in cycles, 

cosmic cycles; all things, persons, and phenomena return exactly as before in cycle after cycle. 

What is it in this strange theory that is of such appeal that it should have been incorporated into 

the foundations of leading philosophical schools and should occur in less extreme forms again 

and again in philosophical thinking through the centuries, at least up to Herbert Spencer, 

although it later lost its vogue? Part of the answer seems to be that philosophy has had 

difficulties with the notion of innovation, having, as it were, a horror innovationum. If our 

philosophy leaves no room for innovations, we must conclude that every occurrence is a 

recurrence, and from there it is psychologically a short step to the cosmic cycle. This argument 

being a blind alley, the way out has led to the notions of innovation and limited predictability 

and to other key concepts in modern theories of cyclic phenomena. Thus, in Yule’s model (Figure 

2) the random shocks are innovations that reduce the regularity of the sunspot cycles so as to 

make them predictable only over a limited future. More generally, in the predictive 

decomposition (1) the nondeterministic component is generated by random elements, 

innovations, and the component is therefore only of limited predictability. Here there is a close 

affinity to certain aspects of the general theory of knowledge. We note that prediction always 

has its cognitive basis in regularities observed in the past, cyclic or not, and that innovations set 

a ceiling to prediction by scientific methods. [See Time series, article on Advanced problems.] 

This article aims at a brief orientation to the portrayal of cycles as a broad topic in transition. Up 

to the 1930s the cyclical aspects of time series were dealt with by a variety of approaches, in 

which nonscientific and prescientific views were interspersed with the sound methods of some 

few forerunners and pioneers. 

Regarding the following paragraph from Wold [1], it is suggested that readers consider the present 

article’s proposal that the interest in cycles being superseded as time-series analysis transitioned to the 

stochastic-process framework, as described below, is a result of the fact that the stationary process 
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model, with the possible addition of sinewaves, is simply not appropriate for most cyclic phenomena; 

the supersession is not a result of cyclicity in data no longer being of interest. This proposal is supported 

by the huge growth in research on cyclicity in data since the advent of the theory and method of 

cyclostationarity a couple of decades later. 

The mathematical foundations of probability theory as laid by Kolmogorov in 1933 gave rise to 

forceful developments in time series analysis and stochastic processes, bringing the problems 

about cycles within the reach of rigorous treatment. In the course of the transition, interest in 

cycles has been superseded by other aspects of time series analysis, notably prediction and 

hypothesis testing. For that reason, and also because cyclical features appear in time series of 

very different probability structures, it is only natural that cycles have not (or not as yet) been 

taken as a subject for a monograph. 
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Allais, Maurice 1962 Test de périodicité: Généralisation du test de Schuster au cas de séries 

temporelles autocorrelées dans l’hypothése d’un processus de perturbations aleatoires d’un 

systéme stable. Institut International de Statistique, Bulletin 39, no. 2:143-193. 

Bartlett, M. S. 1957 On Theoretical Models for Competitive and Predatory Biological 

Systems. Biometrika 44:27-42. 

Burkhardt, H. 1904 Trigonometrische Interpolation: Mathematische Behandlung periodischer 

Naturer-scheinungen mit Einschluss ihrer Anwendungen. Volume 2, pages 643-693 

in Enzyklopädie der mathe-matischen Wissenschaften. Leipzig: Teubner. → The encyclopedia was 

also published in French. 

Buys Ballot, Christopher H. D. 1847 Les change-mens périodiques de température dépendants de 

la nature du soleil et de la lune mis en rapport avec le prognostic du temps déduits 

d’observations Neer-landaises de 1729 á 1846. Utrecht (Netherlands): Kemink. 

Cole, Lamont C. 1957 Biological Clock in the Unicorn. Science 125:874-876. 

CramÉr, Harald 1940 On the Theory of Stationary Random Processes. Annals of Mathematics2d 

Series 41:215-230. 



17 of 36 
 

Cycles. → Published since 1950 by the Foundation for the Study of Cycles. See especially Volume 

15. 

Kermack, W. O.; and Mckendrick, A. G. 1927 A Contribution to the Mathematical Theory of 

Epidemics. Royal Society of London, Proceedings Series A 113: 700-721. 

Kermack, W. O.; and Mckendrick, A. G. 1932 Contributions to the Mathematical Theory of 

Epidemics. Part 2: The Problem of Endemicity. Royal Society of London, Proceedings Series A 

138:55-83. 

Kermack, W. O.; and Mckendrick, A. G. 1933 Contributions to the Mathematical Theory of 

Epidemics. Part 3: Further Studies of the Problem of Endemicity. Royal Society of 

London, Proceedings Series A 141: 94-122. 

Keyser, Cassius J. (1922) 1956 The Group Concept. Volume 3, pages 1538-1557 in James R. 

Newman, The World of Mathematics: A Small Library of the Literature of Mathematics From A’h-

Mosé the Scribe to Albert Einstein. New York: Simon & Schuster. → A paperback edition was 

published in 1962. 

Kolmogorov, A. N. (1941) 1953 Sucesiones esta-cionarias en espacios de Hilbert (Stationary 

Sequences in Hilbert Space). Trabajos de estadistíca 4:55-73, 243-270. → First published in 

Russian in Volume 2 of the Biulleten Moskovskogo Universiteta. 

Lewin, Edward A. 1958 1959 and a Cyclical Theory of History. Cycles 9:11-12. 

Mitchell, Wesley C. 1913 Business Cycles. Berkeley: Univ. of California Press. → Part 3 was 

reprinted by University of California Press in 1959 as Business Cycles and Their Causes. 

Piatier, AndrÉ 1961 Statistique et observation eco-nomique. Volume 2. Paris: Presses 

Universitaires de France. 

Schumpeter, Joseph A. 1939 Business Cycles: A Theoretical, Historical, and Statistical Analysis of 

the Capitalist Process.2 vols. New York and London: McGraw-Hill. → An abridged version was 

published in 1964. 

Schuster, Arthur 1898 On the Investigation of Hidden Periodicities With Application to a 

Supposed 26 Day Period of Meteorological Phenomena. Terrestrial Magnetism 3:13-41. 

Tinbergen, J. 1940 Econometric Business Cycle Research. Review of Economic Studies 7:73-90. 



18 of 36 
 

Whittaker, E. T.; and Robinson, G. (1924) 1944 The Calculus of Observations: A Treatise on 

Numerical Mathematics.4th ed. Princeton, N.J.: Van Nostrand. 

Whittle, P. 1954 The Simultaneous Estimation of a Time Series: Harmonic Components and 

Covariance Structure. Trabajos de estadistíca 3:43-57. 

Whittle, P. 1955 The Outcome of a Stochastic Epidemic—A Note on Bailey’s 

Paper. Biometrika 42: 116-122. 

Wiener, Norbert (1942) 1964 Extrapolation, Interpolation and Smoothing of a Stationary Time 

Series, With Engineering Applications. Cambridge, Mass.: Technology Press of M.I.T. → First 

published during World War II as a classified report to Section D2, National Defense Research 

Committee. A paperback edition was published in 1964. 

Wold, Herman (1938) 1954 A Study in the Analysis of Stationary Time Series.2d ed. Stockholm: 

Almqvist & Wiksell. 

Wold, Herman 1965 A Graphic Introduction to Stochastic Processes. Pages 7-76 in International 

Statistical Institute, Bibliography on Time Series and Stochastic Processes. Edited by Herman 

Wold. Edinburgh: Oliver & Boyd. 

Wold, Herman 1967 Time as the Realm of Forecasting. Pages 525-560 in New York Academy of 

Sciences, Interdisciplinary Perspectives on Time. New York: The Academy. 

Yule, G. Udny 1927 On a Method of Investigating Periodicities in Disturbed Series, With Special 

Reference to Wolfer’s Sunspot Numbers. Royal Society, Philosophical Transactions Series A 

226:267-298. 

APPENDIX 4: Gardner’s Specific Mathematical Contributions 

This appendix contains excerpts from [6, p.9.1], and the citations herein refer to the 

bibliography in [6, p.9.1], 

Terminology Introduced by Gardner 

1. Cycle Aliasing [Bk2, p. 403, 528] 

2. Cycle Detector [Bk1, p.352], [Bk2, pp. 497-503], [JP27] 

3. Cycle Frequency [Bk1, p. 303], [Bk2, p. 385] 

4. Cycle Leakage [Bk2, p. 528] 

https://cyclostationarity.com/wp-content/uploads/2021/08/Fraction-of-time-probability-for-time-series-that-exhibit-cyclostationarity.pdf
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Fraction-of-time-probability-for-time-series-that-exhibit-cyclostationarity.pdf
https://cyclostationarity.com/bibliography-on-cyclostationarity/selective-bibliography-of-professor-william-gardners-contributions-to-the-subject-cyclostationarity/
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Fraction-of-time-probability-for-time-series-that-exhibit-cyclostationarity.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Fraction-of-time-probability-for-time-series-that-exhibit-cyclostationarity.pdf


19 of 36 
 

5. Cycle Resolution [Bk2, p. 388] 

6. Cycle Spectrum [Bk1, p. 304], [Bk2, p. 392] 

7. Cyclic Autocorrelation [Bk1, p. 303], [Bk2, p. 3] 

8. Cyclic Expectation [Bk2, pp. 517-519] 

9. Cyclic Correlogram [Bk1, p. 309], [Bk2, p. 386] 

10. Cyclic Cumulative FOT Distributions and Densities [Bk2, pp. 511-515] 

11. Cyclic FOT Probability [Bk2, pp. 511-515] 

12. Cyclic Periodogram [Bk1, p. 309], [Bk2, p. 385] 

13. Cyclic Polyspectrum [JP55] 

14. Cyclic Spectral Density [Bk1, p.304], [Bk2, p. 559] 

15. Cyclic Spectrum [Bk1, p. 304], [Bk2, p. 365] 

16. Cyclic Temporal Cumulants [JP55] 

17. Cyclic Temporal Moments [JP55] 

18. Cyclic Wiener Filter [JP48], [Bk2, p. 482] 

19. Cyclic Wiener Relation [JP36, p. 22], [Bk2, p. 390] 

20. Cycloergodicity [Bk1, pp. 435-349], [JP11] 

21. Poly-periodic Component Extraction Operator [JP34, pp. 282-284] 

22. Poly-periodic Cumulative Probability Distribution [Bk1, p.348], [Bk2, pp. 512], [JP34, p. 

283] 

23. Pure n-th Order Cycle Frequency [JP55] 

24. Purely Cyclostationary [Bk2, p. 392] 

25. Sine-Wave Component Extraction Operator [Bk2, pp. 517-519], [JP34, pp. 280-284] 

26. Spectral Autocoherence [JP15, p. 20], [Bk2, p. 366] 

27. Spectral Correlation Density Function [Bk1, p. 304] 

28. Spectral Cumulants [JP55] 

29. Spectral Line Generation [Bk2, p. 359-369] 

30. Spectral Moments [JP55] 

31. Synchronized Average [Bk1, p. 311], [JP15, p. 17] 

 Theorems from Gardner’s Theory of Cyclostationarity 

CATEGORY 1: Probabilistic and Statistical Functions of Time and Frequency 
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Theorem 1:  Fundamental Theorem of Sine-Wave Component Extraction – Original definition of the 

linear operator that extracts finite-strength additive sinewave components from any well behaved 

function of a persistent times series and proof that this operator is a nonstochastic expectation operator 

with respect to the generally almost period temporal (non-stochastic) cumulative probability 

distribution function, which also was originally defined by Gardner and proven to satisfy the defining 

properties of probability distribution functions in the case for which the set of sinewave frequencies 

comprises all harmonics of any set of incommensurate fundamental frequencies included. For one 

fundamental frequency, the distribution function provides a cyclostationary model for time series; for a 

finite set of multiple fundamental frequencies, it produces a poly-cyclostationary model, and for a 

countable infinity of fundamental frequencies, it produces an almost cyclostationary model. 

Theorem 2: Non-Stochastic Moment Expansion Theorem for Sine Waves Extraction – Original theorem 

statement and proof that the set of sine waves to be extracted from any function of a time series that 

admits a generalized Volterra series representation can be expressed as a linear combination of the sine 

waves contained in each of all the moments of the time series or, equivalently, all the cumulants. 

Theorem 3: Generalizations of the Fundamental Theorem of Sine Wave Component Extraction to 

extraction of subsets of sine waves and to Estimation on Finite-Time intervals – Completely analogous to 

Theorem 1, which applies to infinite intervals and complete sets of harmonically related sine 

waves. Because sine waves with arbitrary frequencies are not generally orthogonal to each other on 

finite intervals, this theorem deals with estimation instead of extraction. 

Theorem 4:  Sine-Wave-Extraction Derivation of the Non-Stochastic Temporal Cumulant Function – 

Original definition and derivation outside the framework of probability. 

Theorem 5:  Relation between non-stochastic Higher-Order Cyclic Moments and Cyclic Cumulants – 

Original derivation of the non-stochastic counterpart of the Leonov/Shiryaev Relation between 

stochastic moments and cumulants and its decomposition into the entirely new relation among cyclic 

moments and cyclic cumulants for a non-stochastic time series exhibiting cyclostationarity.  

Theorem 6:  Relation between Non-Stochastic Spectral Correlation and Cyclic Temporal 

Autocorrelation – Generalization of the Wiener Relation between non-stochastic average power spectral 

density function and temporal autocorrelation function: Original derivation. 

Theorem 7:  Relation between Non-Stochastic Temporal and Spectral Higher-Order Moments: Original 

derivation. 
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Theorem 8:  Cyclic-Periodogram/Correlogram Relation and its Higher-Order Counterpart – Original 

definitions and derivations. 

Theorem 9:  Synchronized Averaging Identity for Non-Stochastic FOT-Probabilistic Functions – Original 

derivation. 

CATEGORY 2: Transformation of Probabilistic and Statistical Functions by Signal Processing 

Operations  

Theorem 10:  Non-Stochastic Spectral-Correlation Input/Output Relations for Key Signal Processing 

Operations: 10.1, sampling & aliasing; 10.2, multiplication; 10.3, convolution & band limitation. 

Theorem 11:  Non-Stochastic Higher-Order Spectral-Moment and Spectral Cumulant Input/Output 

Relations for Key Signal Processing Operations: 11.1; 11.2; 11.3. 

Theorem 12:   Derivation of Signal Selectivity of Non-stochastic Cyclic Cumulants 

CATEGORY 3: Optimum Statistical Inference 

Theorem 13:  Non-Stochastic Spectral Correlation Theory of Optimum Almost-periodically Time-Variant 

Filtering of Almost-Cyclostationary Signals: Generalization of the theory of non-causal Wiener filtering 

from stationary to almost cyclostationary time series. Includes the special cases of optimum poly-

periodic and optimum periodic filtering of poly-cyclostationary and cyclostationary signals, respectively.  

Theorem 14: Non-Stochastic Spectral Correlation Theory of Optimum Detection of Cyclostationary 

Signals: Maximum-SNR and Maximum-Likelihood spectral-line regenerators.  

Theorem 15: Non-Stochastic Spectral Correlation Theory of N-th Order Nonlinear Synchronizers 

Theorem 16: Non-Stochastic Spectral Moment and Cumulant Theory of Cyclostationary Signal 

Classification 

Theorem 17:  Non-Stochastic Theory of Almost-Periodically Time-Variant Linear System Identification 

Theorem 18:  Non-Stochastic Theory of Time-Invariant Volterra Nonlinear System Identification 

Theorem 19: Non-Stochastic Theory of Periodically and Poly-Periodically Time-Variant Nonlinear 

Volterra System Identification 
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Notes and References for Theorems         

 Re: Theorems 1 – 19 — Origin of the Fraction-of-Time (FOT) Theory of ACS Time-Series, which is 

dual to the Theory of ACS Stochastic Processes which reflects the Gardner Isomorphism which is 

the ACS counterpart of the Wold Isomorphism for stationary stochastic processes. See p. 62 

in [B2] and Page 3.2 herein for CS; for ACS, see [JP34] and pp. 519-520 in [Bk2] and Page 3.2 

herein. 

 Re: Theorem 1 — Origin of the Theorem of Temporal Expectation for ACS time-series based on 

the Sine-Wave-Component-Extraction Operator. This is the FOT dual to the 

standard Fundamental Theorem of Expectation applied to ACS stochastic processes. See pp. 43-

50, 137-138 in [B2] and pp. 517-519 in [Bk2]. The proof of the theorem given on pp. 11 -13 

in [Bk5] is as elegant as possible, consisting of two simple steps, and this novel method of proof 

also extends to the classical Fundamental Theorem of Expectation for stochastic processes. 

 Re: Theorem 2 — Origin of the Moment Expansion Theorem. This is formulated and proven on 

pp. 11 – 13 in [Bk5], where the most elegant proof possible, consisting of two simple steps, is 

given. 

 Re: Theorem 3 — Origin of the fact that the theory of cyclostationarity (including poly-

cyclostationarity and almost-cyclostationarity), which is based on infinite limits of time average 

operations—non-empirical quantities—has a counterpart based on empirical finite-time 

averages. (See Page 3.5 herein.) 

 Re: Theorem 4 — Origin of the cumulant solution, in a non-probabilistic setting, to a problem 

concerning sine-wave generation by nonlinear transformation of persistent time series, see p. 

146-149, 510 in [B2]. The solution provided on p. 3396 in [JP55] was proposed by Gardner and 

verified by C.M. Spooner. This solution was then characterized by Gardner and Spooner in terms 

of the cyclic cumulative distribution function and cyclic moments on pp. 3397-3399 in [JP55]. 

 Re: Theorem 5 — Origin of the Cyclic Moment/Cyclic Cumulant Relation for times-series 

exhibiting cyclostationarity: This is a non-stochastic counterpart of the Leonov/Shiryaev 

Relation between moments and cumulants of a nonstationary stochastic process, pp. 147-148 

in [B2]. This counterpart decomposes the relation for a stochastic processes into a set of 

relations among the cyclic components of the moments and cumulants for the cases of 

processes and time series exhibiting cyclostationarity [JP55]. 

 Re: Theorem 6 — Origin of the Relation between the Cyclic Autocorrelation Function and the 

Spectral Correlation Function (originally dubbed Cyclic Wiener Relation by Gardner because it is 

an extension and generalization of the Wiener Relation, a term Gardner introduced to 

distinguish this relation from the Wiener-Khinchin Relation for stochastic processes). See page 

390 in [Bk2], and pp. 10, 20, 56, 57, 139 in [B2].  

https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Fraction-of-time-probability-for-time-series-that-exhibit-cyclostationarity.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://cyclostationarity.com/ensemble-statistics-probability-stochastic-processes-and-their-temporal-counterparts?chapter=3_5section
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-I.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-I.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-I.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
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 Re: Theorem 7 — Origin of the Relation between Higher-Order Temporal and 

Spectral Moments of time-series, pp. 138,139 in [B2].This is the non-stochastic counterpart of 

what is called the Shiryaev-Kolmogorov Relation which is the higher-order generalization of the 

2nd order Wiener-Khinchin Relation, see [JP55]. This relation is derived from the empirically-

motivated definition of the spectral moment as the limit of the joint moment of finite-time 

Fourier transforms of a time series, rather than—as in [B2]–obtained by defining the spectral 

moment to be the Fourier transform of the cyclic temporal moment function.  

 Re: Theorem 8— Origin of the Cyclic Periodogram/Correlogram Relation for time-series (see p. 

57 in [B2] and pp. 385-386 in [Bk2]) and it’s nth-order counterpart (see p. 3419 in [JP56]), which 

is the finite-time counterpart of Theorem 7.  

 Re: Theorem 9 — Origin of the Synchronized Averaging Identity for functions containing an 

additive almost period component. This identity decomposes that component into a sum of 

periodic components each derived directly from the time series and decomposes each periodic 

component into a sum of sinusoidal components each derived directly from the time series, pp. 

485-486 in [B2]. See also pp. 362-365 and 511-515 in [Bk2] and pp. 332-334 in [Bk3]. 

 Re: Theorem 10, 11 — Origin of the Spectral Correlation Characteristics of basic signal 

processing operations (time-sampling & aliasing, multiplication, convolution, and band 

limitation), pp. 82-109 in [B2] and [JP15]; and Generalization to Higher-Order 

Moments/Cumulants, [JP56], pp. 133- 149 in [B2], and Chap. 2 in [Bk5]. 

 Re: Theorem 13 — Invention of Cyclic Wiener Filtering Theory, also called FRESH Filtering, and 

proof that Fractionally-Spaced-Equalizers are Cyclic Filters with Subsampled Outputs, pp. 330-

333 in [B2]. See also pp.482-485 in [Bk2] and [JP48]. This seminal work gave rise to significant 

progress in multi-user receiver filter optimization and especially joint receiver/transmitter filter 

optimization, Article 1 in [Bk5]. It also provides the theoretical basis for separation of spectrally 

overlapping signals exhibiting cyclostationarity by exploitation of spectral redundancy. 

 Re: Theorem 14 — Invention of the Single-Cycle Detector and proof that it is a Maximum-Signal-

to-Noise-Ratio sine-wave generator, and original derivation of the decomposition of the 

maximum-likelihood detector for weak ACS signals into a coherent sum of Max-SNR Cycle 

Detectors, pp. 286-290 in [B2]. See also pp, 497-502 in [Bk2] and [JP27], [JP41], and [JP49].  

 Re: Theorem 15 — Origin of the central role that Nth-order spectral correlation plays in the 

operation of Nth-Order Nonlinear Synchronizers for ACS signals, pp. 333-335 in [B2]. See also 

Article 2 in [Bk5] and [JP17]. 

 Re: Theorems 12, 16 — Original discovery of the signal selectivity property of cyclic temporal 

and spectral cumulants, and demonstration of utility for classification of spectrally overlapping 

signals and spectrum sensing for cognitive radio, pp. 322-324, 328-329 in [B2]. See also pp. 371-

375 in [Bk3], pp. 8-9, 65-66, 115 in [Bk5], and pp.3399-3400 in [JP55]. This separability property 

https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-I.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-II.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://faculty.engineering.ucdavis.edu/gardner/wp-content/uploads/sites/146/2013/02/The_Spectral_Correlation_Theory_of_Cyclostationary_Time-Series.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-II.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclic-Wiener-Filtering.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Statistical-Spectral-Analysis.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=3769&isnumber=211&punumber=26&k2dockey=3769@ieeejrns&query=%2528gardner+w.%253Cin%253Eau%2529&pos=22
https://cyclostationarity.com/wp-content/uploads/2021/08/Signal-Interception.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Detection-and-Source-Location-of-Weak-Cyclostationary-Signals.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://ieeexplore.ieee.org/document/1096464
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/The-Cumulant-Theory-of-Cyclostationary-Time-Series-Part-I.pdf
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of cyclic correlations has also spawned an important new class of Super-Resolution Direction 

Finding Algorithms, the first of which were Cyclic MUSIC and Cyclic ESPRIT. Surveys provided 

in [BkC1] and Chap. 3 in [Bk5]. 

 Re: Theorem 17 — Original discovery that Blind Phase-Sensitive Channel 

Identification/Equalization is made possible with only 2nd-order statistics by exploiting the 

cyclostationarity of channel-input signals, p.343 in [B2]. This discovery, first reported in [JP39], 

did not include a particularly attractive algorithm to demonstrate this new capability, but it 

immediately gave rise to a flurry of contributions by other researchers to blind-adaptive channel 

equalization using only 2nd-order cyclic statistics. See Articles 4 and 5 in [Bk5]; surveys provided 

in [BkC2] and Chap. 3 in [Bk5]. 

 Re: Theorems 11, 17-19 — Original discovery of Input/Output-Corruption-Tolerant Linear System 

Identification Methods, which are made possible by exploiting cyclostationarity of an input-

signal component, pp. 335-337 in [B2] (see also [JP31]); and original extension and 

generalization of Volterra Nonlinear System Identification methods by exploiting 

cyclostationarity of the excitation, p. 344 in [B2]. Benefits for time-invariant nonlinear system 

identification are demonstrated mathematically in the originating paper where the methods are 

derived [JP50] and what are apparently the first-ever methods proposed for periodic and poly-

periodic nonlinear system identification are demonstrated mathematically in the paper where 

they are derived [JP59]. 

Applications of Theorems 

 The above theorems gave rise to the discovery, for CS and ACS time series, of the 

fundamental noise and interference tolerance properties in statistical inference and the Signal-

Separability, Spectral Correlation Separability, and more generally Cyclic Temporal and Spectral 

Cumulant Separability properties, and demonstration of applicability to design and analysis of 

signal processing methods and algorithms for communications, telemetry, and radar systems. 

This body of work has demonstrated that substantial improvements in system performance can 

be obtained in various signal processing applications involving multiuser communications and 

interference-limited environments, such as detection, estimation, and classification of signals, 

by exploiting cyclostationarity—that is, by recognizing and modeling signals as CS and ACS 

instead of using the classical stationary-process models. Google Scholar identifies more than 50 

of Gardner’s published research papers in peer-reviewed journals, and books, in which these 

achievements are reported, and identifies tens of thousands of research papers that cite this 

work. 

 These theories and methods have provided the basis for the establishment of the core of a 

major part of RF signals intelligence algorithm development throughout government 

https://cyclostationarity.com/wp-content/uploads/2021/08/High-Resolution-Direction-Finding.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=87168&isnumber=2838&punumber=26&k2dockey=87168@ieeejrns&query=%2528gardner+w.%253Cin%253Eau%2529&pos=0
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Spatio-Temporal-Filtering-and-Equalization-for-Cyclostationary-Signals.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=52301&isnumber=1882&punumber=9&k2dockey=52301@ieeejrns&query=%2528gardner+w.%253Cin%253Eau%2529&pos=23
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/wp-content/uploads/2021/08/Exploitation-of-Cyclostationarity-for-Identifying-the-Volterra-Kernels-of-Nonlinear-Systems.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Signal-Processing.pdf
https://scholar.google.com/citations?user=9PAPNfgAAAAJ
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laboratories & agencies and industrial government-contractors in the US and cooperating 

nations since the mid-1980s. Most of this work is not published in the open literature. (See SSPI 

Reports on Page 6 and Page 12 herein, and also see the Quotations from Nelson Blachman and 

Bart Rice below.) 

 These theories and methods have provided the basis for new interference-tolerant signal 

processing techniques of signal-presence detection, parameter estimation, system 

identification, modulation classification, signal-source location and signal extraction; for 

example, these theories and methods have been adopted as the basis for spectrum sensing in 

crowded RF environments upon which the entire operation of cognitive radios relies. They have 

been used to develop a variety of substantive new families of algorithms for signal direction-of-

arrival estimation, blind adaptive channel identification and equalization, blind adaptive spatial 

filtering, single-sensor cochannel signal separation, multi-user joint receiver/transmitter filter 

optimization, and nonlinear system identification. (See Page 2.5 herein and the reference lists 

in [JP64] and in the various chapters and articles in [Bk5] and [B2].) 

 These theories and methods have also provided the basis for improved time-series analysis in a 

variety of other fields of science and engineering, such as Econometrics, Biology, Climatology, 

Acoustics and Mechanical Vibrations, and Electrical Circuits, Systems, and Control. See Page 

6 herein, and the pages in [B2] that are cited on Page 6. In fact, major advances in rotating 

machinery monitoring and early diagnosis of machine faults, such as gear and bearing 

degradation have been based on cyclostationarity exploitation, pp. 360-362 in [B2]. 

 Development of the ad hoc concept of time de-warping into the basic theory of converting 

irregular cyclostationarity into regular cyclostationarity has served as a means for rendering the 

extensive and powerful tools of cyclostationary signal processing technology applicable to data 

exhibiting irregular cyclicity—when the rate of change of cycle frequencies is not too fast—

which pervades essentially all fields of science. (See Page 4.2 herein.) 

 

Gardner’s work also includes various unifications of statistical concepts and methods, and novel 

interpretations of fundamental entities including the likelihood sensitivity characterization of the 

Cramer Rao bound on variance of parameter estimators [JP7], and the establishment of the fact that 

conditional probabilities [JP4] and conditional expectations, pp. 427-428 in [Bk2] are orthogonal 

projections. These contributions include  

1) Unification of bias, variance, spectral resolution, and spectral leakage properties through 

representations of all the common direct statistical spectral analysis methods as quadratic time 

invariant transformations fully characterized by their quadratic operator kernels [Bk2]  

2) Unification of second-order statistical measures for signal classification [JP8] 

https://cyclostationarity.com/a-survey-of-fields-of-application-of-the-cyclostationarity-paradigm/
https://cyclostationarity.com/applications-of-cyclostationarity-to-signals-intelligence/
https://cyclostationarity.com/learning-about-cyclostationarity?chapter=2_5section
https://cyclostationarity.com/wp-content/uploads/2022/08/Cyclostationarity_Half_a_century_of_research.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Cyclostationarity-in-Communications-and-Signal-Processing.pdf
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/a-survey-of-fields-of-application-of-the-cyclostationarity-paradigm/
https://cyclostationarity.com/a-survey-of-fields-of-application-of-the-cyclostationarity-paradigm/
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://www.sciencedirect.com/book/9780081027080/cyclostationary-processes-and-time-series?via=ihub=
https://cyclostationarity.com/extending-the-cyclostationarity-paradigm-from-regular-to-irregular-cyclicity?chapter=4_2section
https://cyclostationarity.com/wp-content/uploads/2022/10/202210181118.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210181124.pdf
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://cyclostationarity.com/wp-content/uploads/2020/06/Introduction_to_Random_Processes_with_applications_to_Signal.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210181008.pdf
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3) Unification of numerous ad hoc feature detectors used for detecting signals with unintended 

receivers by characterizing all these features in terms of the statistical properties of 

cyclostationarity called Cyclic Spectral Densities and Higher-Order Spectral Moments/Cumulants 

[JP27] 

4) The unifying concept, for blind adaptive filtering methods, of property restoral including 

modulus properties and spectral correlation properties [JP32]  

5) A Unifying View of Spectral Coherence in Signal Processing [JP45] and On the Spectral 

Coherence of Nonstationary Processes [JP37]  

6) Unification over all noise PDFs via the Structural Characterization of Locally Optimum Detectors 

in terms of Locally Optimum Estimators and Correlators [JP10]  

7) Unification of Structurally Constrained Receivers for Detection and Estimation in terms of 

estimated posterior probabilities [JP4] 

8) Unified characterization of modulation-rate distortion resulting from the most common analog 

circuit realizations of frequency modulators [JP1]  

9) A unified non-population probabilistic theory for stationary and cyclostationary time-series 

analysis based entirely on time averages. 

 

APPENDIX 5 List of Application Areas Using the Theory of Cyclostationarity 

 

CITATIONS FOUND WITH A GOOGLE 
SCHOLAR SEARCH 

Table 1 Nearly Distinct Application Areas  

Taken from: Statistically inferred time warping: extending the cyclostationarity 
paradigm from regular to irregular statistical cyclicity in scientific data 

 SEARCH TERMS1                             # of HITS 

1 "aeronautics OR astronautics OR navigation" 

AND "CS/CS" 

3,190 

2 "astronomy OR astrophysics" AND "CS/CS" 864 

3 "atmosphere OR weather OR meteorology 

OR cyclone OR hurricane OR tornado" 

AND "CS/CS" 

2,230 

4 "cognitive radio" AND "CS/CS" 8,540 

https://cyclostationarity.com/wp-content/uploads/2022/10/202210141144.pdf
https://cyclostationarity.com/wp-content/uploads/2021/08/Spectral-Self-Coherence-Restoral.pdf
https://cyclostationarity.com/wp-content/uploads/2022/12/202210131027.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210131135.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210180950.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210181124.pdf
https://cyclostationarity.com/wp-content/uploads/2022/10/202210181134.pdf
https://link.springer.com/article/10.1186/s13634-018-0564-6
https://link.springer.com/article/10.1186/s13634-018-0564-6
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5 "comets OR asteroids" AND "CS/CS" 155 

6 "cyclic MUSIC" 512 

7 "direction finding" AND "CS/CS" 1,170 

8 "electroencephalography OR cardiography" 

AND "CS/CS" 

742 

9 "global warming" AND "CS/CS" 369 

10 "oceanography OR ocean OR maritime OR 

sea" AND "CS/CS" 

3,060 

11 "physiology" AND "CS/CS" 673 

12 "planets OR moons" AND "CS/CS" 274 

13 "pulsars" AND "CS/CS" 115 

14 "radar OR sonar OR lidar" AND "CS/CS" 5,440 

15 "rheology OR hydrology" AND "CS/CS" 639 

16 "seismology OR earthquakes OR geophysics 

OR geology" AND "CS/CS" 

1,090 

17 "SETI OR extraterrestrial" AND "CS/CS" 83 

18 autoregression AND "CS/CS" 2,040 

19 bearings AND "CS/CS" 3,980 

20 biology AND "CS/CS" 2,030 

21 biometrics AND "CS/CS" 309 

22 chemistry AND "CS/CS" 2,020 

23 classification AND "CS/CS" 10,900 

24 climatology AND "CS/CS" 811 

25 communications AND "CS/CS" 21,200 

26 cosmology AND "CS/CS" 172 

27 ecology AND "CS/CS" 356 
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28 economics AND "CS/CS" 2,050 

29 galaxies OR stars AND "CS/CS" 313 

30 gears AND "CS/CS" 2,000 

31 geolocation AND "CS/CS" 676 

32 interception AND "CS/CS" 2,270 

33 mechanical AND "CS/CS" 4,770 

34 medical imaging OR scanning 

AND "CS/CS" 

1,370 

35 medicine AND "CS/CS" 2,990 

36 modulation AND "CS/CS" 17,000 

37 physics AND "CS/CS" 4,539 

38 plasma AND "CS/CS" 542 

39 quasars AND "CS/CS" 47 

40 Sun AND "CS/CS" 4,320 

41 UAVs AND "CS/CS" 238 

42 universe AND "CS/CS" 209 

43 vibration OR rotating machines 

AND "CS/CS" 

3,240 

44 walking AND "CS/CS" 990 

45 wireless AND "CS/CS" 15,100 

  TOTAL 135,628 

1 "CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity" 
 

 

Table 2 Partially Redundant General Subjectsa 
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From: Statistically inferred time warping: extending the cyclostationarity paradigm 
from regular to irregular statistical cyclicity in scientific data 

1 "almost "CS/CS"" 8,840 

2 "almost periodically correlated" AND 

"sequences OR processes" 

352 

3 "Cyclic Wiener Filtering" OR "FRESH 

filtering" OR "frequency-shift filtering" 

676 

4 "cyclostationary EOF" OR "cyclostationary 

empirical orthogonal functions" 

OR CSEOF 

453 

5 "exploiting "CS/CS"" 11,900 

6 "Gardner relation" OR "Cyclic Wiener 

Relation" 

75 

7 "periodically correlated" AND 

"sequences OR processes" 

1,740 

8 "signal analysis" AND "CS/CS" 3,210 

9 "signal processing" AND "CS/CS" 19,000 

10 "spatial filtering" AND "CS/CS" 571 

11 "spectral redundancy" AND "CS/CS" 1,170 

12 computers AND "CS/CS" 17,700 

13 cyclic spectrum AND "CS/CS" 9,580 

14 cyclostationary OR cyclostationarity 25,000 

15 equalization AND "CS/CS" 6,360 

16 estimation AND "CS/CS" 20,800 

17 filtering AND "CS/CS" 18,400 

18 filtering OR smoothing AND "CS/CS" 12,400 

https://link.springer.com/article/10.1186/s13634-018-0564-6
https://link.springer.com/article/10.1186/s13634-018-0564-6
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19 higher-order OR cumulant AND 

cyclostationarity 

6,040 

20 identification AND "CS/CS" 15,700 

21 mathematics AND "CS/CS" 10,900 

22 prediction AND "CS/CS" 9,540 

23 sensing AND "CS/CS" 14,900 

24 spectrum AND "CS/CS" 22,200 

  TOTAL 237,507 

1 "CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity" 

 

Table 3 Nearly Distinct Application Areasa 

From: Statistically inferred time warping: extending the cyclostationarity paradigm 
from regular to irregular statistical cyclicity in scientific data 

1 communications AND "CS/CS" 21,200 

2 modulation AND "CS/CS" 17,000 

3 wireless AND "CS/CS" 15,100 

4 classification AND "CS/CS" 10,900 

5 "cognitive radio" AND "CS/CS" 8,540 

6 "radar OR sonar OR lidar" AND "CS/CS" 5,440 

7 mechanical AND "CS/CS" 4,770 

8 physics AND "CS/CS" 4,539 

9 Sun AND "CS/CS" 4,320 

10 bearings AND "CS/CS" 3,980 

https://link.springer.com/article/10.1186/s13634-018-0564-6
https://link.springer.com/article/10.1186/s13634-018-0564-6
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11 vibration OR rotating machines 

AND "CS/CS" 

3,240 

12 "aeronautics OR astronautics OR navigation" 

AND "CS/CS" 

3,190 

13 "oceanography OR ocean OR maritime OR 

sea" AND "CS/CS" 

3,060 

14 medicine AND "CS/CS" 2,990 

15 interception AND "CS/CS" 2,270 

16 "atmosphere OR weather OR meteorology 

OR cyclone OR hurricane OR tornado" 

AND "CS/CS" 

2,230 

17 economics AND "CS/CS" 2,050 

18 autoregression AND "CS/CS" 2,040 

19 biology AND "CS/CS" 2,030 

20 chemistry AND "CS/CS" 2,020 

21 gears AND "CS/CS" 2,000 

22 medical imaging OR scanning 

AND "CS/CS" 

1,370 

23 "direction finding" AND "CS/CS" 1,170 

24 "seismology OR earthquakes OR geophysics 

OR geology" AND "CS/CS" 

1,090 

25 walking AND "CS/CS" 990 

26 "astronomy OR astrophysics" AND "CS/CS" 864 

27 climatology AND "CS/CS" 811 

28 "electroencephalography OR cardiography" 

AND "CS/CS" 

742 

29 geolocation AND "CS/CS" 676 

30 "physiology" AND "CS/CS" 673 
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31 "rheology OR hydrology" AND "CS/CS" 639 

32 plasma AND "CS/CS" 542 

33 "cyclic MUSIC" 512 

34 "global warming" AND "CS/CS" 369 

35 ecology AND "CS/CS" 356 

36 galaxies OR stars AND "CS/CS" 313 

37 biometrics AND "CS/CS" 309 

38 "planets OR moons" AND "CS/CS" 274 

39 UAVs AND "CS/CS" 238 

40 universe AND "CS/CS" 209 

41 cosmology AND "CS/CS" 172 

42 "comets OR asteroids" AND "CS/CS" 155 

43 "pulsars" AND "CS/CS" 115 

44 "SETI OR extraterrestrial" AND "CS/CS" 83 

45 quasars AND "CS/CS" 47 

  TOTAL 135,628 

1 "CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity" 

 

Table 4 Partially Redundant General Subjectsa 

From: Statistically inferred time warping: extending the cyclostationarity paradigm 
from regular to irregular statistical cyclicity in scientific data 

1 cyclostationary OR cyclostationarity 25,000 

2 spectrum AND "CS/CS" 22,200 

3 estimation AND "CS/CS" 20,800 

https://link.springer.com/article/10.1186/s13634-018-0564-6
https://link.springer.com/article/10.1186/s13634-018-0564-6
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4 "signal processing" AND "CS/CS" 19,000 

5 filtering AND "CS/CS" 18,400 

6 computers AND "CS/CS" 17,700 

7 identification AND "CS/CS" 15,700 

8 sensing AND "CS/CS" 14,900 

9 filtering OR smoothing AND "CS/CS" 12,400 

10 "exploiting "CS/CS"" 11,900 

11 mathematics AND "CS/CS" 10,900 

12 cyclic spectrum AND "CS/CS" 9,580 

13 prediction AND "CS/CS" 9,540 

14 "almost "CS/CS"" 8,840 

15 equalization AND "CS/CS" 6,360 

16 higher-order OR cumulant AND 

cyclostationarity 

6,040 

17 "signal analysis" AND "CS/CS" 3,210 

18 "periodically correlated" AND 

"sequences OR processes" 

1,740 

19 "spectral redundancy" AND "CS/CS" 1,170 

20 "Cyclic Wiener Filtering" OR "FRESH 

filtering" OR "frequency-shift filtering" 

676 

21 "spatial filtering" AND "CS/CS" 571 

22 "cyclostationary EOF" OR 

"cyclostationary empirical 

orthogonal functions" OR CSEOF 

453 

23 "almost periodically correlated" AND "sequences OR processes" 352 
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24 "Gardner relation" OR "Cyclic 

Wiener Relation" 

75 

  TOTAL 237,507 

1 "CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity" 
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