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A B S T R A C T

It has been over 30 years since a paradigm shift from abstract stochastic process models to
more concrete Fraction-of-Time Probability models for time-series data was called for and was
supported by this journal’s editor in chief. Yet, little, if any, detectable progress in making this
transition has occurred. This paper reviews this needed transition and attempts to facilitate it
with a new type of stochastic process model. The primary purpose of this model is to serve
as a pedagogical tool for facilitating the conceptual transition from the standard relatively
abstract way of thinking to a more concrete alternative. The utility of this parsimonious
alternative was thoroughly proven when it was introduced in an advanced 1987 textbook, and
the evidence in support has continued to accumulate in subsequent theoretical and applied
research publications. But resistance to change is ever present.

. Introduction

Because of the length of this introductory section, it has been partitioned into four subsections: Foreword, Level of Presentation,
rigins, and Outline.

.1. Foreword

The standard theoretical foundation for statistical processing of persistent signals, whether they are signals representing sound
nd vibration, or radio-frequency transmission, or time series of measurements on just about any persistent phenomenon, is presently
he discrete-time and continuous-time Kolmogorov stochastic process models and especially, but not exclusively, strongly ergodic
nd cycloergodic Kolmogorov stochastic process models satisfying the axiom of relative measurability, which guarantees that limits
f time averages on functions of sample paths exist. After a brief discussion exposing drawbacks of these generic models for many
pplications in statistical signal processing, particularly those involving empirical data, an alternative stochastic process model is
roposed for statistically stationary signals, and a complementary model for statistically cyclostationary signals also is proposed. For
hese alternative models, defined first in terms of a parsimonious construction of their samples spaces, their cumulative probability
istribution functions (CDFs) are derived from Fraction-of-Time (FOT) Probability calculations on a single member of the sample
pace, defined in terms of the Kac-Steinhaus relative measure on the Real line, and they are then shown to be valid CDFs over the
ntire sample space of the process. If all such finite-dimensional CDFs are specified, then this corresponds to a complete probabilistic
odel for the alternative stochastic process—equivalent to the specification of a probability measure defined directly on the sample

pace.
The motivating difference between Kolmogorov’s model and this alternative parsimonious model is that the alternative is derived

rom empirical data, at least in principle. It is not posited in an abstract axiomatic manner that typically leads to a number of
onceptually confusing and often unanswerable questions about the behavior of the sample paths in the model. These preferred
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alternative models are also complemented with another empirically derived model, this one for poly-cyclostationary signals that
exhibit multiple incommensurate periods of cyclostationarity, but this model does not have an associated sample space for reasons
explained herein.

The first applications proposed on page 358 in the first chapter (Chap. 10) of the six-chapter Part II of the 1987 book [1]
available at [2, p. 8.1]) that originated the comprehensive FOT-Probability theory of cyclostationarity, were ‘‘mechanical vibrations
onitoring and diagnosis for machinery from which periodicity arises from rotation, revolution, and reciprocation of gears, belts,

hains, shafts, propellers, bearings, pistons, and so on.’’ By using the non-stochastic theory developed in Part II to study another field
f applications – that of communications systems design and analysis – it was demonstrated that exploitation of cyclostationarity
hrough signal processing was key to achieving substantial improvements in statistical inference. Since that time, there has been an
xplosion of applied work in both communications system design and analysis and monitoring and diagnosis of rotating machinery
nd many other fields of science and engineering (see bibliography in the encyclopedic 2019 book [3, pp. 360–362]). The seminal
ork on development of the foundation and theoretical framework for signals exhibiting cyclostationarity reported in [1] proved

hat a signal is cyclostationary if and only if there exist nonlinear transformations of the signal that generate finite-strength additive
ine-wave components. This key non-stochastic characteristic led naturally to a comprehensive theory based on FOT Probabilities,
ithout any mention of the more abstract axiomatically defined stochastic process. Yet, the applications of that theory have used,
lmost exclusively, the unnecessarily abstract – for many applications – stochastic process theoretical framework. This was made
ossible by my translation of the FOT-Probability theory into a dual Stochastic-Process theory in a 1989 companion book for the
ake of completeness. But all the practical and pragmatic reasons given in [1] for practitioners to prefer the FOT-Probability theory
o not appear to have resulted in the paradigm shift predicted at that time.

In this article, the conceptual and practical advantages of these three types of alternative stochastic-process models are discussed
n some detail, and then they are done away with! That is, it is shown that the entire framework of stochastic processes, particularly
he standard Kolmogorov processes with their often nonempirical abstraction, can be altogether circumvented by using FOT-
robability models for single signals, without any reference to stochastic processes. These single-signal models are identical to
he novel alternative stochastic process models introduced here, but they do away with the unnecessary sample space because it
s redundant. These most elegant of models provide all the same tools for statistical analysis – including CDFs, their derivatives –
robability density functions (PDFs), temporal moments and cumulants, spectral moments and cumulants, and so on – but without
ny reference to stochastic processes and associated abstractions and confusing technicalities.

In the final analysis, it is recommended that the alternative stochastic process models introduced here be used exclusively
s a pedagogical tool that helps in understanding the circumstances under which stochastic process models are unnecessary for
tatistical signal processing and probabilistic analysis involving stationary, cyclostationary, and poly-cyclostationary signals. These
ircumstances are, simply stated, any situation in which stochastic processes are appropriate if and only if they are ergodic or
ycloergodic or multi-cycle generalizations thereof, possibly conditioned on knowledge of the values of random model parameters.

In contrast, the general situation for which stochastic processes are actually required, rather than avoidable, as a mathematical
asis for statistical processing and analysis is that for which the lack of ergodicity or cycloergodicity is an essential characteristic.
his is typically those situations for which populations or ensembles of signals are an essential ingredient. Nevertheless, when a
tochastic process model is non-ergodic or non-cycloergodic but is conditionally ergodic or cycloergodic – meaning conditioned
n knowledge of some finite set of parameters of the signal model, the conditional process is ergodic or cycloergodic – and when
his conditioning can be either experimentally implemented or mathematically enforced in a data model, then the conditional FOT-
DFs can be measured or calculated and used in the same manner as CDFs for traditional stochastic processes. This enables the

ncorporation of FOT-Likelihood functions in the FOT-Probability theory.
In summary, the purpose of this paper is to help those, who have been indoctrinated in stochastic processes as the only viable

nalytical tool for statistical analysis of persistent signals, to make a transition in conceptualization that will enable them to replace
his often unnecessarily abstract and conceptually problematic tool with a more elegant alternative that is formulated specifically for
mpirical data analysis. That this offered help is needed is evidenced by the passage of 35 years since a comprehensive introduction
o this alternative was published in tutorial form and a paradigm shift was proposed; despite the passage of all this time, essentially
ll analysts who publish their work continue to cling tightly to the concept of the more abstract Kolmogorov model. It is the Author’s
elief that this is a result of shortcomings in education.

As a matter of fact, much applied work in engineering and other applied fields uses probability concepts and tools, such as
xpected values, autocorrelation functions, and other moments of signals, but does not actually formulate or even explicitly assume
he existence of Kolmogorov stochastic process models for the signals of interest. It is often simply stated at the outset of a published
esearch work ‘‘let 𝑥(𝑡) be a stochastic process, . . .’’ with the implication being that all the underlying mathematical machinery that
ay be required for the probability calculations subsequently performed to be meaningful exists . . . when in fact it may not exist

n a manner that is consistent with the empirical data being studied or with various assumptions and restrictions on signals despite
heir being treated as if they arose from stochastic processes. In other words, one might say that the analytical portions of much
ractical work that treats signals as stochastic processes is a sham. The theoretical quantities, such as autocorrelation function,
re not really explicitly defined, although symbolic formulas for them are derived through symbolic manipulation. And when it
omes to implementation, these undefined quantities are calculated from empirical data typically using time averages in place of
he undefined expected values.

Yet, work gets done, research papers get published, problems presumably get solved and so one might ask ‘‘who cares?’’ The
nswer is that, as an educator, I care because I know how confused students often are about the concept and effective use of the
2

tochastic process, when time averages are the quantities of interest in practice, and because I see confusion in the minds of authors
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of applied research papers who have attempted to use stochastic processes in their work. This confusion is often simply buried by
a complete disconnect between calculations or simply symbolic manipulations performed using expected values and experiments
performed using time averages.

History reveals that the implementation of this pending paradigm shift has been found to be quite a challenge despite the strong
upport of the likes of Phillip. E. Doak, Founding Editor of this journal with a tenure as Editor in Chief of 40 years. On 8 March
990, Phillip sent me his perspective on the need for this transition, and I quote:

‘‘In my latter years, I have become more and more convinced of the validity of his [Percy W. Bridgman, Nobel Prize Laureate] outlook.
Not only can ergodic mathematical concepts put students off, indeed I now believe that for physical scientists and engineers, they are
‘‘operationally erroneous’’, and dangerous to mental health. Interpreting observations through ergodic spectacles is to misinterpret what
the observations really mean. Not only does it confuse the issue, but also it inhibits the development of one’s intellectual capacity to
ask the right questions about what the data means. Thus, in design, development, and research it is a model of reality which is
counterproductive in respect to generating concepts which can lead to real progress in the real world.’’

As author of the 1987 book [1] that proposes this paradigm shift, I cannot say it any better than this! Phillip’s informed
erspective is also aligned with that of other leaders in fields based on statistical signal processing, who – like Phillip – have
ade their informed positions clear. The first mentioned here is Professor Enders A. Robinson, originator of the digital revolution

n geophysics, and highest honored scientist in the field of geophysics. In a published review of the book [1] [Signal Processing,
URASIP, and Journal of Dynamical Systems, Measurement, and Control, ASME, 1990], Enders wrote:

‘‘This book can be highly recommended to the engineering profession. Instead of struggling with many unnecessary concepts from
abstract probability theory, most engineers would prefer to use methods that are based upon the available data. This highly readable
book gives a consistent approach for carrying out this task. In this work Professor Gardner has made a significant contribution to
statistical spectral analysis, one that would please the early pioneers of spectral theory and especially Norbert Wiener.’’

Similarly, the following quotation from Professor Ronald N. Bracewell – recipient of the IEEE’s Heinrich Hertz medal for
ioneering work in antenna aperture synthesis and image reconstruction as applied to radio astronomy and to computer-assisted
omography – taken from his Foreword to the book [1], introducing FOT-Probability theory, makes essentially the same point that
nders makes:

‘‘If we are to go beyond pure mathematical deduction and make advances in the realm of phenomena, theory should start from the
data. To do otherwise risks failure to discover that which is not built into the model . . . Professor Gardner’s book demonstrates a
consistent approach from data, those things which in fact are given, and shows that analysis need not proceed from assumed probability
distributions or random processes. This is a healthy approach and one that can be recommended to any reader.’’

Not to belabor the point, but even the information theorist, Professor James Massey – Professor of Digital Technology at ETH
urich, IEEE Alexander Graham Bell medalist and member of the National Academy of Engineering – wrote, in a 1986 prepublication
eview of the book [1],

‘‘I admire the scholarship of this book and its radical departure from the stochastic process bandwagon of the past 40 years.’’

Summing up, despite the accolades given to the proposal for a paradigm shift, it has not yet happened. The intent of this paper is
o further motivate the community with additional assistance for understanding the merit of the alternative to the stochastic process
tandard, and to introduce a new pedagogical tool for making the transition.

.2. Level of presentation

The statements of theoretical results and discussion of practical ramifications provided in this article are written for statistical
ignal processing engineers and like-minded time-series analysts, which may include physicists and other specialists in the physical
ciences, and other fields where statistical analysis of empirical time-series is of interest. It is felt that mathematical proofs at any
igher level of rigor than that which is presented herein would be distracting and are not included for this reason and others. Because
he specific reasoning given in this article is not at odds with the day-to-day reasoning generally used by the intended audience,
ittle of value would be added for this audience if a more mathematically rigorous presentation were provided. The preference
cted on here is especially appropriate since the whole point of the effort leading to these new models is to show practitioners that
he substantial abstractions and unmet challenges of trying to verify strong ergodicity or cycloergodicity of traditional stochastic
rocess models are in the great majority of applications nothing more than distractions from the reality of empirical data and its
rocessing and analysis and the more elegant theory that is identified here and is based on Fraction-of-Time (FOT) Probability for
ingle signals.

Perhaps the most important reason for not getting distracted by rigor is that these new models are intended for only the
edagogical purpose of providing a conceptual transition from stochastic process models to FOT-Probability models of single signals
nd demonstrating that stochastic process models are often an unnecessary abstraction: they forfeit parsimony and mathematical
3

legance relative to the alternative single-signal models with fraction-of-time probability calculated directly from the single signal.
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To counter the appearance of avoiding technical detail that may be important in comparing the two approaches to stochastic
rocess modeling discussed in this paper, a glimpse into such details is provided in this paragraph and here and there in following
ections. The Relative Measure used in [4] for the mathematical foundation of FOT-Probability models is not sigma additive
probabilities of infinite unions of nested event sets do not all converge), but in Kolmogorov’s stochastic process probability model,
igma additivity of the proposed probability measure is only assumed by virtue of Axiom VI [5]. So, this axiom does not guarantee
hat, for any particular stochastic process model one adopts, the probability measure will in fact be sigma additive. Kolmogorov
imply removes the mathematically undesirable general lack of sigma additivity of measures by axiomatically removing from
onsideration all probability measures that are not sigma additive. But how often do we encounter practitioners seeking to determine
f the probability measure for some stochastic process model they have adopted is sigma additive or even just seeking to explicitly
escribe the probability measure for their adopted model? This is a very rare event. For the Fraction-of-Time Probability Theory
iscussed herein, an alternative restrictive assumption is required: the undesirable general lack of relative measurability of functions
f time series is avoided by removing from consideration all time series and functions of those time series that are not relatively
easurable. Such prohibited time series can be constructed, but they also can be considered to be contrived though an application

f such contrived functions to secure communications has been proposed [4, Sec. 7]. This restriction to relative measurability is
lso required of the sample paths of ergodic stochastic processes, because sample-path time averages cannot converge to expected
alues if they do not converge at all. These restrictions are discussed further in [4].

In many applications, one starts with a finite-length record of empirical data. All that is actually required in many studies is
hat it be considered conceivable that there exists a mathematical model of an infinitely long data record that is consistent in some
ppropriate sense with the empirical data record. It is only in a minority of applied fields where more analytically oriented work is
eing done that an explicit specification of a mathematical model of an infinitely long signal is required.

.3. Origins

The three-decade history from the 1930s through the 1950s of time-average statistical theory of time series is traced in [6] but
he first approach to more comprehensive Fraction-of-Time Probabilistic Modeling of signals seems not to have been introduced
ntil the concise publications of Brennan [7] and Hofstetter [8] in the 1960s. This approach was later developed independently and
ore comprehensively, including extension/generalization from stationarity to cyclostationarity, with in-depth application to the

heory of statistical spectral analysis by myself in 1987 [1] (see also [9]). In the early 1980s, as I was writing the textbooks [1,10],
discovered the earlier work [7,8] as a result of discussions with Professor Thomas Kailath of Stanford University. I added to the

ntroduction in my book draft citations of this relatively unknown work from two decades earlier. As discussed in the present article
nd in more depth at the University of California, Davis website [2], earlier work on time-average theory, including [7,8], appears
o have been largely forgotten as the stochastic process bandwagon trend developed.

The time-average approach was the starting point for the use of statistical time-series analysis in physics but has been largely
gnored for well over half a century by many college instructors and criticized by some mathematicians for supposedly being
on-rigorous. However, it has recently been shown by Leśkow and Napolitano to have a rigorous basis in measure theory, using
athematical tools dating back to the work of Kac and Steinhaus in 1938 [11]. This basis for measure-theoretic rigor underlying

raction-of-Time Probability Theory was apparently lost track of in the shadow of Kolmogorov’s contributions earlier the same
ecade. But, well over half a century later, it was uncovered by Leśkow and Napolitano in 2006 [4], where a more complete list of
arly (1920s to 1940s) contributors to time-average statistical theory is given (see also [3] by Napolitano).

.4. Outline

1. Introduction
2. Historical Perspective
3. Results

3.1 Kolmogorov’s model of a stochastic Process

Birkhoff’s Ergodic Theorem for Discrete Time
Birkhoff’s Ergodic Theorem for Continuous Time

3.2 The Measure Theory of FOT-Probability
3.3 Definition of Stationary FOT-Stochastic Process

Stationary FOT Ergodic Theorem
Relation to Wold’s Isomorphism

3.4 Comparison of Kolmogorov and FOT stochastic Process Models
3.5 Definition of Cyclostationary FOT-Stochastic Process

Cyclostationary FOT Cycloergodic Theorem

3.6 The FOT-Probability Model for Almost Cyclostationary Processes
4

3.7 Cycloergodicity for Multiple Incommensurate Periods
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How to Generalize Birkhoff’s Ergodic Theorem

3.8 Purely Empirical FOT-Probability Models for Regular Cyclicity
3.9 Purely Empirical FOT-Probability Models for Irregular Cyclicity

3.10 The Weakness of Mean-Square Ergodicity
3.11 Optimum and Adaptive Statistical Inference

4. Discussion of Results
5. References

2. Historical perspective

To put this proposed evolutionary step in larger perspective, some stages of signal modeling that this community has passed
through over the last century are briefly summarized. Time-series analysis goes back more than a century, but the time of R. A.
Fisher one century ago seems to be a turning point when broader theoretical frameworks began to be formulated. This includes
most notably Fisher’s Principle of Maximum Likelihood, which is among the most commonly used optimization criteria for designing
statistical inference and decision rules – algorithms – in use today within the statistical signal processing community. This includes
both signal-parameter estimation and signal detection and classification. Predating Fisher by two centuries was Thomas Bayes, who
gave birth to the theory of Minimum-Risk Statistical Inference and Decision (which addresses the same or similar signal parameter
estimation and signal detection and classification problems that Maximum-Likelihood addresses, but with the added axiom that
prior probabilities [prior to experimentation including observation or data collection] are assumed to exist). More recently, just
preceding the middle of last century, Norbert Wiener used his developing statistical theory of single time functions (signals) to
derive what we now call the Wiener Filter and related linear time-invariant signal processors, using a time-average counterpart of
the Bayes Minimum-Risk design criterion, where risk was specified to be expected squared error, reformulated as time-averaged
squared error. This was the continuous-time counterpart of Carl Friedrich Gauss’s discrete least-squares optimization criterion used
two centuries ago. Wiener’s time-average theory and its applications to the nascent field of statistical communication theory was
given a boost in visibility and further developed in 1960 with the publication of a book by one of Wiener’s previous students at M.I.T,
Yuk Wing Lee [12]. That same year, David Middleton’s landmark book An Introduction to Statistical Communication Theory was
published. In contrast to Lee’s book, Middleton’s was solidly based on the theory of stochastic processes. It had been said to cover a
panoramic view unmatched by any other publication in the field [13]. This book was likely instrumental in cementing the place of
the stochastic process in statistical signal processing. Middleton states in his preface ‘‘The mathematical exposition is for the most
part heuristic.’’ Although he does favor obtaining autocorrelation functions from signal models using time-averaging, he then takes
an expected value to obtain an ensemble autocorrelation. Because of this approach, he misses the fact that some of his signal models
are cyclostationary, not stationary. Nevertheless, he does note that, in general, his approach produces stationary autocorrelations
for nonstationary processes. This precedes more theoretical work decades later on what are called asymptotically mean-stationary
processes, which includes as special cases cyclostationary and almost cyclostationary processes. Middleton, however, does not adopt
the Kolmogorov model for stochastic processes. He uses heuristics instead.

Contemporaneously with Wiener in the 1930s and 1940s, Kolmogorov introduced the now-standard theory of the stochastic
process as a probabilistic model for time-series. Also contemporaneous was the establishment of Information Theory by its
originators, Harry Nyquist, Ralph Hartley, and Claude Shannon during the 1920s–1940s. The landmark event establishing the
discipline of information theory and bringing it to immediate worldwide attention was the publication of Claude E. Shannon’s classic
paper ‘‘A Mathematical Theory of Communication’’ in the Bell System Technical Journal in 1948. This theory is strongly probabilistic.
From 1960 forward, Wiener’s time-average approach quickly faded into the background, and Kolmogorov’s expected-value approach
grew into the standard we use today. It is conceivable that this was in large part a result of the boom that information theory initiated
and possibly also a result of the mathematical rigor of Kolmogorov’s book on the theory of stochastic processes. Interestingly, though,
information theory involving signals is valid for time-average probabilities, not just ensemble-average probabilities, as discussed
further on in this paper.

What has for almost a century been referred to as statistical time-series analysis has increasingly come to be relabeled statistical
signal processing, perhaps because of the lead electrical engineers have taken in developing the technology used for implementation.
This field of study, born within the field of electrical engineering, was originally based in large part on what is called statistical
communication theory, which arose out of the work of Wiener and his contemporaries but was reformulated in terms of expected
values and stochastic process models. This theory is more probabilistic than it is statistical, yet it is called a statistical theory by the
authors of classic books on the subject, written starting in the 1950s–1960s, particularly Middleton’s book. Middleton is, however,
precise in his distinction between statistical and probabilistic quantities. But, over time, the language has become less precise. Today,
the terms signal and time series are often used interchangeably by more broadly educated practitioners, with some preference given
to time series by statisticians and preference given to signals by engineers, especially electrical/electronics engineers. The primary
difference between time-series analysis and signal processing is that, prior to the communications technology revolution, the term
signal was not yet being used for essentially any time-record of data. Some authors reserve the term time series for discrete-time
data.

In communication theory, the stochastic process model of signals was adopted because a key concept was to design inference-
making algorithms that optimized expected performance (minimized expected cost, which is the definition of Bayesian Risk). That
5

is, performance was to be optimized over the population or ensemble of all sample paths of a stochastic process model of a type
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of signal of interest. For example, in telecommunications, the Wiener filter – according to modern theory – was the solution to
minimum-mean-squared-error estimation of a transmitted signal, given a corrupted version of that signal obtained from a remote
receiver. Thus, the statistical averaging of interest, performed by the expectation operation, was performed for example over all
speech to be telecommunicated (referring back to the early days of Bell Telephone Laboratories), as well as all noise corrupting the
transmitted signal. This eventually included all speaker physiologies, all languages, and all accents. Standardized fixed population-
statistics computed empirically and expected values were used for designing channel filters and equalizers, which themselves were
fixed or manually adjustable. But, as technology progressed, fixed optimum solutions began to be replaced with adaptive solutions
that automatically optimized performance for each and every single signal. This required working with statistics obtained from
time averaging single signals, not ensemble averaging multiple signals. This gave impetus to preferring ergodic stochastic process
models for signals because then solutions implemented with algorithms that computed and used time-average statistics gave good
approximations to the ensemble-averages dealt with in the mathematical models used for deriving the algorithms, and this rendered
the stochastic process theory, in which electrical engineers were beginning to be indoctrinated, adequate for these. But despite
ergodic theory, most users did not know how to test their mathematical signal models for strong ergodicity. Birkhoff’s ergodic
theorem provided the ergodicity condition only in terms of the abstract mathematical probability measure defined (possibly only
generically specified) in terms of a function of arbitrary subsets in a sigma field – the mathematical sample space – which also
was defined (often only generically specified) in terms of sample paths often having no explicit description, e.g., interfering signals
known only by their power spectral densities. So, the ergodicity condition was rarely able to be tested. Empirical data was of no use
for this purpose because the condition involves only the abstract probability measure; it’s a property of the mathematical model,
not the empirical data. Practitioners often just invoked the Ergodic Hypothesis and typically left it untested. This is discussed early
on by Middleton and remained the status quo up to and including today. But, once ergodicity was invoked, the stochastic process
model was, in principle, no longer the most appropriate model, as explained in this paper and its references. With time-averages
of primary concern, population averages became, in principle but often unknowingly, irrelevant, and the abstraction of stochastic
processes became unnecessary and nothing more than a distraction—something not recognized by most users. Although Middleton
uses time averages, especially for calculating autocorrelation functions and associated quantities, before he takes the expected value,
he does not appear to comment on the broader concept of FOT-Probability.

Although 35 years have passed since a comprehensive development of an alternative probability theory for random signals that
s based entirely on time averages was published in textbook form [1], this alternative theory has been largely ignored by all but
small minority of users of stochastic processes. For instructors of courses on statistical signal processing, teaching this alternative

equires an introductory textbook, since the only textbook available [1] is written for advanced students. Similarly, a 2nd book
not a textbook with exercises) treating this alternative theory that appeared just two years ago is written for experts or at least
athematically mature readers.

This stagnation in statistical signal processing pedagogy in universities occurred even though this simpler more transparent
heory was proven in [1] to be analogous and actually operationally equivalent to the probability theory based on abstract and,
ne might even say, mysterious ergodic stochastic process models and, with regard to calculations, yields the same results in all
ases for which relative measurability is assumed, which is necessary for the ergodic theorem to prove that expected values can
e approximated by time averages. It is hoped that the pedagogical approach taken in this paper, whereby alternative stochastic
rocess models are introduced as a conceptual transition from Kolmogorov’s abstract stochastic process to concrete FOT-Probability
odels for single signals will spark interest in universities in developing new introductory courses based on the time-average theory

f signals. Some of the many practical advantages of doing so are discussed in this article.
To be especially clear at the outset about limitations of FOT-Probability Theory, the particularly important area of statistical

nference and decision-making based on time-series observations is briefly discussed. Generally speaking, FOT-Probability models
re well matched to what might be loosely called non-parametric inference and decision, for which no use is made of assumed
unctional forms of Cumulative Distribution Functions (CDFs) of the data with or without known, unknown, or random parameters
f the functional form; the only CDF used is that measured from the observed time-series data. The complementary area of
tatistical inference and decision-making denoted with the adjective parametric partitions into two general types, one of which
s accommodated by FOT-Probability models and the other of which is not.

The type of parametric statistical inference and decision making that is not accommodated by FOT-Probability theory is that
hich is based on non-ergodic stochastic process models and some ergodic models for which probability functions, including CDFs or
ossibly just some moments, for the data conditioned on knowledge of some model-parameter values and/or hypotheses are needed
ut cannot be measured or calculated from a model for the observed data. Such cases can arise in Maximum-Likelihood Methods
nd Bayesian Minimum-Risk Methods of inference and decision making. If such parameters are modeled as random variables, the
ata must be considered to have arisen from a non-ergodic process since observation of one record of data cannot be used to learn
bout the influence of other values of the parameters that did not occur in the record of data. For example, if received data consists
f signal plus noise under one hypothesis and noise only under an alternative hypothesis, the stochastic process model for the data
hat is not conditioned on a specific hypothesis cannot be ergodic.

In contrast to these parametric methods based on non-ergodic models, there is a type of parametric inference and decision
aking that is based on formulaic data models (sample-path models) in which the values of some parameters are unknown but

re not treated as random variables. These are stochastic process models that are known only partially. For such models, one can
n principle use the expectation operation to mathematically calculate the dependence of theoretical probability functions, such as
oments, on the unknown parameters and then equate these theoretical moments to measured sample moments, and finally solve
6

hese equations, when possible, for the unknown parameters. This is called the Method of Moments for inferring parameter values.
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Popular sample-path models used in the Method of Moments are autoregressive (AR), moving average (MA), and ARMA models
nd their periodic and poly-periodic generalizations. All such parametric methods are accommodated by the theory of FOT-moments
ssociated with FOT-probabilities, for which the expected values in the Method of Moments are replaced with limits of time averages,
nd the empirical counterparts that were equated with expected values are finite-time averages that are equated with the limits of
ime averages. A survey of FOT parametric statistical spectral analysis is available in [1]; see also [3,14,15]. In addition, a radically
ifferent method of moments that has not yet been thoroughly evaluated is described in [2, p. 11.4].

. Results

.1. Kolmogorov’s model of a stochastic process

We are interested here in discussing alternatives to both the discrete- and continuous-time versions of Kolmogorov’s 1933
efinition [5] of a stochastic process consisting of a sample space (the set of all sample paths, or signal realizations), a sigma
ield of subsets (events) in the sample space with a sigma algebra, and a probability measure on the event sets. These ‘‘sigma’’
equirements, meaning ‘‘convergence requirements for countably infinitely many operations’’, derive from Kolmogorov’s Axiom VI
n his definition of a stochastic process. In practice, the specification of a particular probability measure is rarely carried out because
his is a difficult mathematical challenge for which there is no recipe. Sometimes practitioners will specify some lower order CDFs
r Probability Density Functions (PDFs) as a half-hearted attempt. In the special case of a Gaussian process, the specification of the
nd-order CDF or PDF is all that is needed to derive from it all orders of CDFs and PDFs. Once all orders are specified, one can
nvoke the Kolmogorov Extension Theorem to conclude that the measure for the sample space has been effectively, if not explicitly,
pecified.

Although there exist a modest number of well-known specifications of probability measures for stochastic processes, it is fair to
ay that in much practical work the probability measure for a stochastic process is rarely specified; as a consequence, Axiom VI can
nly rarely be tested. Consequently, it is common practice to simply assume Axiom VI is satisfied by the selected model and proceed
o use the consequences of that axiom in performing calculations involving infinite sums—not a particularly justifiable approach.

In other cases, practitioners will construct a formulaic model of a stochastic process as some combination of specified
eterministic functions and some random variables. For example, essentially all digital communications signal models are specified
n this manner. Similarly, vibrations from, say, bearing faults in rotating machinery are sometimes modeled as the response of

specified linear time-invariant dynamical system to a nearly periodic train of impulses, with one or two associated random
arameters. For time-varying RPM, the impulse rate varies in proportion to the RPM. This typically provides no insight into the
robability measure for the process but does often enable the practitioner to calculate some moments and/or cumulants and, much
ess frequently, some CDFs or PDFs. In a number of cases for which statistical inference using the stochastic process model is of
nterest, it suffices to calculate only the PDF for the observed data, conditioned on knowledge of the random variables in the model
hat are to be estimated, or conditioned on hypotheses to be tested. This can be adequate for deriving maximum-likelihood inference
ules and in some cases minimum-Bayes-Risk inference rules.

In summary, it is a relatively rare occasion when Kolmogorov’s model of a stochastic process is able to be specified and used
or time-series analysis, aka statistical signal processing. A particularly egregious consequence of this common practice is having to
ssume that an adopted and possibly only partially specified model is strongly ergodic. This assumption, when valid, enables one
o accurately approximate expected values, calculated from the model, using time averages on sufficiently long finite segments of
single realization of the signal being modeled. Without actually knowing that the model used for calculating expected values is

rgodic, such time averages may or may not be accurate approximations. In fact, without the added assumption, which is typically
gnored, that limits of time averages of sample paths exist, the ergodic hypothesis – whether true or false – does not guarantee that
xpected values can be approximated by time averages.

The above less-than-desirable situation concerning the use of Kolmogorov’s stochastic process model has been tolerated for nearly
century now. Evidently, we have ‘‘gotten by’’ despite the unsavory facts summarized above. Nevertheless, there do exist alternative
pproaches to modeling signals for purposes of statistical inference and analysis. The purpose of this paper is to present such a model
the FOT-Probability model of a single signal – and explain how it relates to Kolmogorov’s model and how much easier it is to use

n practice in a more justifiable manner for applications in statistical signal processing, where complete mathematical specifications
f stochastic processes a la Kolmogorov is not possible. It should however be mentioned here that the FOT-Probability model can
e used for statistical inference and decision-making involving likelihood functions only when such likelihood functions can be
easured or calculated as conditional FOT-PDFs. This is further discussed in Section 4.

An event set 𝐴 for some specified event, such as the event that a stochastic process takes on a value exceeding unity at time 1 s, is
the set of all sample paths for which this event occurs. For the purpose at hand, let 𝑇𝑡(𝐴) denote the time-translation set-operator that
shifts, by any real number 𝑡 ∈ 𝑅, typically representing time, all sample paths in an event set 𝐴, and let 𝑇𝑛(𝐵) denote the discrete-time
counterpart for any integer 𝑛 ∈ 𝑍. Following are the two ergodic theorems that are assumed to apply in many applications:

Birkhoff’s Ergodic Theorem for Discrete Time (BET-DT)
Consider a discrete-time Kolmogorov stochastic process with integer-valued time, satisfying Kolmogorov’s six defining axioms [5],

for which all event sets 𝐸 that are translation-invariant, 𝑇𝑛{𝐸} = 𝐸 for all integers 𝑛, have probabilities of either 𝑃 (𝐸) = 0 or
(𝐸) = 1. By Birkhoff’s 1931 Ergodic Theorem [16], this stochastic process is ergodic w.p.1, and is also referred to as strongly
7
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ergodic. Birkhoff’s ergodicity condition here is necessary for discrete-time-averages of functions of the stochastic process to converge,
with probability equal to one (w.p.1), to the corresponding expected values, as the averaging time approaches infinity.

Birkhoff’s Ergodic Theorem for Continuous Time (BET-CT)
Consider a continuous-time Kolmogorov stochastic process, satisfying Kolmogorov’s six defining axioms [5], for which all event

ets 𝐸 that are translation-invariant, 𝑇𝑡{𝐸} = 𝐸 for all real 𝑡, have probabilities of either 𝑃 (𝐸) = 0 or 𝑃 (𝐸) = 1. By Birkhoff’s 1931
Ergodic Theorem [16], extended from discrete- to continuous-time (e.g., page 1 of [17]), this stochastic process is ergodic w.p.1,
and is also referred to as strongly ergodic. Birkhoff’s ergodicity condition here is necessary for continuous-time-averages of functions
of the stochastic process to converge, w.p.1, to the corresponding expected values as the averaging time approaches infinity.

These theorems require an additional axiom, here labeled Axiom VII, or they require a proof of a proposition in order to provide
the desired necessary and sufficient condition for strong ergodicity. Without this Axiom VII or a proof of the proposition, these
theorems are not applicable in the way they have been applied for many years. This needed axiom or proof guarantees that the
limits of the time averages of interest in practice exist. If they do exist, then the ergodic theorem establishes that they equal w.p.1 the
corresponding expected values. For discrete time, this proposition has been proved at least in some cases such as for finite-alphabet
processes. As per my knowledge, it may or may not have been proved for continuous time. The proposition can be stated as follows:
For an ergodic Kolmogorov discrete-time (continuous-time) process, the samples paths of well-behaved functions of the process are
relatively measurable, as defined below.

One example of a sufficient condition for existence of the continuous-time average, which has been assumed in the early work
on ergodic theorems, like Birkhoff’s work (cf. [16] and references therein) is that the function of time is any well-behaved function
of the positions of the particles of a dynamical system described by differential equations for which the sum of kinetic energies of
all the particles in the system is time invariant. Unfortunately, this is typically not an appropriate model for the manmade signals
used in communication systems and also not appropriate for many other applications like rotating machinery fault diagnosis and
monitoring, and biological signals.

3.2. The measure theory of FOT-probability

The material in this subsection is taken from [4], also cf. [3, Chap. 2]. Let us consider the set 𝐴 ∈ R, where R is the 𝜎-field
f the Borel subsets on the real line and let 𝜇 be the Lebesgue measure on the real line R. The relative measure of 𝐴 is defined by
ac and Steinhaus [11] as follows

𝜇𝑅(𝐴) ≜ lim
𝑇→∞

1
𝑇
𝜇
(

𝐴 ∩
[

𝑡0 − 𝑇 ∕2, 𝑡0 + 𝑇 ∕2
])

(1)

rovided that the limit exists. In such a case, the limit does not depend on 𝑡0 and the set 𝐴 is said to be relatively measurable (RM).
or example, given a function 𝑥(𝑡), the event set 𝐴 consisting of all the time points on the real line for which some event involving
(𝑡) occurs has Fraction-Of-Time (FOT) Probability given by 𝜇𝑅(𝐴), provided that 𝐴 is relatively measurable.

Let 𝑥(𝑡) be a Lebesgue measurable function on the real line. The function 𝑥(𝑡) is said to be relatively measurable [11] if the set
𝑡 ∈ R ∶ 𝑥(𝑡) ≤ 𝜉} is RM for every 𝜉 ∈ R −𝑁0, where 𝑁0 is at most a countable set of points. Each RM function 𝑥(𝑡) generates the
unction

𝐹𝑥(𝜉) ≜ 𝜇𝑅({𝑡 ∈ R ∶ 𝑥(𝑡) ≤ 𝜉})

= lim
𝑇→∞

1
𝑇
𝜇
({

𝑡 ∈
[

𝑡0 − 𝑇 ∕2, 𝑡0 + 𝑇 ∕2
]

∶ 𝑥(𝑡) ≤ 𝜉
})

= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
u(𝜉 − 𝑥(𝑡)) d𝑡

(2)

at all points 𝜉 where the limit exists. In this equation, u(𝜉) denotes the unit step function: u(𝜉) = 1 for 𝜉 ≥ 0 and u(𝜉) = 0 for 𝜉 < 0.
The function 𝐹𝑥(𝜉) has all the properties of a valid cumulative distribution function (CDF), except for the right-continuity property

(at points of discontinuity). It represents the fraction-of-time (FOT) that the function 𝑥(𝑡) is below the threshold 𝜉, as illustrated in
Fig. 1. For this reason, 𝐹𝑥(𝜉) is referred to as the FOT-distribution of the function 𝑥(𝑡).

Since the relative measure of every finite set is zero, the relative measure of every finite-energy or transient function 𝑥(𝑡) has
the trivial distribution function 𝐹𝑥(𝜉) = u(𝜉). Only finite-average-power or persistent functions, such as almost periodic functions,
can have a non-trivial FOT-distribution.

If 𝑥(𝑡) is a relatively measurable persistent function and not necessarily bounded and 𝑔(⋅) is a well-behaved function, then the
following Fundamental Theorem of Time Average [1] can be verified [4, Theorem 3.2]

lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
𝑔(𝑥(𝑡)) d𝑡 = ∫𝑅

𝑔(𝜉) d𝐹𝑥(𝜉) (3)

where the integral in the left member is in the Lebesgue sense and does not depend on 𝑡0, and the integral in the right member is in
the Riemann–Stieltjes sense. When 𝐹𝑥(𝜉) is differentiable, its derivative, denoted by 𝑓𝑥(𝜉), is the probability density function, and
d𝐹𝑥(𝜉) can be replaced in the right member with 𝑓𝑥(𝜉)d𝑥, in which case the integral is in the Riemann sense.

From this theorem, it follows that the infinite-time average is the expectation operator for the FOT-distribution 𝐹𝑥(𝜉) and for
every bounded 𝑥(𝑡) we have

⟨𝑥(𝑡)⟩𝑡 ≡ lim 1 𝑡0+𝑇 ∕2
𝑥(𝑡) d𝑡 = 𝜉 d𝐹𝑥(𝜉) (4)
8

𝑇→∞𝑇 ∫𝑡0−𝑇 ∕2 ∫R
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Fig. 1. The measure of the set
{

𝑡 ∈
[

𝑡0 − 𝑇 ∕2, 𝑡0 + 𝑇 ∕2
]

∶ 𝑥(𝑡) ≤ 𝜉
}

(the length of the thick line) divided by the total time 𝑇 is the fraction of time that the
function 𝑥(𝑡) is below the threshold 𝜉 as 𝑡 ranges over

[

𝑡0 − 𝑇 ∕2, 𝑡0 + 𝑇 ∕2
]

.

The analogy between FOT-Probability and Kolmogorov probability [1,9] is evident.
For a 1st-order strict-sense stationary process 𝑋(𝑡) with distribution 𝐹𝑋 (𝜉) ≜ 𝑃 [𝑋(𝑡) ≤ 𝜉], the stochastic counterpart of the above

time-average definition of the distribution is

𝐹𝑋 (𝜉) = E{u(𝜉 −𝑋(𝑡))} (5)

where E{⋅} is the expected value operation, which equals the limit ensemble average operation, and which replaces the time average
operation used in the FOT-Probability approach. Similarly, the Kolmogorov counterpart of the Fundamental Theorem of Time Average
is the following Fundamental Theorem of Expectation

E{𝑔(𝑋(𝑡))} = ∫R
𝑔(𝜉) d𝐹𝑋 (𝜉). (6)

A necessary and sufficient condition for the relative measurability of a function is not known. However, if 𝑥(𝑡) is a bounded
function, the existence of the time average

lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
𝑥𝑝(𝑡) d𝑡. (7)

for every positive integer 𝑝 is a necessary condition for the relative measurability of 𝑥(𝑡). In addition, it follows from the Fundamental
Theorem of Time Average that, if 𝑥(𝑡) is continuous and bounded and the left-hand side of the equation

lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇 ∕2

𝑡0−𝑇 ∕2
𝑥𝑝(𝑡) d𝑡 = ∫R

𝜉𝑝 d𝐹𝑥(𝜉) (8)

exists for every positive integer 𝑝, then 𝑥(𝑡) is relatively measurable, and the above equation is valid.
As a final remark, it is noted that the absence of right-continuity of the FOT-distribution is not important in applications where

integrals in d𝐹𝑥(𝜉) are of interest. For stochastic probability, the right-continuity of the distribution is a consequence of the assumed
𝜎-additivity of the probability measure 𝑃 .

Multiple functions are said to be Jointly Relatively Measurable if they each are relatively measurable, meaning there FOT-CDFs
exist, and their joint FOT-CDFs exist.

The preceding theory has a completely analogous discrete-time counterpart, which can be obtained by simply replacing integrals
over continuous time with sums over discrete time [3, Chap. 2]. The same terminology is used. For example, the relative measure
of a finite set 𝐴 is defined by

𝜇𝑅(𝐴) ≜ lim
𝑁→∞

1
2𝑁 + 1

#
(

𝐴 ∩
[

𝑛0 −𝑁, 𝑛0 +𝑁
])

(9)

where #(𝐴) is the counting measure of the finite set 𝐴, which equals the number of elements in 𝐴.
We can now proceed with the definition of the stationary FOT-stochastic process. As above, 𝑥(𝑡) represents a persistent relatively

measurable real-valued function of time defined over the entire real line and 𝑥𝑛 represents a persistent relatively measurable
real-valued sequence indexed by discrete time over the entire set of integers.
9
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3.3. Definition of stationary FOT- stochastic process

Def. S1: The Sample Space of the Stationary FOT-Stochastic Process is comprised of all the time translates of a single relatively
easurable discrete- or continuous-time sample path (persistent real-valued function of a real variable), 𝑥, subject to the constraint

that replications are disallowed (no two sample paths can be identical):

𝛺𝑑 = {{𝑥𝑛−𝜔; 𝑛 ∈ Z};𝜔 ∈ Z},
𝛺𝑐 = {{𝑥(𝑡 − 𝜔); 𝑡 ∈ R};𝜔 ∈ R} (10)

Def. S2: The probability of any relatively measurable subset of elements from the sample space index set 𝑅 or 𝑍, called an event,
s the value of the relative measure of that set.
Def. S3: The FOT-CDF of any relatively measurable discrete- or continuous-time function, 𝑓 [𝑥](𝑡) or 𝑓 [𝑥]𝑛, which is jointly

elatively measurable, for 𝑚 real-valued time points {𝑡1, 𝑡2, 𝑡3,… , 𝑡𝑚} or 𝑚 integer-valued time points {𝑛1, 𝑛2, 𝑛3,… , 𝑛𝑚}, respectively,
of the Stationary FOT-Stochastic Process 𝑥(𝑡) or 𝑥𝑛 is the relative measure of the event set

𝐸𝑐
𝑚 ≜ {𝜔 ∈ R; 𝑓 [𝑥](𝑡1 − 𝜔) ≤ 𝜉1,

𝑓 [𝑥](𝑡2 − 𝜔) ≤ 𝜉2,… , 𝑓 [𝑥](𝑡𝑚 − 𝜔) ≤ 𝜉𝑚} (11a)

or

𝐸𝑑
𝑚 ≜ {𝜔 ∈ R; 𝑓 [𝑥]𝑛1−𝜔 ≤ 𝜉1,

𝑓 [𝑥]𝑛2−𝜔 ≤ 𝜉2,… , 𝑓 [𝑥]𝑛𝑚−𝜔 ≤ 𝜉𝑚} (11b)

for all real-valued m-tuples {𝜉1, 𝜉2, 𝜉3,… , 𝜉𝑚}.
It follows from Def. S3 that the 1st order FOT-CDF for a continuous-time stationary FOT process is given explicitly by the formula

𝐹𝑥(𝜉) ≜ 𝜇𝑅({𝑡 ∈ R ∶ 𝑥(𝑡) ≤ 𝜉})

= lim
𝑈→∞

1
𝑈
𝜇
({

𝑡 ∈
[

𝑡0 − 𝑈∕2, 𝑡0 + 𝑈∕2
]

∶ 𝑥(𝑡) ≤ 𝜉
})

= lim
𝑈→∞

1
𝑈 ∫

𝑡0+𝑈∕2

𝑡0−𝑈∕2
u(𝜉 − 𝑥(𝑡))d𝑡

(12)

for all real 𝜉, and similarly for higher-order FOT-CDFs; and, for discrete-time, the FOT-CDF is given by

𝐹𝑥(𝜉) ≜ 𝜇𝑅
({

𝑛 ∈ Z ∶ 𝑥𝑛 ≤ 𝜉
})

= lim
𝑁→∞

1
2𝑁 + 1

#
({

𝑛 ∈
[

𝑛0 −𝑁, 𝑛0 +𝑁
]

∶ 𝑥𝑛 ≤ 𝜉
})

= lim
𝑁→∞

1
2𝑁 + 1

𝑛0+𝑁
∑

𝑛=𝑛0−𝑁
u
(

𝜉 − 𝑥𝑛
)

(13)

As another example, for 𝑚 = 2, we have the 2nd order FOT-CDF

𝐹𝑥(𝜉1, 𝜉2) ≜ 𝜇𝑅({𝑡 ∈ R ∶ 𝑥(𝑡 + 𝑡1) ≤ 𝜉1,
𝑥(𝑡 + 𝑡2) ≤ 𝜉2})

= lim
𝑈→∞

1
𝑈
𝜇({𝑡 ∈

[

𝑡0 − 𝑈∕2, 𝑡0 + 𝑈∕2
]

∶ 𝑥(𝑡 + 𝑡1) ≤ 𝜉1, 𝑥(𝑡 + 𝑡2) ≤ 𝜉2})

= lim
𝑈→∞

1
𝑈 ∫

𝑡𝑜+𝑈∕2

𝑡𝑜−𝑈∕2
u
(

𝜉1 − 𝑥(𝑡 + 𝑡1)
)

u
(

𝜉2 − 𝑥(𝑡 + 𝑡2)
)

d𝑡

(14)

for all real 𝜉. Note: The constraint in Def. S1 that disallows replications in the sample space also disallows constant signals, which
are a degenerate case of stationary signals. A viable alternative is to remove this constraint.

The probability of the entire sample space of the Stationary FOT-Stochastic Process is equal to 1, meaning every experimental
outcome for this model is one of the members of the sample space. That is, for a discrete sample space 𝛺𝑁

𝑑 with a finite number 𝑁
of translates, the probability of each translate is 1∕𝑁 and since these translates are mutually exclusive events, the probability of the
entire set of 𝑁 translates is the sum over 𝑁 probabilities, each equal to 1∕𝑁 , which sum equals 1. In the limit, as the number of
translates 𝑁 included in the sample space approaches infinity, we get the result that the probability of each sample path is 0 and
the probability of the total sample space 𝛺𝑑 is 1. Similarly, for a continuous sample space, the probability of each sample path is
0, because the relative measure of a single point on the real line is 0, and the probability of the total sample space 𝛺𝑐 is 1, because
the relative measure of the entire real line is 1.

For this FOT-stochastic process, any one of the translates, {𝑥(𝑡 − 𝜔) ∶ 𝑡 ∈ R} for any particular 𝜔 ∈ R or {𝑥𝑛−𝜔 ∶ 𝑛 ∈ Z} for
any particular 𝜔 ∈ Z, can be taken as the Sample Space Generator. In practice, the sample space generator would be taken to be the
single observed signal, conceptually extended from the finite observation interval to the real line, or to the integers; and when a
formulaic specification of the process is made, the sample space generator would be obtained from the formula for any specified set
of random samples of the random functions in the formula. So, given a specification of one sample path, we have a specification
of the entire sample space. Here are some examples that are commonly encountered in communications systems and various other
applications.

Example 1: Binary Amplitude-Modulated Pulse-Train Signal

𝑥1(𝑡) =
+∞
∑

𝑎𝑘𝑝1(𝑡 − 𝑘𝑇1)
10

𝑘 = −∞
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where {𝑎𝑘} is a sequence of i.i.d. (in the FOT-Probability sense) binary-valued (±1) numbers and 𝑝1(𝑡) is an absolutely integrable
pulse of essentially arbitrary shape, and 𝑇1 is a real number.

Example 2: Amplitude-Modulated Sine-Wave Carrier Signal

𝑥2(𝑡) = 𝑎2(𝑡) cos(2𝜋𝑓2𝑡 + 𝜃2)

where 𝑎2(𝑡) is an FOT-stationary Gaussian signal with some specified continuous FOT power spectral density function, and 𝑓2 and
𝜃2 are real numbers.

Example 3: Amplitude-Shift Keyed Sine-Wave Carrier Signal

𝑥3(𝑡) =
+∞
∑

𝑘 = −∞
𝑎𝑘𝑝3(𝑡 − 𝑘𝑇3) cos(2𝜋𝑓3𝑡 + 𝜃3)

where {𝑎𝑘} is a sequence of i.i.d. (in the FOT-Probability sense) binary-valued (±1) numbers and 𝑝3(𝑡) is an absolutely integrable
pulse of essentially arbitrary shape, and 𝑓3 and 𝜃3 are real numbers.

Example 4: Phase-Modulated Sine-Wave Carrier Signal

𝑥4(𝑡) = 𝑎4 cos(2𝜋𝑓4𝑡 + 𝜃4(𝑡))

where 𝑎4 is a real number, 𝜃4(𝑡) is an FOT-stationary Gaussian signal, with some specified FOT power spectral density function.

Example 5: Multiplexed Signal with two independent (in the FOT Probability sense) components

𝑥5(𝑡) = 𝑥2(𝑡) + 𝑥4(𝑡)

There are numerous examples of calculations of FOT probabilistic parameters for formulaic specifications like those in the above
examples; the first extensive catalog appeared in the book [1] and this was recently supplemented with additional examples in the
book [3]. The great majority of these are calculations of cyclic autocorrelations and cyclic spectra (spectral correlation functions),
but there are also some examples of calculations of higher-order moments and cumulants, both temporal and spectral types, cf. [18].
Calculations of cumulative FOT-Probability distribution functions are less common. The reason is undoubtedly a result of the effort
required. It is more practically feasible to use computer simulations to numerically evaluate FOT-CDFs.

Stationary FOT Ergodic Theorem:

1. Every Stationary FOT-Stochastic Process is Strongly Ergodic, by construction, meaning the infinite time averages of relatively
measurable functions of the process exist and are independent of the particular sample paths selected and are equal to the
expected values of those functions obtained using the FOT-CDF or FOT-PDF.

2. Every Finite-Ensemble Average of every function of a Stationary FOT-Stochastic Process is identical to a Finite-Time Average
of that function.

The validity of this theorem follows directly from the Definitions. It is noted here that ensemble averages are typically conceived
of as being performed on randomly selected ensemble members, which do not occur in any ordered fashion. In contrast, time
averages are typically performed on time-ordered time samples or time translates. Item (b) in this theorem does not assume any
ordering. However, when one approaches the question of convergence of time averages as the length of averaging time approaches
infinity, time ordering is desirable and typically assumed (e.g., as in a Riemann integral), but no such ordering can be assumed for
random selection of ensemble members. To avoid the technical details involved here (which are of no pragmatic interest), Item (b)
addresses only finite averages and, like Item (a), states a fact that is obvious from the construction of the sample space.

Relation to Wold’s Isomorphism
Wold introduced an isomorphism in 1948 [19], which is referred to here in its extended form that accommodates continuous-

time processes, between (1) the sample space of a stochastic process, defined to consist of the collection of all time translates of a
single time function, including that time function itself, and (2) this single time function. This isomorphism establishes a distance-
preserving relationship between the stochastic process, with its definition of squared distance as the ensemble-averaged squared
difference between two processes, and a single sample-path of that stochastic process, with its definition of squared distance as the
time-average of the squared difference between two sample-paths. This mapping between the metric space of a stochastic process and
the metric space of a single sample path therefore preserves distance and is consequently an isomorphism. The above sample space
is identical to that in Def. S1 for a Stationary FOT-Stochastic Process. By complementing this sample space with an FOT-Probability
measure satisfying Defs. S2 and S3, we obtain a Stationary FOT-Stochastic Process. Wold did not take this step, and – according to
my literature search – apparently did not pursue the conceptual path taken in the present article.

3.4. Comparison of Kolmogorov and FOT-stochastic process models ( the magic hand)

To illustrate how simple the sample space of a stationary FOT-stochastic process is, compared with one of the simplest examples
of the sample space of a Kolmogorov process, consider an infinite sequence of statistically independent finite-alphabet real-valued

𝑁

11

equally probable symbols, with alphabet size K. The Kolmogorov sample space for a finite sequence of length 𝑁 contains 𝐾 distinct
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sequences and the probability of each is (1∕𝐾)𝑁 . The probability of the entire sample space is the sum of the probabilities of the 𝐾𝑁

mutually exclusive and exhaustive sample paths, each having probability (1∕𝐾)𝑁 , which sum equals 1. In the limit, as the sequence
length approaches infinity, we get the result that the probability of each sample path is 0 and the probability of the total sample
space is 1. This sample space includes as a strict subset the entire FOT sample space generated from any one of the Kolmogorov
sample paths. The Kolmogorov probability of this FOT sample space is the limit, as 𝑁 approaches infinity, of 𝑁(1∕𝐾)𝑁 . Therefore,
he Kolmogorov probability of the entire FOT sample space is 0. This is a result of the fact that the sample space represents a single
ignal—a single infinite sequence of 𝐾−ary symbols, not all possible infinite sequences of 𝐾−ary symbols. The Kolmogorov sample
pace apparently contains not only the FOT sample space of all translates of one infinite sequence, but also contains the FOT sample
paces of all translates of every possible infinite sequence of 𝐾−ary symbols. Despite the huge difference in the sizes of these two
ample spaces, as 𝑁 approaches infinity, it is interesting to note that the FOT probability of a subsegment comprised of a specific
equence of length 𝑁 occurring over the lifetime of the function is (1∕𝐾)𝑁 , and this is the same as the probability of selecting a
ample path from the corresponding Kolmogorov stochastic process that possesses a particular subsegment of length 𝑁 comprised
f this specific sequence. Because the time position in a stationary time series or a stationary stochastic process is of no probabilistic
onsequence, the difference in sizes of these sample spaces appears to be of no consequence unless one is interested in studying
opulations of time series.

As a reminder, the Birkhoff ergodic theorem guarantees that the time average of every sample path in this immense sample space
quals w.p.1 the expected value and this equals w.p.1 every ensemble average. This mysterious result is not necessary in practice;
t is not a prerequisite for having a probability theory for time-series analysis. The much simpler FOT-stochastic process will do
or types of applications described earlier in this paper, for which populations of signals are not of primary interest, and further
n this Results section, and this means that the entire stochastic process concept can be discarded for these types of applications
nd replaced with a single signal and its FOT-probability model. Sample spaces are then irrelevant. The cost of abandoning the
olmogorov stochastic process model is that the FOT-Probability measure is in general not sigma-additive, and the corresponding
OT-expectation operation is not in general sigma-linear. However, the utility of these sigma properties exists only when performing
alculations involving infinitely many subsets of the sample space or sums of infinitely many functions of the process. Moreover, to
enefit from these properties, one must verify that a specified probability measure does indeed exhibit these assumed properties.
his is rarely done in practice, except when well-known probability measures, like the Gaussian, which have already been verified,
re adopted. But there are no models for manmade communications signals in use that are Gaussian and the same is apparently true
or models of naturally occurring biomedical signals, and signals of many other origins. If there is not a large number of independent
amples of random variables added together to form a random variable to be modeled, there is generally no reason to expect that
andom variable to be Gaussian.

Another way to compare these two models of stochastic processes is as follows. Consider, as an example, a Bernoulli sequence
ith parameter p = 0.3. This is a sequence of statistically independent binary random variables with values of 0 and 1 having
robabilities of 0.3 and 0.7, respectively. A sample path for the Kolmogorov model is denoted by 𝑥(𝑛, 𝜔), where 𝑛 is integer-valued
nd 𝜔 also need only take on a countable infinity of values, and can therefore be taken to be integer valued. The values this function
f two integer variables can take on are 0 and 1. The specification of the actual infinitely large 2-dim array of 0’s and 1’s is such
hat every possible sequence of 0’s and 1’s is included once and only once. So, the specification of the sample space is simply
xhaustive. But there is a specification of a probability measure for this function of 𝜔 for subsets of values of 𝑛. The measure tells
s the limit, as the number of randomly selected values of 𝜔 approaches infinity, of the relative frequency of sets of 0’s and 1’s
t these subsets of discrete time points that will occur as outcomes. This probability measure is like a magic hand that guides the
election of experimental outcomes so that at each time point 1’s are selected in 70% of the experimental outcomes and 0’s are
elected in 30% of the outcomes. And, for example, the pair of adjacent outcomes of 0 followed by 1 are selected in (0.3)(0.7) =
1% of the outcomes. There is an inherent abstractness here, which I call a magic hand. It cannot in general be made concrete or
iven a concrete interpretation. And it is not a property of the sample space. It is simply a specified rule regarding the randomly
elected outcomes of an experiment.

It should be clarified here that the strong law of large numbers [5] establishes that averages over ensembles of random samples
onverge to expected values w.p.1 not because of replication in the sample space (which is not allowed), but rather because of
he magic hand. Replications of entire sample paths occurring with non-zero probability are disallowed in the Kolmogorov model,
s they are in the FOT model; however, for any finite set of time samples, the same finite set of sample path values can occur in
nfinitely many distinct sample paths all of which differ in at least some of the values at other time points. But the numbers of these
artial replicas are determined by nothing more than combinatorics. In contrast, the relative frequency of occurrence in random
amples of sets of process values at subsets of time points is determined by only the magic hand. This fact is often not recognized in
he literature. For example, even the classic book by Middleton [13][Section 1.3, pp. 26–27] includes invalid attempts at explaining
he convergence of ensemble averages to expected values in terms of replications of sample paths in the sample space. Similarly, for
he sample space defining the FOT-stochastic process (e.g., continuous time), replications like {𝑥(𝑡−𝜔1); 𝑡 ∈ R} = {𝑥(𝑡−𝜔2); 𝑡 ∈ R},
1 ≠ 𝜔2, are disallowed (Def. S1) because they do not produce what we think of as random functions since they imply 𝑥(𝑡) is simply
eriodic with period = |

|

𝜔1 − 𝜔2
|

|

.
In contrast to the Kolmogorov sample space for the Bernoulli process, a sample path for the corresponding FOT-stochastic process

s given by (with some abuse of notation) {𝑥(𝑛, 𝜔); 𝑛, 𝜔 ∈ Z} = {𝑥(𝑛 − 𝜔); 𝑛, 𝜔 ∈ Z} and this function 𝑥(𝑛) takes on values of 0 and
. Given a single sample path 𝑥(𝑛) on the integers, we have a full but non-exhaustive specification of 𝑥(𝑛, 𝜔) throughout the entire
ample space (2 dim array). Because of this, there is no need for a magic hand. We can derive the probability measure by simply
12

alculating (in principle, at least) the limit of the relative frequencies of 1’s in 𝑥(𝑛). Any statistical dependence of these binary
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variables in the sequence also can (in principle, at least) be calculated from joint FOT-probabilities. Work on designing sequences
that exhibit specified relative frequencies can be found in the early literature (cf. references at [2]).

The above discussion illustrates that the details and level of abstraction of the Kolmogorov stochastic process model are often
ot observed in applied work in statistical signal processing. Consequently, there is little pragmatic justification for continuing to
ang on to the baggage (abstraction) that comes with this standard model when populations of signals are not of primary concern,
hen we have the much simpler and more concrete alternative, the FOT-Probability model for single signals.

.5. Definition of cyclostationary FOT- stochastic process

Def. CS1: The Sample Space of the Cyclostationary FOT-Stochastic Process with Period T is comprised of all the time translates, by
nteger multiples of the period, of a single relatively measurable discrete- or continuous-time sample path (persistent real-valued
unction of a real variable), 𝑥, subject to the constraint that replications are disallowed (no two sample paths can be identical):

𝛺𝑑 = {{𝑥𝑛−𝜔𝑇 ; 𝑛 ∈ Z};𝜔 ∈ Z},
𝛺𝑐 = {{𝑥(𝑡 − 𝜔𝑇 ); 𝑡 ∈ R};𝜔 ∈ Z} (15)

he period 𝑇 can be any real number for continuous-time processes but must be an integer for discrete-time processes with time
ndex set equal to the set of all integers Z.
Def. CS2: The probability of any relatively measurable subset of elements defined by some common property the sample paths

hare, from the sample space index set Z, called an event, is the value of the relative measure of that set. (If the function 𝑥 exhibits
tatistical cyclicity with period T, then probabilities of time-translated events will, in general, vary periodically in the translation
arameter. Otherwise, the probabilities will be translation invariant—a degenerate case of periodicity.)
Def. CS3: The FOT-CDF of any relatively measurable discrete- or continuous-time function, 𝑓 [𝑥](𝑡) or 𝑓 [𝑥]𝑛, which is jointly

elatively measurable, for 𝑚 real-valued time points {𝑡1, 𝑡2, 𝑡3,… , 𝑡𝑚} or 𝑚 integer-valued time points {𝑛1, 𝑛2, 𝑛3,… , 𝑛𝑚}, of the
Cyclostationary FOT-Stochastic Process 𝑥(𝑡) or 𝑥𝑛, with Period 𝑇 , is the relative measure of the event set

𝐸𝑐
𝑚 ≜ {𝜔 ∈ Z; 𝑓 [𝑥](𝑡1 − 𝜔𝑇 ) ≤ 𝜉1,
𝑓 [𝑥](𝑡2 − 𝜔𝑇 ) ≤ 𝜉2,… , 𝑓 [𝑥](𝑡𝑚 − 𝜔𝑇 ) ≤ 𝜉𝑚} (16a)

or

𝐸𝑑
𝑚 ≜ {𝜔 ∈ Z; 𝑓 [𝑥]𝑛1−𝜔 ≤ 𝜉1,

𝑓 [𝑥]𝑛2−𝜔 ≤ 𝜉2,… , 𝑓 [𝑥]𝑛𝑚−𝜔 ≤ 𝜉𝑚} (16b)

for all real-valued 𝑚-tuples {𝜉1, 𝜉2, 𝜉3,… , 𝜉𝑚}, and all these FOT-CDFs are periodic functions of time: If {𝑡1, 𝑡2, 𝑡3,… , 𝑡𝑚} is replaced
with {𝑡1+𝑇 , 𝑡2+𝑇 , 𝑡3+𝑇 ,… , 𝑡𝑚+𝑇 } or, if {𝑛1, 𝑛2, 𝑛3,… , 𝑛𝑚} is replaced with {𝑛1+𝑇 , 𝑛2+𝑇 , 𝑛3+𝑇 ,… , 𝑛𝑚+𝑇 }, the FOT-CDF remains
unchanged.

It follows from Def. CS3 that the first-order FOT-CDF for a continuous-time cyclostationary FOT process is given explicitly by
the formula

𝐹𝑥, 𝑇 (𝜉, 𝑡) ≜ 𝜇𝑅({𝑛 ∈ Z ∶ 𝑥(𝑡 − 𝑛𝑇 ) ≤ 𝜉})

= lim
𝑁→∞

1
2𝑁 + 1

#({𝑛 ∈ [𝑛0 −𝑁, 𝑛0 +𝑁] ∶

𝑥(𝑡 − 𝑛𝑇 ) ≤ 𝜉} )

= lim
𝑁→∞

1
2𝑁 + 1

𝑛0+𝑁
∑

𝑛 = 𝑛0−𝑁
u (𝜉 − 𝑥(𝑡 − 𝑛𝑇 ))

(17)

for all real 𝑡 and 𝜉, and similarly for higher-order FOT-CDFs (cf. Eq. (14)); and the first order FOT-CDF for a discrete-time FOT
process is given explicitly by the formula

𝐹𝑥,𝑇 (𝜉, 𝑘) ≜ 𝜇𝑅({𝑛 ∈ Z ∶ 𝑥𝑘−𝑛𝑇 ≤ 𝜉})

= lim
𝑁→∞

1
2𝑁 + 1

#({𝑛 ∈ [𝑛0 −𝑁, 𝑛0 +𝑁] ∶ 𝑥𝑘−𝑛𝑇 ≤ 𝜉})

= lim
𝑁→∞

1
2𝑁 + 1

𝑛0+𝑁
∑

𝑛 = 𝑛0−𝑁
u
(

𝜉 − 𝑥𝑘−𝑛𝑇
)

(18)

or all real 𝜉 and all integers 𝑘. In contrast to the periodicity, with a single period, of these FOT-CDFs, the FOT-CDFs for a stationary
OT-stochastic process remain unchanged for all real-valued or integer-valued 𝑇 . They are periodic with every period and are
herefore time-invariant.

Note: The constraint in Def. CS1 that disallows replications in the sample space also disallows periodic signals, which are a
egenerate case of cyclostationary signals. A viable alternative is to remove this constraint.

For this FOT-stochastic process, any one of the translates, {𝑥(𝑡−𝜔𝑇 ) ∶ 𝑡 ∈ R} for any particular 𝜔 ∈ Z or {𝑥𝑛−𝜔𝑇 ∶ 𝑛 ∈ Z} for any
particular 𝜔 ∈ 𝑍, can be taken as the Sample Space Generator. Observe that, whereas the sample space for the stationary FOT process
is uncountably infinite for continuous time, it is only countably infinite for the continuous-time cyclostationary FOT process.

Although not immediately obvious, a single sample-space generator (a single signal) can, in general, generate a stationary
FOT process or a cyclostationary FOT process with any one of multiple incommensurate periods. If the single signal exhibits no
13

cyclostationarity, all these FOT-CDFs will be time-invariant and identical. If the single signal exhibits only one period, then its
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cyclostationary FOT-CDF with this period will be periodic, not time-invariant and it will therefore be distinct from the stationary
FOT-CDF. And if the single signal exhibits two incommensurate periods, the sample space generator can generate a sample space
with a time invariant FOT-CDF and two distinct sample spaces each with a distinct periodic FOT-CDF, by using different sets of
translation amounts. And so on. For the five example signal models specified above, we have the following results for the distinct
FOT-CDFs that can be produced from each signal.

Example 1: 𝑥1(𝑡) has stationary FOT-CDF and one cyclostationary FOT-CDF with period 𝑇 = 𝑇1

xample 2: 𝑥2(𝑡) has stationary FOT-CDF and one cyclostationary FOT-CDF with period 𝑇 = 1∕2𝑓2

xample 3: 𝑥3(𝑡) has stationary FOT-CDF and multiple cyclostationary FOT-CDFs with periods 𝑇 (𝑗) = 1∕(2𝑓3 + 𝑗∕𝑇3) for possibly all
ntegers 𝑗, assuming that 𝑓3 and 1∕𝑇3 are incommensurate

xample 4: 𝑥4(𝑡) has stationary FOT-CDF and one cyclostationary FOT-CDF with period 𝑇 = 1∕2𝑓4

Example 5: 𝑥5(𝑡) has stationary FOT-CDF and multiple cyclostationary FOT-CDFs with periods 𝑇 (𝑗) = 1∕(𝑛𝑓2 + 𝑚𝑓3) for possibly all
pairs of integers (𝑛, 𝑚) (except those for which (𝑛2, 𝑚2) = (𝑘𝑛1, 𝑘𝑚1) for any integer 𝑘) if 𝑓2 and 𝑓3 are incommensurate; otherwise
just one cyclostationary FOT-CDF with period 𝑇 = 1∕𝑛𝑓2 = 1∕𝑚𝑓3 for the smallest pair of integers 𝑛, 𝑚 for which this equality holds.

Cyclostationary FOT Cycloergodic Theorem:

(1) Every Cyclostationary FOT-Stochastic Process is Strongly Cycloergodic, by construction, meaning the infinite time averages,
with cyclostationarity period 𝑇 , of relatively measurable functions of the process exist and are independent of the particular
sample paths selected and are equal to the time-periodic expected values of those functions obtained using the periodic
FOT-CDF or FOT-PDF.

(2) Every Finite-Ensemble Average of every function of a Cyclostationary FOT-Stochastic Process is identical to a Finite-Time
Periodic Average of that function.

The validity of this theorem follows directly from the Definitions. It is noted here that ensemble averages are typically conceived
of as being performed on randomly selected ensemble members, which do not occur in any ordered fashion. In contrast, time
averages are typically performed on time-ordered time samples or time translates. Item (b) in this theorem does not assume any
ordering. However, when one approaches the question of convergence of time averages as the length of averaging time approaches
infinity, time ordering is desirable and typically assumed, but no such ordering can be assumed for random selection of ensemble
members. To avoid the technical details involved here (which are of no pragmatic interest), Item (b) addresses only finite averages
and, like Item (a), states a fact that is obvious from the construction of the sample space.

3.6. The FOT-probability model for almost cyclostationary processes

For each value of 𝑡, the indicator function u(𝜉 − 𝑥(𝑡)) takes on values of only 0 and 1 for all real 𝜉, and its range is therefore
contained in the closed interval [0, 1]. It is easy to demonstrate graphically that, for each 𝑡 and for all real 𝜉2 and 𝜉1, if 𝜉2 ≥ 𝜉1,
then u(𝜉2 − 𝑥(𝑡)) ≥ u(𝜉1 − 𝑥(𝑡)). Therefore, for each value of 𝑡, u(𝜉 − 𝑥(𝑡)) is a nondecreasing function of 𝜉. Also, since 𝜉 − 𝑥(𝑡) < 0
(or > 0) for all finite 𝑥(𝑡) when 𝜉 = −∞ (or 𝜉 = ∞), then u(−∞ − 𝑥(𝑡)) = 0 (and u(∞ − 𝑥(𝑡)) = 1). Consequently, for each value of
𝑡, u(𝜉 − 𝑥(𝑡)) is a valid cumulative probability distribution function (CDF) of the variable 𝜉; for all integer-valued time 𝑡, this is a
discrete-time-indexed set of CDFs and, for all real-valued time 𝑡, this is a continuous time-indexed set of CDFs.

It can be shown that any discrete or continuous average of CDFs {𝐶𝐷𝐹𝑛 ∶ 𝑛 = 1, 2,… , 𝑁} or {𝐶𝐷𝐹 (𝑡) ∶ 0 ≤ 𝑡 ≤ 𝑇 }, such as

1
𝑁

𝑁
∑

𝑛 = 1
𝐶𝐷𝐹𝑛 𝑜𝑟

1
𝑇 ∫

𝑇

0
𝐶𝐷𝐹 (𝑡)𝑑𝑡

is also a valid CDF. The above facts hold true for any finite-order CDF for {𝑥(𝑡 + 𝑡𝑖) ∶ 𝑖 = 1, 2,… , 𝐼}, not just the first-order CDFs
eferred to above.

In the limit as the averaging interval covers all time, as in the third line of Eq. (12) or Eq. (13), these averages over the
ndicator-Function CDFs are referred to as stationary CDFs of the function 𝑥(𝑡). This is in agreement with the definition of a stationary
OT-Stochastic process given in Section 3.3. Similarly, for averages of the form shown in the third line of Eq. (17) or (Eq. (18)), the
imits are periodic in time with period 𝑇 and, if not equal to a constant independent of 𝑡, are referred to as cyclostationary CDFs of
he function 𝑥(𝑡). This is in agreement with the definition of a cyclostationary FOT-Stochastic process given in Section 3.5.

The stationary CDF defined by Eq. (12) or Eq. (13) is what is called the constant component of the erratically fluctuating Indicator-
unction CDF, and the cyclostationary CDF defined by Eq. (17) or Eq. (18) when these are not 𝑡−invariant is what is referred to as
he periodic component of the erratically time fluctuating indicator-function CDF. When the stationary CDF is subtracted from the
rratically fluctuating Indicator-function CDF, the difference, referred to as the residual, contains no constant component. Similarly,
he residual for the periodic component of the erratically time fluctuating indicator-function CDF contains no periodic component
ith the same period.

The preceding reinterpretation of the CDFs for stationary and cyclostationary FOT-Stochastic processes reveals how to define
lmost cyclostationary CDFs for functions of time that exhibit statistical cyclicity with multiple incommensurate periods, even though
e do not know how to construct a corresponding FOT-type of stochastic process model because we do not know how to specify
14

he appropriate sample space to accommodate multiple incommensurate periods of cyclicity.
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We begin with a little background information on almost periodic functions. An almost periodic function 𝑄(𝑡) is one that admits
a Fourier series representation of the form

𝑄(𝑡) =
∑

𝛼
𝑞𝛼 exp{i2𝜋𝛼𝑡} (19a)

where the index 𝛼 ranges over a countable (possibly countably infinite) set. In the mathematics literature, various distinct types of
almost periodic functions have been defined. In the simplest of terms, they differ from each other in the sense in which the above
Fourier series representation converges, and the sense in which the formula

𝑞𝛼 = lim
𝑈 → ∞

1
𝑈 ∫

𝑈∕2

−𝑈∕2
𝑄(𝑡) exp{−i2𝜋𝛼𝑡}d𝑡 (19b)

for the Fourier series coefficients converges (cf. [3, Appendix B]). Almost periodic functions are literally nearly periodic, which can
be expressed mathematically (cf. [3, Appendix B]).

If all the values of 𝛼 are integer multiples of a single value 𝛼𝑜 = 1∕𝑇𝑜, for which 𝑇𝑜 is called the period, then 𝑄(𝑡) is a periodic
unction with period 𝑇𝑜. This is a degenerate form of almost periodicity. More generally, because the set of values of 𝛼 is countable,

there exists an at-most-countable set of incommensurate periods {𝑇𝑘} such that the above Fourier series representation can be
e-expressed as

𝑄(𝑡) =
∑

𝑘

∑

𝑗
𝑞𝑘𝑗 exp{−i2𝜋(𝑗∕𝑇𝑘)𝑡}

= 𝑞0 +
∑

𝑘
[𝑄𝑘(𝑡) − 𝑞0]

(20a)

where 𝑄𝑘(𝑡) is periodic with period 𝑇𝑘,

𝑄𝑘(𝑡) =
∑

𝑗
𝑞𝑘𝑗 exp{i2𝜋𝑗∕𝑇𝑘} = 𝑄𝑘(𝑡 + 𝑇𝑘)

= lim
𝑁 → ∞

1
2𝑁 + 1

𝑁
∑

𝑛 = −N
𝑄(𝑡 + 𝑛𝑇𝑘)

(20b)

and 𝑞𝑘0 = 𝑞0 for all 𝑘. Periods are incommensurate if no two periods have a ratio that is a rational number.
In the event that the almost periodic function 𝑄(𝑡) exhibits only a finite number of incommensurate periods {𝑇𝑘 ∶ 𝑘 =

1, 2, 3,… , 𝐾}, then we have a degenerate case of almost periodicity that is called Poly-periodicity.
Returning to almost cyclostationary CDFs, the set of almost periodic functions of time of interest here are

𝑄(𝜉, 𝑡) =
∑

𝛼
𝑞𝛼(𝜉) exp{i2𝜋𝛼𝑡} (21a)

for each and every real value of 𝜉. The Fourier coefficients in this expression are given by

𝑞𝛼(𝜉) = lim
𝑈 → ∞

1
𝑈 ∫

𝑈∕2

−𝑈∕2
𝑢(𝜉 − 𝑥(𝑡)) exp{−i2𝜋𝛼𝑡}d𝑡. (21b)

We shall use the notation

𝑄(𝜉, 𝑡) ≡ 𝐹𝑥(𝜉, 𝑡) ≜
∑

𝛼 ∈ 𝐴
𝐹 𝛼
𝑥 (𝜉) exp[i2𝜋𝛼𝑡] (21c)

and

𝑞𝛼(𝜉) ≡ 𝐹 𝛼
𝑥 (𝜉) ≜ lim

𝑈 → ∞
1
𝑈 ∫

𝑈∕2

−𝑈∕2
𝑢(𝜉 − 𝑥(𝑡)) exp{−i2𝜋𝛼𝑡}d𝑡 (21d)

to be more consistent with the discourse in earlier sections. Then it follows from Eq. (20) that

𝐹𝑥(𝜉, 𝑡) ≜
∑

𝛼 ∈ 𝐴
𝐹 𝛼
𝑥 (𝜉) exp[i2𝜋𝛼𝑡]

= 𝐹 0
𝑥 (𝜉) +

∑

𝑘 ∈ Z

{

∑

𝑗 ∈ Z

(

𝐹 𝑗∕𝑇𝑘
𝑥 (𝜉) exp[i2𝜋(𝑗∕𝑇𝑘)𝑡] − 𝐹 0

𝑥 (𝜉)
)

}

= 𝐹 0
𝑥 (𝜉) +

∑

𝑘 ∈ Z

{

𝐹𝑥,𝑇𝑘
(𝜉, 𝑡) − 𝐹 0

𝑥 (𝜉)
}

(22)

The set of frequencies 𝐴 = {𝛼} are called the Cycle Frequencies; they are in general harmonics of the fundamental frequencies
{1∕𝑇𝑘} associated with each periodic component. Unless otherwise stated, the set 𝐴 contains all cycle frequencies for which the
Fourier component 𝐹 𝛼

𝑥 (𝜉) is not identically zero.
The Fourier coefficient functions {𝐹 𝛼

𝑥 (𝜉)} comprising the almost cyclostationary CDF are complex-valued and are therefore not
themselves CDFs. They are, however, a generalization referred to as complex cumulative distributions with range confined to the
unit disc in the complex plane instead of the unit interval of the real line as for real CDFs.

For the special case in which an almost cyclostationary CDF 𝐹𝑥(𝜉, 𝑡) is degenerate in the sense of being poly-periodic, this CDF
and the underlying function 𝑥(𝑡) are both referred to as being poly-cyclostationary. An example of this type of function is one for
15
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which all finite-order CDFs are Gaussian and have poly-periodically time-varying mean(𝑡) and 𝑐𝑜𝑣(𝑡, 𝑡 + 𝜏) for all time-separations
, with the collection of periods {𝑇𝑘(𝜏)} over all real 𝜏 being finite. For poly-cyclostationary CDFs, the sum over the index 𝑘 in the
econd and third lines of Eq. (22) ranges over only a finite subset of the integers 𝑍; however, the harmonic index 𝑗 for each of the
eriods 𝑇𝑘 in their finite set must range over all integers. No integer value of 𝑗 for which the associated Fourier coefficient 𝐹 𝑗∕𝑇𝑘

𝑥 (𝜉)
s not identically zero can be omitted from the sum, without possibly violating the defining properties of a CDF (cf. [3, Chap 2]). An
xception is the case for which the entire term in Eq. (22) with any specific period index 𝑘 = 𝑘𝑜 is omitted, provided that 1∕𝑇𝑘𝑜 is
ncommensurate with not only all {1∕𝑇𝑘; 𝑘 = 1, 2, 3, . . } but also with all the integral linear combinations 𝐼1∕𝑇1+𝐼2∕𝑇2+ 𝐼3∕𝑇3+ . . .
or all integers {𝐼𝑞 ∶ 𝑞 = 1, 2, 3, . . .}. [3, Chap. 2]. This means that all but a finite set of the countably infinite set of periods {1∕𝑇𝑘}

can be omitted provided that this requirement is met for all omitted periods.
In other words, for a non-degenerate almost cyclostationary function 𝑥(𝑡), exhibiting a countably infinite number of periods {𝑇𝑘}

of cyclicity, it is possible to extract a poly-periodic component with any finite (size 𝐾) subset of these periods from its indicator-
function CDF of first order, 𝑢(𝜉 − 𝑥(𝑡)), or of any finite order, and the result will be a valid CDF, assuming the entire poly-periodic
component with the specified periods is extracted and any frequencies contained in the residual are incommensurate with all integral
linear combinations 𝐼1∕𝑇1 + 𝐼2∕𝑇2 + 𝐼3∕𝑇3 + . . . + 𝐼𝐾∕𝑇𝐾}.

Although the cyclostationary, polycyclostationary, and almost-cyclostationary CDFs defined up to this point cannot have
arbitrarily selected non-zero terms in their complete Fourier series omitted without possibly violating the required properties of the
CDF, any terms can be omitted while still retaining an important property that CDFs possess, which is referred to as the Fundamental
Theorem of Almost-Periodic Component Extraction. To prove this theorem, we first consider a generalization of the Fundamental
Theorem of Time Averages Eq. (3).

Let 𝑔({𝑥(𝑡)}) be a well-behaved real-valued function of {𝑥(𝑡)}, of the form

𝑔({𝑥(𝑡)}) = 𝑔(𝑥(𝑡 + 𝑡1), 𝑥(𝑡 + 𝑡2),… , 𝑥(𝑡 + 𝑡𝑚)), (23)

for any finite positive integer 𝑚 and any set of 𝑚 time samples {𝑡𝑖∶ 𝑖 = 1, 2,… , 𝑚} and all real-valued time 𝑡 ∈ 𝑆 for some interval
𝑆 (finite or infinite) of the real line. Let 𝐏 be an orthogonal projection operator, to be applied to 𝑔({𝑥(𝑡)}), for projection onto some
linear subspace of functions of 𝑡 on 𝑆. Also, consider the set of projections of the indicator-functions

𝐹𝐏(𝝃, 𝑡) ≜ 𝐏
[ 𝑚
∏

𝑖 = 1
𝑢(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

(24)

for all real 𝑚-tuples 𝝃.

Fundamental Theorem of Orthogonal Projection of Functions of a Function:
The projection 𝑃 [𝑔({𝑥(𝑡)})] of any function 𝑔({𝑥(𝑡)}) of the form in Eq. (23) can be calculated from the set of projected indicators

functions 𝐹𝐏(𝝃, 𝑡) for all real 𝝃 as follows:

𝐏[𝑔({𝑥(𝑡)})] = ∫ 𝑔(𝜉1, 𝜉2,… , 𝜉𝑚)d𝑚𝐹𝐏(𝝃, 𝑡)

= ∬ ...∫ 𝑔(𝜉1, 𝜉2,… , 𝜉𝑚)𝑓𝐏(𝜉1, 𝜉2,… , 𝜉𝑚)d𝜉1d𝜉2...d𝜉𝑚
(25)

where 𝑓𝐏(𝜉1, 𝜉2,… , 𝜉𝑚) is the density function corresponding to the distribution function:

𝑓𝐏(𝜉1, 𝜉2,… , 𝜉𝑚) ≜
𝜕𝑚

𝜕𝜉1𝜕𝜉2...𝜕𝜉𝑚
𝐹𝐏(𝝃, 𝑡). (26)

Examples of this theorem for 𝑚 = 1 include the following special cases of Fundamental Theorems of Almost-Periodic Component
Extraction:

1. Stationary Component Extraction (cf. Eq. (12)):

𝐏[𝑔({𝑥(𝑡)})] ≜ lim
𝑈 → ∞

1
𝑈 ∫

𝑡0+𝑈∕2

𝑡0−𝑈∕2
𝑔({𝑥(𝑡)})d𝑡

2. Cyclostationary Component Extraction (cf. Eq. (17)):

𝐏[𝑔({𝑥(𝑡)})] ≜ lim
𝑁→∞

1
2𝑁 + 1

𝑛0+𝑁
∑

𝑛 = 𝑛0−𝑁
𝑔({𝑥(𝑡 − 𝑛𝑇 )})

3. Almost Cyclostationary Component Extraction (cf. Eq. (21)):

𝐏[𝑔({𝑥(𝑡)})] ≜
∑

𝛼 ∈ 𝐴
𝑔𝛼𝑥 exp[i2𝜋𝛼𝑡]

where

𝑔𝛼𝑥 ≜ lim
𝑈 → ∞

1
𝑈 ∫

𝑡0+𝑈∕2

𝑡0−𝑈∕2
𝑔({𝑥(𝑡)}) exp{−i2𝜋𝛼𝑡}d𝑡
16

and 𝐴 is a countably infinite set of any real numbers including any incommensurate numbers.
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4. Poly-Cyclostationary Component Extraction: Same as Example (3) but for (a) only a finite set 𝐴 of real numbers or (b)
a countably infinite set 𝐴, each member of which is an integer multiple of one of only a finite set of incommensurate
fundamental frequencies {1∕𝑇𝑘; 𝑘 = 1, 2,… , 𝐾}.

Other examples can include subspaces that are finite dimensional or that contain only functions having time domains that are
finite intervals of the real line (cf. [ 2, page 3.5]). Interestingly, this theorem is valid for projections that do not produce CDFs
(cumulative probability distribution functions); this includes some cases within Example (4) and an unlimited number of other
examples. A frequently used subspace projection in statistical signal processing is that spanned by a subset of eigenvectors of the
signal’s covariance matrix. Thus, the fundamental theorem of time averaging is a special case of this more general theorem for
more general projections. Nevertheless, the Projections must be orthogonal projections in order to apply the above theorem. (Non-
orthogonal projections do not extract components of a function, because the residual still includes some of this same component.)
For example, sinusoids with incommensurate frequencies are not orthogonal over any finite-length interval of time. Therefore,
finite-time CDFs can be orthogonal projections only if all sinusoidal components are harmonics of a single fundamental frequency;
i.e., they must be cyclostationary, not poly-cyclostationary, and the time-interval over which the CDF is defined must be an integral
number of periods. The required modification of the basis functions {exp[𝑖2𝜋𝛼𝑡]} to render the above theorem applicable for any
finite-length time interval is described in Section 3.8.

Outline of Proof of Fundamental Theorem of Orthogonal Projection of Functions of a Function:
The density function on the RHS of Eq. (24) is given by

𝑓𝐏(𝜉1, 𝜉2,… , 𝜉𝑚) ≜
𝜕𝑚

𝜕𝜉1𝜕𝜉2...𝜕𝜉𝑚
𝐹𝐏(𝝃, 𝑡)

= 𝜕𝑚

𝜕𝜉1𝜕𝜉2...𝜕𝜉𝑚
𝐏
[ 𝑚
∏

𝑖 = 1
𝑢(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

= 𝐏
[

𝜕𝑚

𝜕𝜉1𝜕𝜉2...𝜕𝜉𝑚

𝑚
∏

𝑖 = 1
𝑢(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

= 𝐏
[ 𝑚
∏

𝑖 = 1
𝛿(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

(27)

where the order of the projection operation on a function of 𝑡 and 𝝃 for each value of 𝝃 and the differentiation operation on this
function of 𝑡 and 𝝃 for each value of 𝑡 have been interchanged. Substituting this into the RHS of Eq. (24) yields

𝐏[𝑔({𝑥(𝑡)})] = ∫ 𝑔(𝜉1, 𝜉2,… , 𝜉𝑚)d𝑚𝐹𝐏(𝝃, 𝑡)

= ∫ 𝑔(𝜉1, 𝜉2,… , 𝜉𝑚)𝐏
[ 𝑚
∏

𝑖 = 1
𝛿(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

d𝜉1d𝜉2...d𝜉𝑚

= 𝐏
[

∫ 𝑔(𝜉1, 𝜉2,… , 𝜉𝑚)

[ 𝑚
∏

𝑖 = 1
𝛿(𝜉𝑖 − 𝑥(𝑡 + 𝑡𝑖))

]

d𝜉1d𝜉2...d𝜉𝑚

]

= 𝐏
[

𝑔(𝑥(𝑡 + 𝑡1), 𝑥(𝑡 + 𝑡2),… , 𝑥(𝑡 + 𝑡𝑚))
]

(28)

where the order of the projection operation on the slice of the function of 𝑡 and 𝝃 for each value of 𝝃 and the integration operation
on a slice of this function of 𝑡 and 𝝃 for each value of 𝑡 have been interchanged. Here, the final line in the RHS is the definition of
the LHS; so Eq. (24) is verified.

3.7. Cycloergodicity for multiple incommensurate periods

Many communications signals with sample paths specified formulaically exhibit cyclostationarity with multiple incommensurate
periods (they are poly-cyclostationary or almost cyclostationary, but not purely cyclostationary or purely stationary) and, as shown
by Boyles and Gardner in 1983 [20], they can be tested for what is here called Sinusoidal Ergodicity(SE). This means some such
processes can exhibit the strong sinusoidal ergodic properties required to support the commonly assumed convergence of estimates
of sinusoidal components (which are typically called cyclic components) of their almost-periodically time-varying probabilistic
parameters, such as cyclic autocorrelations and cyclic spectral densities (also called spectral correlation functions). However, these
processes cannot be included in the traditional ergodic theory stemming from Birkhoff’s work or its extension to the cycloergodic
theory of cyclostationary processes of Boyles and Gardner. This is mathematically proved in [20] and illustrated with the example of
a Bernoulli process with a periodically time-varying probability of success having its period incommensurate with the sampling-time
increment. What has essentially invariably been done since the introduction of almost cyclostationary processes in 1978 [21] is to
specify such processes in a formulaic manner (e.g., Examples 3 and 5 above) and to then invoke a strong cycloergodic hypothesis,
sometimes based on the demonstration of a much weaker form of cycloergodicity, such as cycloergodicity in the mean square sense.
But we are now going to go beyond this by building on the concepts introduced in earlier sections.

The sample spaces for the cyclostationary FOT-stochastic processes reveal why there cannot exist a single FOT-stochastic process
with more-than-one incommensurate period: A single sample space cannot consist of only translates of one period if it also consists
17



Journal of Sound and Vibration 565 (2023) 117871W.A. Gardner

p
s
f
o
o
w

H
c

c
c
t
i
f
a
p
t
(
g
p
t

t
f
s
m
t

of only translates of another incommensurate period. What one must therefore do with the FOT model introduced in Section 3.6 is
to introduce a unique sample space for each and every incommensurate period of cyclostationarity of interest for a single record of
data or a single formulaic model. However, this is just a conceptual aid. For operational purposes, all one needs is the formula for
almost cyclostationary CDFs given in Section 3.6 (third line of Eq. (22)) and the method presented in Section 3.5 for calculating
cyclostationary CDFs for each period. This calculation can be empirical, using a record of observed data, or it can be performed
mathematically using a formulaic specification of the time series. This, in turn, provides insight into how to generalize Birkhoff’s
ergodic theorem to accommodate almost cyclostationary processes of the Kolmogorov type, as explained next.

But first, let us sum up the situation for formulaic FOT-Probability models for almost cyclostationary time series. Deterministic
eriodicity with multiple periods, combined in a sample-path formula (such as those in Example 1 – 5), with stationary FOT time-
eries components, provides the basis for constructing the CDFs or PDFs from FOT calculations using the time-series model. Nonlinear
unctions of a time series whose sample-path formula contains multiple periodicities contain in general not only harmonics not
riginally present, of the fundamental frequencies originally present, but also linear combinations with integer-valued coefficients,
f all these harmonics. Consequently, in constructing the CDFs for such a time series, it must be assumed at the outset that the CDFs
ill contain sinusoidally time-varying components with all these various mixed frequencies.

ow to Generalize Birkhoff’s Ergodic Theorem for Continuous-Time Almost Cyclostationary Kolmogorov Stochastic Pro-
esses

The content of this section does not contribute to the primary objective of this article, but it does follow easily from the
oncepts introduced in the previous section and it does provide a genuine generalization of ergodic theory of stationary and
yclostationary processes to poly-cyclostationary and almost cyclostationary Kolmogorov stochastic processes. Strong Cycloergodic
heory of Kolmogorov stochastic Processes, which extends and generalizes existing ergodic theory, is developed in [20], where
t is shown that sinusoidal and periodic components of time-varying probabilistic parameters can be consistently estimated w.p.1
rom time averages on one sample path. It is also established that a strong theory of cycloergodicity inclusive enough to cover
ll applications of practical interest had, at that time, not yet be shown to exist. Moreover, it is shown that such a theory cannot
resuppose the existence of a dominating stationary measure, as does the theory presented therein. Nevertheless, it would appear
hat it can be argued that because a continuous-time cyclostationary process can be characterized as a discrete-time vector-valued
or function-valued) stationary process, Birkhoff’s Ergodic Theorem [16] for scalar-valued discrete-time stationary processes, if
eneralized to vector-valued processes, leads to a completely analogous cycloergodic theorem for continuous-time cyclostationary
rocesses. The vector (or function), at any discrete time equal to an integer multiple of the period of cyclostationarity, consists of
he infinite set of process values over the period between that discrete time and the previous discrete time.

Furthermore, it is shown in [22, Chap. 7] and refs. therein that Birkhoff’s ergodic theorem has been extended from stationary
o asymptotically mean-stationary (AMS) discrete-time processes. This extension guarantees the existence of consistent estimators
or the discrete-time averages of time-varying probabilistic parameters, such as probability density functions. Because almost-cyclo-
tationary (ACS) discrete-time processes are AMS, this extended theorem applies to discrete-time ACS processes (and the same
ight well be true for continuous-time ACS processes after discrete-time sampling) but it does not apply directly to estimation of

he sinusoidal and periodic components of almost-periodically time-varying probabilistic parameters.
Nevertheless, [22, Chap. 7] does discuss ergodicity of 𝑁−stationary discrete-time processes, which are 𝑁-dimensional vector-

valued representations for discrete-time cyclostationary processes with period 𝑁 . Furthermore, the discrete-time infinite-dimensional
vector-valued process described above that represents a continuous-time scalar-valued process is AMS if that continuous-time process
is ACS (which includes, as special cases, poly-cyclostationary, cyclostationary, and stationary processes).

Consequently, for any selected period of a continuous-time ACS process, one can form a discrete time vector-valued AMS
process as explained above. Then the time average of a probabilistic parameter of this vector-valued process will equal the periodic
component of the corresponding probabilistic parameter of the original ACS process. In this way any periodic component for any
real-valued period 𝑇 of the almost periodically time-varying probabilistic parameters of the original scalar-valued continuous-time
ACS process can be guaranteed to be consistently estimable by applying the proposed ergodic theorem to the infinite-dimensional
vector-valued discrete-time AMS process.

It follows that the discrete-time AMS version of the Birkhoff ergodic theorem can be extended/generalized to accommodate
cycloergodicity for continuous-time ACS processes by requiring that the ergodicity condition for discrete-time AMS processes be
satisfied by the vector-valued representation for each and every period 𝑇 of the continuous-time process. In addition, there appears
to be a partially cycloergodic version of this proposed theorem that requires the ergodicity condition for some but not all periods
be satisfied.

This leaves one class of ACS processes for which a cycloergodic theorem remains to be proposed, and this is the class of discrete-
time processes having measures that possess non-zero sinusoidal components with sine-wave frequencies that are incommensurate
with the time-sampling rate. Some such processes do indeed allow for consistent estimation of such sinusoidal components, but
others do not. A necessary and sufficient condition for consistent estimation has apparently not yet been proposed but the Author
suspects one will be discovered by following ideas in the present paper.

3.8. Purely empirical FOT-probability models for regular cyclicity

As explained below, we can obtain finite-data probability models by using the FOT-CDF formula (21d) in Section 3.6, but without
taking the limit as the averaging time approaches infinity, and still get CDFs that are exactly constant (using only 𝛼 = 0) or periodic
18

(using only 𝛼 = 𝑗∕𝑇 for all integers 𝑗) or poly-periodic (using only 𝛼 = 𝑗∕𝑇𝑘 for all integers 𝑗 and any finite set of incommensurate
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real-valued periods {𝑇𝑘 ∶ 𝑘 = 1, 2,… , 𝐾}) for continuous time. However, if we use more than a finite number of integers 𝑗 we
annot properly call the CDF empirical. So, we consider here only finite numbers of cycle frequencies. However, omission of some
ycle frequency harmonics of a periodic component for which the Fourier coefficients are not identically zero renders the formula
or the CDF only approximate. Such approximations do not necessarily retain all the characteristic properties of valid CDFs, such
s having range confined to the closed interval [0,1].

Nevertheless, it is expected that the approach with finite numbers of harmonics for continuous time can produce accurate
pproximations if the number is sufficiently large. In addition, the Fundamental Theorem of Orthogonal Projection of Functions
f a Function does apply to such approximate Empirical FOT-CDFs using only 𝛼 = 0 or 𝛼 = 𝑗∕𝑇 and 𝛼 = −𝑗∕𝑇 for finite numbers

of integers 𝑗 because such CDFs are still valid orthogonal projections on finite intervals (of length equal to an integral number of
periods 𝑇 ).

More generally, the program of calculation for any probabilistic parameters, such as joint moments, using a finite segment of
data 𝑥(𝑡), is that everywhere the data occurs, in the infinite-interval formula for the probabilistic parameter of interest [1], for some
function of the data that is of interest, such as a lag product, the time support of that data is windowed to the finite observation
interval, just like what is done in the conventional correlogram & cyclic correlogram, and periodogram & cyclic periodogram [1].
Then the time-invariant Fourier coefficient of the sinusoidal component, with frequency 𝛼 of interest, of the function of the time
series over the finite observation window is extracted and multiplied by exp[𝑖2𝜋𝛼𝑡] (with 𝑡 extending over the reals) in the usual
manner, but without the limit as integration time approaches infinity. These components when added together for all detected
or selected cycle frequencies comprise an almost periodic function over all time and, when restricted to the finite time support
of the function of the data, comprise an approximation to that function. The approximation is not a least-squares fit because the
sinewave components are not mutually orthogonal except over the entire real line unless their frequencies are commensurate. It also
does not equal the limit almost periodic component, but it would hypothetically converge to it as the observation time approaches
infinity, provided that the function is relatively measurable. But the theory does not use the limit together with conditions for or
assumptions of convergence in the limit. It simply uses the finite time statistics (approximate Fourier components) that are artificially
extended over all time. These extracted almost periodic representations can be used just as they are used in the limit theory (while
recognizing that there are some approximations involved) and can be calculated from either a finite-time record of 𝑥(𝑡) or an explicit
mathematical model of 𝑥(𝑡).

Nevertheless, the finite-harmonic component extracted from the data can be made a least-squares fit by simply recognizing that
because the harmonic frequencies {𝛼𝑗} in the extracted component

𝐽
∑

𝑗=−𝐽
𝐹

𝛼𝑗
𝑥 (𝜉) exp[i2𝜋𝛼𝑗 𝑡]

are not integer multiples of the fundamental frequency that is the reciprocal of the length of the time interval of the data, the
basis functions {exp(𝑖2𝜋𝛼𝑗 𝑡); −𝐽 ≤ 𝑗 ≤ 𝐽} are not orthonormal and therefore are not self-reciprocal, but there reciprocal basis
{𝜃𝑙(𝑡) ∶ −𝐽 ≤ 𝑙 ≤ 𝐽} can be calculated using the inverse of the Gram matrix as follows:

𝜽(𝑡) = 𝐆−1𝐞(𝑡)

where 𝐞(𝑡) is the column vector with elements {exp(i2𝜋𝛼𝑗 𝑡); −𝐽 ≤ 𝑗 ≤ 𝐽}, 𝜽(𝑡) is the column vector with elements {𝜃𝑙(𝑡) ∶ −𝐽 ≤ 𝑙 ≤ 𝐽},
and 𝐆−1 is the inverse of the Gram matrix 𝐆 with 𝑗𝑙th element

𝐺𝑗𝑙 ≜ ∫

𝑈∕2

− 𝑈∕2
𝑒𝑗 (𝑡)𝑒∗𝑙 (𝑡)d𝑡

Then by replacing (1∕𝑈 ){exp(−𝑖2𝜋𝛼𝑗 𝑡); −𝐽 ≤ 𝑗 ≤ 𝐽} with {𝜃𝑙(𝑡) ∶ −𝐽 ≤ 𝑙 ≤ 𝐽} in Eq. (21d) and omitting the limit operation,
q. (21c) becomes the least-squares-fitting finite-harmonic component of the time varying indicator function u(𝜉 − 𝑥(𝑡)) for each
alue of 𝜉. In this case, the entire component of interest is extracted from the indicator function: the residual contains none of this
omponent. In order for the extracted component described above to be real-valued, it is required that 𝛼−𝑗 = −𝛼𝑗 .

The data windowing used does not affect the theoretical equality of the two calculations of an extracted component – one from
finite-time data record and the other from a mathematical formula for the data – provided that the data record is producible from

he mathematical model, except for the difference between the values of the random elements in the mathematical model and the
ctual values of those elements in the record of data, such as the amplitude sequence in an amplitude modulated periodic pulse-train
ignal. The link here, which replaces the ergodic theorem, is the assumption that the single data record is indeed a segment of one
ranslate of a single time series and that the functions of this time series that are of interest are relatively measurable. This then
nables a standard type of argument that agreement between the two methods of calculation can be made as close as desired to
ach other and to their infinite-time limit by using a long-enough finite-segment of data [4].

All the usual tools still apply. For example, the proof of the central limit theorem for FOT-probability [23] is applicable to
he theory for finite records by simply arguing that for any arbitrarily small error, epsilon, in equality between the limit quantity
Gaussian distribution) and the measured quantity, one can in principle choose a finite record length that is long enough to achieve
n error size not exceeding epsilon.

There is nothing here of any technical sophistication. The novelty is in recognizing that finite-time FOT models that are precisely
tationary or poly-cyclostationary can be constructed from a finite record of data, and these models can be used for all the usual
robability calculations to within some finite accuracy determined by the length of the data segment and particular cycle frequencies
19

sed. The sensitivity of the accuracy to the numbers of harmonics of each fundamental frequency that are used increases as the degree
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of nonlinearity of the function of the data increases. A second-order lag product, for example, has a low degree of nonlinearity, but
the step discontinuities of the indicator function used to calculate CDFs results in a high degree of nonlinearity.

In the Fourier-coefficient formulas for the function (of the data) of interest, consisting of a lag product of any finite order,
he time-shifted finite segments of data will force the integrand to be zero outside of a subinterval defined by the intersection
f the time-translated finite-segment support intervals and the integration interval. Assuming all time-shifts of interest are much
maller than the segment length, this approach is acceptable. But it will window the 𝑛−dim space of 𝑛 time shifts. Assuming desired

spectral resolution width in any spectral parameters (PSD, SCF, Poly-Spectra, etc.) is larger than the reciprocal of the smallest value,
𝑈 −max

{

|

|

|

𝑡𝑖 − 𝑡𝑗
|

|

|

}

, for data-segment length 𝑈 , where
{

𝑡𝑖
}

denote the lag values, the achieved spectral resolution can be acceptable.
Ideally, we’d like this smallest value to be much larger than the coherence length of 𝑥(𝑡) (here meant to be the time separation
etween time samples that is just large enough to result in negligible statistical dependence) to ensure statistical reliability.

A refinement that should moderately improve reliability and reduce bias is to truncate the integration interval involving time-
hifts

{

𝑡𝑖
}

to the closest integer multiple of 1∕𝛼 that does not exceed 𝑈 − max
{

|

|

|

𝑡𝑖 − 𝑡𝑗
|

|

|

}

. For more detail on the definitions of
inite-time FOT CDF’s, see [2, p.3.5].

.9. Purely empirical FOT-probability models for irregular cyclicity

Cyclicity is ubiquitous in scientific data, but for many if not most natural sources of data, the cyclicity is irregular: the period of
yclic time-variation itself changes with time, slowly in some applications and rapidly in others. One approach to accommodating this
s to restrict cyclostationarity modeling to data segments that are short enough for the period to be treated as if it were constant.

more general and less restrictive approach is to hypothesize that the irregularity results from a time-warping of an otherwise
egular cyclicity. This is true for some irregularly cyclic data sources and not true for others, such as rotating machine vibrations
ith time-varying rotational speed as explained in [14]. Fortunately, there is a middle ground of natural sources of data for which

he irregular cyclicity – though irregularly fluctuating too rapidly to treat as locally regular – is due to time warping of otherwise
egular cyclicity and the rate of variation of the warping function is slow enough to be tracked. A broadly applicable approach to
oing this is introduced in [14] and is based on the concept of property-restoral adaptation.

Methodology and algorithms for such adaptation are presented therein for restoral of regular cyclicity. The adaptation process
roduces both a time-dewarped version of the original data, which is more nearly cyclostationary, and explicitly identifies the
ewarping function. In some applications, identification of the warping function inherent in the data, by inverting the identified
ewarping function, is the end goal for this time-series analysis; in other cases, further time-series analysis that exploits the restored
yclostationarity is the end goal. In this latter case, preprocessing data that exhibits irregular cyclicity to restore cyclostationarity
nables the user to go on to construct cyclostationary FOT-Probability models. These models can be used directly for some
pplications and can be time-warped to obtain irregularly cyclic probability models. A generally applicable rule of thumb for
redicting how well this methodology can perform is described in [14] in terms of a comparison between (1) what can be called the
oherence time (or statistical dependence time) of the data or the data memory length and (2) the constancy time (reciprocal of some
easure of the rate of time variation) of the warping function. Best performance is expected when (2) exceeds (1) by a factor much

arger than unity. This is akin to the well-known concept of local stationarity but generalized to local cyclostationarity and similarly
or the more esoteric and less precisely defined concept of local ergodicity generalized to local cycloergodicity. But fortunately,
uch abstractions are avoided when using FOT-Probability models. Complementary work on property-restoral de-warping has been
onducted in [24] and references therein, and [2, pp. 4.2, 4.3].

.10. The weakness of mean-square ergodicity

For readers who have been indoctrinated in stochastic process theory, a question that might be arising at this point is: ‘‘where does
he concept of mean-square (m.s.) ergodicity and ergodicity in probability (weak ergodicity), as distinct from the ergodicity w.p.1
r strong ergodicity discussed above, arise in the considerations discussed in the earlier sections of this paper?’’ Typical engineering
extbooks, such as the popular book by A. Papoulis [25], do not treat strong ergodicity. The fact of the matter is that m.s. and
eak ergodicity and their extension/generalization to m.s. and weak cyclo-ergodicity introduced by Boyles and Gardner [20] (see
lso [3]) is of some use in analytical work. But it must be realized that these forms of ergodicity are much weaker than strong
rgodicity. For example, m.s. ergodicity guarantees that the squared difference between a time average and an ensemble average
both possibly modified for cyclostationarity) goes to zero in the limit as averaging time approaches infinity, but only on average
ver the typically infinite ensemble. Therefore, this difference need not go to zero for many members of the ensemble. And these
embers need not be exotic as may those that may be present but are ignored by using the w.p.1 (with probability one) modifier

f equality. One might think that because squared error cannot be negative, the average squared error can be zero only if every
ndividual error is zero. But this is not true because we are considering infinitely many errors and every individual sample path
ccurs with probability zero: It gets zero weight in the weighted average that is the expected value. This is easier to see for temporal
ean squared error. For continuous-time averages, a countably infinite number of errors can be non-zero while the average is still

qual to zero. Although less commonly known, the average over all time can be zero even if the error at an uncountably infinite
umber of times is non-zero. The error can be non-zero throughout any finite interval, while the average error over all time is zero.
uch are the vagaries of infinity. Consequently, signal processing engineers designing algorithms based on a theory of expected
erformance using a model that is only m.s. or weakly ergodic can be surprised by the occurrence of sample paths for which time
verages differ greatly from the expected values used in the design.
20
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3.11. Optimum and adaptive statistical inference

If a signal processing algorithm for statistical inference adapts to the data as time progresses, it will adapt using its own time-
verages, not expected values. This suggests that FOT-Probability analysis of the solutions that adaptive algorithms converge to
ight be more relevant than stochastic probability analysis. Yet, the opposite is apparently true for investigating the convergence
rocess itself, since this process is transient, not persistent, and can be modeled as a non-ergodic stochastic process but cannot be
sefully modeled in terms of FOT-Probability cf. [26,27].

Examples of fixed optimum vs. adaptive algorithms are fixed Wiener filters vs. adaptive filters using least-mean-squares (LMS)
r recursive least squares (RLS) adaptation algorithms or some type of property-restoral (PR) adaptation algorithm. Also, for
arameter estimators, detectors, and classifiers, as well as filters, there are fixed optimized implementations and there are adaptive
mplementations using, for example, PR algorithms such as modulus-restoral and cyclostationarity-restoral algorithms [28].

Besides the issue of deciding what type of probability model to use for design and analysis of adaptive signal processing
lgorithms, similar questions arise for optimum algorithms, such as optimum filters. That is, one can minimize time-averaged squared
rror using an FOT-Probability model or minimize expected squared error using a stochastic process model. If the stochastic process
odel is strongly ergodic, the solution and performance of the optimum filter will be the same (w.p.1) as it is for an FOT-Probability
odel for a sample-path of that process. However, if the model is only mean-square ergodic, the solutions and performances will be

qual only in the sense of zero mean-squared differences. However, if the stochastic process model is non-ergodic, there is no known
ime-series model for which the solution and performance obtained using FOT-Probability would be the same. It comes down to the
uestion ‘‘what does the practitioner want to model: averages over time or averages over ensembles?’’ It depends on the application
nd real-world objectives. The teachings in our colleges today presuppose that only stochastic process models and associated theory
eed be learned. This is a mistake that needs to be rectified.

. Discussion of results

We have known for nearly a century that Birkhoff’s Ergodic Theorem, extended from discrete-time to include continuous-time,
rovides a condition on the sample space and probability measure of Kolmogorov’s generic stochastic process model that makes
onvergent time-averages of measurements on (functions of) the process converge, with probability equal to 1 (w.p.1), to expected
alues of those measurements. And, we also have known all this time that Kolmogorov’s Law of Large Numbers proves that ensemble
verages converge to expected values w.p.1. However, practitioners using these results are generally unable to understand, with any
ppreciable level of intuition, why these equalities between fundamentally different entities are valid.

In contrast, the alternative and greatly simplified stochastic process models introduced in this paper are transparent. It is obvious
hy time averages equal ensemble averages, because the sample space consists of time-translated versions of a single signal, and it

s obvious why these both equal expected values defined in terms of Fraction-of-Time Probability.
In applications where we are interested in only ergodic processes, there does not appear to be any pragmatic reason for adopting

he complicated abstract Kolmogorov model of a stochastic process instead of the simpler more concrete alternative stochastic process
odel. In fact, once we have accepted the alternative model as sufficient for our purposes, we can take the next step of recognizing

hat this alternative model is identical to the entity comprised of a single signal and its Fraction-of-Time (FOT) Probabilities which
re derived directly from this single signal. The conclusion is that sample spaces and stochastic processes are unnecessary unless
on-ergodic models of data are the entities of interest, in which case Kolmogorov’s model may be a good choice.

This is a situation where a pragmatic person would ask ‘‘what is the point of teaching students of statistical signal processing about
he strongly ergodic Kolmogorov stochastic process model as a tool for problem solving, with its unnecessary abstraction and its
rgodic hypothesis which can almost never be tested in practice, when the model of a single time series (a persistent function of time),
ogether with the concrete time-average operation is operationally equivalent? If we hold to the principle of scientific parsimony and
e value mathematical elegance and we act logically and rationally, shouldn’t we terminate this nearly-one-century-long practice

mmediately? It is relevant here that it has been said:

If elegance in science is just an attractive attribute, then elegance is not a necessary goal but simply something to be admired when
it happens. However, if elegance is a requisite feature of good science, then the characteristics defining elegance deserve the same
attention given to scientific rigor.

To be sure the ramifications of what is stated above are understood by the reader, it is also stated explicitly here, and shown in [1]
see also [9] and [15, Chap. 1]) that the temporal-expectation (time-average) operation behaves just like the stochastic-expectation
peration and produces all probabilistic quantities we are familiar with: cumulative probability distribution functions, probability
ensity functions, moments, characteristic functions, cumulants, etc. For example, both operations obey a Fundamental Theorem of
xpectation. It is just that:

For temporal expectation, the term probability means (1) Fraction of Time (FOT) of occurrence of an event at a set of times with
specified time-separations, over all translations of that set covering the temporal lifetime of the time series, instead of (2) fraction of
repeated experiments (each producing a time-series over a full lifetime) for which an event occurs at a particular set of times.
21
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There are two exceptions to this equivalence, and they are the sigma linearity property of expectation and the relative
easurability property of single time functions; these properties are simply dictated by the creators of these two models: the first

y the Kolmogorov Axiom VI and the second by the Kac-Steinhaus Axiom of Relative Measurability. Axiom VI may or may not be
atisfied by a stochastic process model that some practitioner specifies. And relative measurability is not necessarily satisfied by all
he time-series models practitioners may specify. For example, the samples paths of a strongly ergodic continuous-time stochastic
rocess are not necessarily relatively measurable; so, this property must be assumed (call it Axiom VII) for the strongly ergodic
tochastic process for continuous time if the limits of time averages in the Birkhoff ergodic theorem are to exist. Although there is
o question that sigma additivity of probability measures and sigma linearity of expectation can be useful mathematically, users can
arely verify that the models they use actually exhibit these properties. Nice mathematical properties for both stochastic processes
nd single time functions come at a cost of restricted applicability. This is the nature of models, especially those involving infinity.
t is not necessarily a basis for arguing the superiority or inferiority of the ensemble-average theory over the time-average theory.
ore in-depth analysis of this topic is provided in [6]. But it is important to mention here that just because the use of the relative
easure (time-averaging operation) does not generally enable the user to interchange the limit in the time-averaging integral with

he summation over a countable infinity of additive terms does not mean that one cannot proceed with such a calculation. It is just
hat the interchange of operations must be executed before an attempt to take the limit is made. In some cases, this is required only
or the limit that defines the time average; in other cases, it may be required also for a limit that defines an infinite summation.

For example, some continuous-time functions for which averages over discrete times exist may not be relatively measurable on the
eal line and therefore may not be averageable over all real time. This requires the addition of a 7th axiom to Kolmogorov’s stochastic
rocess model to accommodate Birkhoff’s ergodic theorem for continuous time averages. As another example, the Channel Coding
heorem of Information Theory cannot be based on FOT-Probability because it is formulated in terms of a non-ergodic stochastic
rocess: The stochastic-process output from any and every random channel except for a random time-delay, is non-ergodic, regardless
f whether or not the channel input is ergodic. (The random-delay exception is not allowed for cycloergodicity.) For example,
iddleton’s classic models of non-Gaussian noise are non-ergodic, because these noise models depend on random time-invariant

arameters such as the random number of noise sources seen by the receiver and their random locations relative to the receiver
see, for example, [29], and references therein).

As another example, the theories of maximum-likelihood parameter estimation and hypothesis testing are based on the likelihood
unction, which is the PDF of the observed data, conditioned on each specific hypothesis and/or hypothetical parameter value of
nterest. Also, Bayesian minimum-risk parameter estimation and hypothesis testing inference rules can be expressed in terms of
ikelihood functions. Consequently, these theories and methodologies can only be based on FOT-Probability if conditional FOT-
robabilities and/or PDFs can be experimentally measured or mathematically calculated from mathematical sample-path (time
unction) models of the data. Frequently this can indeed be done as demonstrated with many examples in [1,3,15]. However, it
annot always be done.

Motivated by a full recognition of the issues surfaced in the above discussion in this Section 4 and underscored by a deep
ppreciation for the ramifications to the practice of statistical signal processing design and analysis, I developed the comprehensive
heory and methodology of FOT-Probability and statistical spectral analysis that is presented in the 35-year-old book [1]. This book
xtends and generalizes the theory from stationary time series to cyclostationary, poly-cyclostationary, and almost cyclostationary
ime series, which provide higher fidelity models of many time series encountered in engineering and the sciences, where there
s some form of underlying statistical cyclicity. This extension/generalization of theory and method has engendered many new
nd higher-performing signal processing algorithms over the last 35 years—the application to random vibrations from rotating
achinery being one of many applications. The similar-vintage book [10] provides the theory of the stochastic-process counterpart

f cyclostationarity. A much more recent and more comprehensive book on both the stochastic-process and time-series models is
lso available [3] and is recommended. This latter book is encyclopedic and is the most scholarly treatment of cyclostationarity
vailable today.

So, the failure of the community to adopt the more pragmatic and less abstract data models delineated in this literature is not due
o any lack of theoretical foundation or lack of detailed theoretical and methodological framework built upon that foundation for
onducting statistical signal processing design and analysis. It is solely due to indoctrinated people’s propensity to avoid changing
heir ways of thinking. It has been more than a century since the celebrated physicist Max Planck wrote [2, p. 7.1]:

‘‘A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents
eventually die, and a new generation grows up that is familiar with it.’’

To my knowledge, stochastic process models of speech have not proven to be of much use in practice, but this makes speech a
seful example here for illustrating the problems that can arise when using stochastic process models that are not ergodic.

Non-ergodic models of signals do have their uses. Specifically, when important conditions of an experiment change from one
rial of the experiment to another, the impact revealed in an ensemble average of these changes cannot be determined from a time
verage on the time series from a single experimental trial. In the case of speech, the character of speech differs from one speaker
o another due to physiological, language, accent, and even emotional-state differences. So, an ergodic stochastic process model is
nappropriate. If one wants to design a speech processing algorithm that provides optimum performance averaged over all speakers
n a diverse group, a non-ergodic stochastic process model for the speech can, in principle, be used. However, if one wants to design

data-adaptive algorithm that provides optimum performance for each and every speaker, then the expected values analytically
22

erived from a non-ergodic model are irrelevant to the design, analysis, and performance of the algorithm. The speech statistics
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required by the algorithm are learned and adapted to for each individual signal. If probability models are to be useful for studying
the output time series converged to by an adaptive speech processor, they would have to be FOT-Probability models.

The same remarks apply for applications involving communications channels that introduce noise or interfering signals that is
ollectively modeled in terms of multiple noise and/or signal sources, random in number, and with multiple locations, random in
heir coordinates, relative to the receiver [29].

To illustrate how far the proposed paradigm shift can take us, its extension from time-series models of infinite length to those
f finite length, which is introduced in Section 3.8, is briefly resurfaced here.

Finite-time time-average statistics are ubiquitous in statistical signal processing algorithms, and such algorithms are typically
mplemented with DSP software and/or hardware, which greatly facilitates adaptivity. The potential for considerably higher fidelity
f the FOT-Probability models and the fact that these models, using idealized infinite-time averages follow essentially all the same
ules for finite mathematical manipulation as do stochastic process models, should encourage DSP algorithm designers to use FOT-
robability models in place of the traditional stochastic process models. And it is important to note that, as discussed in this paper, the
undamental Theorem of Time Averaging applies to not only limits of time-average statistics but also finite-time averages: it applies
o completely empirical quantities! Yet, there is a caveat: For the models derived from finite-time averages, some properties of the
xpectation and infinite-time-average models are only approximated. This appears to be more of an issue with poly-cyclostationary
odels, less so with cyclostationary models, and even less so with stationary models. This is due, at least in part, to the loss of the

xact orthogonality of the harmonics of 1) a periodic function on a finite interval that is not an integer multiple of the period, and
) a poly-periodic function on all finite intervals, and also due to the loss of exact statistical independence of random time series on
ll finite intervals. Consequently, the accuracy of these approximations becomes an important issue. Another-finite-window effect,
hich applies to all three classes of time series mentioned here is the ‘‘edge effects’’ on a convolution operation. The finite-time

tatistics like autocorrelation do not exactly obey the elegant input–output relation for convolution. But, again, these effects become
egligible for sufficiently long time-segments of data; that is, long relative to the memory length of the convolution. The detailed
efinitions of the cumulative CDFs and their moments and other probabilistic functions for finite-time segments of data are provided
t [2, p. 3.5].

The difference between the terms statistical and probabilistic are pointed out here for further clarity. Probabilities and
robabilistic parameters, such as means, variances, correlations, probability densities, etc., defined in terms of mathematical
xpectation calculated from mathematic models of stochastic processes, are theoretical or mathematical constructs. They come
rom within our heads through our imagination or as solutions to mathematical equations. In contrast, averages of empirical
easurements, such as estimates of these theoretical quantities, are statistics. They can be obtained from finite ensemble averages
erived from repeated experimentation or from finite-time averages performed on a single time series of measurements. This
ifference is often ignored in the terminology chosen by users of these tools. This can cause the same type of confusion as that
esulting from use of theoretical stochastic process models for implementations based on time-averages from single time series.
ecause stochastic processes are mathematical entities, no actual single signal can ever be considered to be ergodic or non-ergodic.
t is a real statistic, not an imaginary probability model. For example, the Statistical Theory of Communication and Information
heory are both primarily probabilistic theories, but they do deal with statistics to some extent. When the focus is on statistics

n communications, the traditional name for these theories is appropriate, but many if not most books on this subject focus on
robabilities. In contrast, turbulence studies are especially interested in ensembles, for example, all aircraft of a specified design
n all operational environments, or even a single aircraft in all operational environments. Here the ensemble in the definition of a
tochastic process can be real, not just imagined. Yet, the stochastic process models used in turbulence studies are not real, only
he finite ensembles of actual measured turbulence – the statistics – are real. The example set in Middleton’s classic book [13], of
eing consistently clear about this distinction, has not been as diligently followed as would behoove the statistical signal processing
ommunity. It is my belief that the all-too-common lack of distinction between probabilities and statistics is a clear reflection of the
onfusion caused, at least in part, by the abstraction of the stochastic process model that engineers are indoctrinated in.

Despite this little mini-lecture, the strict rule distinguishing between probabilities and statistics is violated in the case of FOT-
robabilities, and this is what makes these probabilities so relevant to practice. Except for the assumption of infinitely long time
eries, FOT-probabilistic quantities are indeed empirical and are therefore statistics. And, for the FOT-Probabilities defined for
inite-segments of data at [2, p. 3.5], they are statistics without any exceptions.

Before closing this discussion, the topic of fixed optimum vs adaptive algorithms for signal processing is briefly revisited. The
echnology of signal processing has evolved rapidly and exhibited many advances in capability over the last several decades, and
ducation in this technology has stayed at the forefront. However, this cannot be said with as much conviction of education in the
heoretical tools used for advancing this field. Our engineering programs may be keeping up to date on adaptive signal processing
lgorithms, but they are stuck teaching stochastic processes now much as it was done five decades ago – except for a shift from
ostly continuous-time signal models to mostly discrete-time signal models – even though the theory of FOT-Probability models

hat is often more relevant to adaptive signal processing was made available 35 years ago [1,9].
The entire subject of this article is but one example of a philosophical challenge of great practical import which we face every

ay in every endeavor: distinguishing between models of reality that our brains create and the real thing—reality itself, which can
e quite elusive in some cases. People generally act on the basis of their models of reality for better or for worse. The effectiveness
f interpersonal communication, for example, is dictated by the models in terms of which the communicators think. If their models
iffer too much, they will likely not communicate well. Further discussion of the impact, of the challenge to better match models
23

ith reality, on the conduct of science is available at this University of California, Davis website [2, p. 7].
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4.1. Conclusions

The traditional generic Kolmogorov model for stochastic processes consists of a generally abstract ensemble of sample paths
realizations) of the process together with a probability measure on the event sets in the sample space. The process is defined by
ix axioms which, for many applications, cannot all be verified for specific models adopted for use in practice.

The Birkhoff ergodic theorem establishes a condition on the measure in the Kolmogorov model under which probabilistic
arameters of the model, such as mean, covariance, probability density functions, etc., can be approximated by time averages
n a single sample path from the ensemble. However, the measures for models specified in practice often cannot be explicitly
etermined and therefore cannot be tested for Birkhoff (strong) ergodicity. Practitioners generally consider the probability measure
nd the measure property of ergodicity to be mysterious. And they often resort to simply hypothesizing, without verification, that
he model they adopt satisfies Kolmogorov’s six axioms and Birkhoff’s condition on the measure that guarantees ergodicity.

Not only do these practical limitations exist for stationary models, but similar limitations also exist for cyclostationary and
oly-cyclostationary models and models that are potentially ergodic or cyclo-ergodic.

To address this disconnect between today’s practice in statistical signal processing and traditional theory, new stochastic process
odels are proposed in this paper. These models are less abstract than the Kolmogorov model and they can, in fact, be derived
irectly from empirical data consisting of a single time series or from formulaic models for time series. Consequently, ergodicity
nd cycloergodicity are automatic and conceptually transparent in these new parsimonious models.

The parsimonious models avoid substantive conceptual challenges that often cannot be met in practice and that cause confusion
hen practitioners attempt to invoke theoretical properties of the standard models in their work on empirical data (see [6] for an

n-depth discussion and mathematical treatment).
Although these new models entail, for each stochastic process of interest, a recipe for specifying a sample space and the equivalent

f a probability measure which is automatically ergodic or cyclo-ergodic, the recommendation herein is to use these new models
or only pedagogical purposes of understanding the relationship between the old (Kolmogorov) and the new models, and otherwise
o away with the entire concept of sample spaces and stochastic processes. That is,

The recommendation for operational use is to adopt in place of the new stochastic process models the completely equivalent concept
of a single empirical time series of data or a formulaic model of such and the set of cumulative probability distributions of all orders
of interest (or, moments, or cumulants, or characteristic functions of all orders of interest), each of which is derived directly from the
data or formulaic model using nothing more than time averages. In this formulation, the probability of an event involving the time
series is defined to be the fraction of time, over the lifetime of the time series, that the event of interest occurs.

Previous publications have demonstrated in great detail that this concrete alternative approach is operationally equivalent to
he abstract stochastic process approach for processes that are stationary or cyclostationary and ergodic or cyclo-ergodic. So, there
s no penalty for the conceptual advantages offered by this alternative approach for this class of processes.

Only when non-ergodic models are specifically of interest is there a possible need to use the more abstract traditional stochastic
process approach. This includes all nonstationary processes that are not cyclostationary, poly-cyclostationary, almost cyclostationary,
asymptotically mean-stationary, or asymptotically mean-cyclostationary because no such process can be ergodic or cyclo-ergodic.

It is the intent of this paper to assist readers in recognizing the pragmatic benefits of moving toward a paradigm shift in the
eaching and practice of statistical signal processing for all applications in which the class of models delineated here are of interest.
t follows as a consequence that this paradigm shift also entails separate treatment of the complementary class of models for which
tochastic processes are or may be essential: the non-ergodic (and non-cyclo-ergodic) process models.
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