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Statistically inferred time warping:
extending the cyclostationarity paradigm
from regular to irregular statistical
cyclicity in scientific data

William A. Gardner
Abstract

Statistically inferred time-warping functions are proposed for transforming data exhibiting irregular statistical cyclicity
(ISC) into data exhibiting regular statistical cyclicity (RSC). This type of transformation enables the application of the
theory of cyclostationarity (CS) and polyCS to be extended from data with RSC to data with ISC. The non-extended
theory, introduced only a few decades ago, has led to the development of numerous data processing techniques/
algorithms for statistical inference that outperform predecessors that are based on the theory of stationarity. So, the
proposed extension to ISC data is expected to greatly broaden the already diverse applications of this theory and
methodology to measurements/observations of RSC data throughout many fields of engineering and science.
This extends the CS paradigm to data with inherent ISC, due to biological and other natural origins of irregular cyclicity.
It also extends this paradigm to data with inherent regular cyclicity that has been rendered irregular by time warping
due, for example, to sensor motion or other dynamics affecting the data.
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1 One-sentence summary
Well-known data analysis benefits of cyclostationary
signal-processing methodology are extended from regu-
lar to irregular statistical cyclicity in scientific data by
using statistically inferred time-warping functions.
2 The cyclostationarity paradigm in science
2.1 Cyclicity is ubiquitous in scientific data
Many dynamical processes encountered in nature arise
from periodic or cyclic phenomena. Such processes, al-
though themselves not periodic functions of time, can
produce random or erratic or otherwise unpredictable
data whose statistical characteristics do vary periodically
with time and are called cyclostationary (CS) processes
[1–3]. For example, in telecommunications, telemetry,
radar, and sonar systems, statistical periodicity or regular
cyclicity in data is due to modulation, sampling, scan-
ning, framing, multiplexing, and coding operations. In
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these information-transmission systems, relative motion
between transmitter or reflector and receiver essentially
warps the time scale of the received data. Also, if the
clock that controls the periodic operation on the data is
irregular, the cyclicity of the data is irregular. In mechan-
ical vibration monitoring and diagnosis, cyclicity is due,
for example, to various rotating, revolving, or reciprocat-
ing parts of rotating machinery; and if the angular speed
of motion varies with time, the cyclicity is irregular.
However, as explained herein, irregular statistical cyclic-
ity (ISC) due to time-varying RPM or clock timing is not
equivalent to time-warped regular statistical cyclicity
(RSC). In astrophysics, irregular cyclicity arises from
electromagnetically induced revolution and/or rotation
of planets, stars, and galaxies and from pulsation and
other cyclic phenomena, such as magnetic reversals of
planets and stars, and especially Birkeland currents (con-
centric shells of counter-rotating currents). In econo-
metrics, cyclicity resulting from business cycles has
various causes including seasonality and other less regu-
lar sources of cyclicity. In atmospheric science, cyclicity
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is due to rotation and revolution of Earth and other cyc-
lic phenomena affecting Earth, such as solar cycles. In
the life sciences, such as biology, cyclicity is exhibited
through various biorhythms, such as circadian, tidal,
lunar, and gene oscillation rhythms. The study of how
solar- and lunar-related rhythms are governed by living
pacemakers within organisms constitutes the scientific
discipline of chronobiology, which includes comparative
anatomy, physiology, genetics, and molecular biology, as
well as development, reproduction, ecology, and evolu-
tion. Cyclicity also arises in various other fields of study
within the physical sciences, such as meteorology, cli-
matology, oceanology, and hydrology. As a matter of
fact, the cyclicity in all data is irregular because there are
no perfectly regular clocks or pacemakers. But, when the
degree of irregularity throughout time-integration inter-
vals required for extracting statistics from data is suffi-
ciently low, the data’s cyclicity can be treated as regular.
The relevance of the theory of cyclostationarity to many

fields of time-series analysis was proposed in the
mid-1980s in the seminal theoretical work and associated
development of data processing methodology reported in
[1–3], which established cyclostationarity as a new
paradigm in data modeling and analysis, especially—at that
time—in engineering fields and particularly in telecommu-
nications signal processing where the signals typically
exhibit RSC. More generally, the majority of the develop-
ment of such data processing techniques that ensued up to
the turn of the century was focused on statistical
processing of data with RSC for engineering applications,
such as telecommunications/telemetry/radar/sonar and,
subsequently, mechanical vibrations of rotating machinery.
But today—more than 30 years later—the literature reveals
not only expanded engineering applications but also many
diverse applications to measurements/observations of RSC
data throughout the natural sciences (see Appendix), and it
is to be expected there will be many more applications
found in the natural sciences for which benefit will be de-
rived from transforming ISC into RSC, and applying the
now classical theory and methodology.
Wide-sense cyclostationary stochastic processes have

autocorrelation functions that vary periodically with
time. This function of time, under mild regularity
conditions on its mathematical model, can be ex-
panded in a Fourier series whose coefficients, referred
to as cyclic autocorrelation functions, depend on the
lag parameter; the Fourier frequencies, called cycle
frequencies, are multiples of the reciprocal of the
period of cyclostationarity [1–3].
More generally, if the frequencies of the (generalized)

Fourier series expansion of the autocorrelation function
are not commensurate, that is, if the autocorrelation
function is an almost-periodic (in the mathematical
sense) function of time, then the process is said to be
almost-cyclostationary [4]. This large class includes as
subclasses the polycyclostationary (polyCS) processes,
which exhibit only a finite number of incommensurate
periods, and the cyclostationary processes which exhibit
only one period. The (almost) periodicity property of the
autocorrelation function is manifested in the frequency
domain of the data as statistical dependence (e.g., correl-
ation) between the spectral components of the data
process that are separated in frequency by amounts
equal to the cycle frequencies of the process and are
shifted to any common spectral band for correlation
measurement. In contrast to this, stationary (in the
wide-sense) processes have joint moments (autocorrel-
ation functions) that are independent of time, depending
on only the lag parameter, and all spectral components
at distinct frequencies are statistically independent
(uncorrelated) with each other.
This subject has been further broadened by the

generalization of the theory to generalized almost-
cyclostationary processes, which exhibit cycle frequencies
of the autocorrelation function that are dependent on
the value of the lag variable, in [5].
As a simple means of assessing the current prevalence

of the cyclostationarity paradigm in scientific data
processing—that is, the concept of cyclostationarity and
the associated body of data processing theory and
method—in various fields of science and engineering, a
web search using https://scholar.google.com/ was per-
formed in April 2018, as a refinement and update of the
search performed during the writing of this paper in
2015. This latter search was based on just under 50
nearly distinct applications areas in science and engin-
eering, and the search terms were chosen to yield only
results involving cyclostationarity. By “nearly distinct”, it
is meant that the search terms were also selected to
minimize redundancy (multiple search application areas
producing the same “hits”). The results are shown in
Table 1 in Section 17, Appendix. The total number of
hits was about 136,000. The hits grow from a trickle of 1
to 2 figures per decade in the 1960s/1970s to a total of 6
figures over the ensuing half century.
The same is true, with 5 figures, for a search per-

formed on the single general search term “cyclostation-
ary OR cyclostationarity”. Also, as shown in Table 2,
another search was performed using just over 20 search
terms that represent partially-redundant general subjects
in science and engineering. The total number of hits was
about 238,000. These hits also grew from a trickle of 1
to 2 figures per decade in the 1960s/1970s to a total of 6
figures over the ensuing half century.
Some analysis of Google Scholar’s search results ob-

tained using the terms shown in these tables suggest that
this search engine’s proprietary search algorithm is cor-
rupting the logical “OR” operation and possibly the

https://scholar.google.com/
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“AND” operation. Further attempts will be made in an
attempt to minimize the impact of this hypothesized
corruption, and results obtained will be posted in [6].
Yet, there is good reason to believe that this body of the-
ory and method and their applications would be even
more pervasive if its utility could be extended from data
with regular statistical cyclicity (RSC) to data with
irregular statistical cyclicity (ISC).

The purpose of this paper is to enable an extension of
the cyclostationarity paradigm from data exhibiting
RSC to data exhibiting ISC. The approach taken,
when performed in discrete time (as required when
implemented digitally), can be classified as adaptive
non-uniform resampling of data, and the adaptation
proposed is performed blindly (requires no training
data) using a property-restoral technique specifically
designed to exploit cyclostationarity.

For what follows, readers would benefit from some basic
knowledge of the concept of cyclostationarity—the periodic
time variation of probabilistic (mathematical) or statistical
(empirical) parameters of time-series data, which are some-
times called signals. These parameters are most notably
the joint probability density function for the signal’s ampli-
tude at multiple points in time, or moments of these dens-
ity functions. A polyperiodic function of time (typically not
the signal itself) is defined by its characteristic of being
able to be expressed as a finite sum of periodic functions
with multiple incommensurate periods (these are periods
whose ratios are all irrational numbers. Polyperiodic time
variation of probabilistic/statistical parameters character-
izes polycyclostationary signals. The frequencies of the in-
dividual harmonics associated with each period of a
cyclostationary/polycyclostationary signal are called the
cycle frequencies. Polycyclostationary signals were originally
[4], and are still [1–3, 7], most frequently called
almost-cyclostationary (particularly by mathematically ori-
ented authors) because polyperiodic functions are exam-
ples of almost periodic (in the mathematical sense)
functions; such functions need not have only a finite num-
ber of incommensurate periods.
Tutorial treatments of cyclostationarity theory and

method are available in the books and journal articles [1–
5, 7, 8] and references therein; for the highest fidelity treat-
ments in the literature, all of which share a common
terminology and a self-consistent foundational theory (over
the last three decades), readers are referred to those
authored by the first author of [1–4] and [7–11], the ori-
ginator of the cyclostationarity paradigm in signal process-
ing, whose publications on this topic date back to the early
1970s [9]. Also recommended are the more recent publica-
tions by the originator of several extensions and generaliza-
tions of cyclostationarity, the author of [5], who uses
terminology and develops theory that are (for the most
part) consistent with that in the foundational literature.
There exists a duality between two alternative theories

of polycyclostationarity: (1) the traditional theory, intro-
duced in 1978 [4], which is more abstract and is based
on the stochastic-process model (introduced in the
1940s by Kolmogorov) and the associated probabilistic
expectation operation, and (2) the empiricist’s alterna-
tive, introduced during 1985–1991 [1, 2, 8, 10], which is
recommended for scientists working with empirical data
and is based on fraction-of-time probability and the
sine-wave-extraction operation (introduced during that
same period [1, 2, 8, 10]). For tutorial treatments of the
concepts underlying this duality, these four originating
publications plus [3, 11] are recommended, particularly
for analytically inclined practitioners but also for any
reader seeking a treatment that starts from basics and
proceeds step by step to build advanced concepts and
theory. For deeper mathematical treatments of funda-
mentals, the primary publications to date are [5, 12].
(Some of the references cited herein, such as
out-of-print books, authored by the author of this paper
are accessible to all for free as downloadable PDF docu-
ments at the webpage [9]; in the future, the primary
source on cyclostationarity is expected to be the website
(presently under construction) with domain name cyclos-
tationarity followed by any of the domain extensions
.com, .org, .info, .net, and .us [6].) The presently inadequate
Wikipedia article entitled Cyclostationary_process (and
several inadequate/redundant articles at other Wikipedia
sites) requires major upgrading.
One simple example of a CS signal is described here

to illustrate that what is here called regular statistical
cyclicity for time-series data can represent extremely er-
ratic behavior relative to a periodic time series. Consider
a long train of pulses or bursts of arbitrary complexity
and identical functional form and assume that, for each
individual pulse the shape parameters, such as ampli-
tude, width (or time expansion/contraction factor),
time-position, and center frequency, are all random vari-
ables—their values change unpredictably from one pulse
in the train to the next. If these multiple sequences of
random parameters associated with the sequence of
pulses in the train are jointly stationary random se-
quences, then the signal is CS and therefore exhibits
regular statistical cyclicity, regardless of the fact that the
pulse train can be far from anything resembling a peri-
odic signal. As another example, any broadband noise
process with center frequency and/or amplitude and/or
time scale that is varied periodically is CS. Thus, exactly
regular statistical cyclicity can be quite subtle and even
unrecognizable to the casual observer. This is reflected in
the frequent usage in recent times of CS models for
time-series data from natural phenomena of many distinct
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origins (see Appendix). Yet, there are many ways in which
a time-series of even exactly periodic data can be affected
by some dynamical process of cycle-time expansion and/
or contraction in a manner that renders its statistical cy-
clicity irregular: not CS or polyCS. The particular type of
dynamic process of interest in this contribution is time
warping.

3 Time warping
3.1 Time warping is a dynamical process of cycle-time
expansion and/or contraction
Let x(t) be a wide-sense CS, or wide-sense polyCS signal
or time series of data with at least one cycle frequency α,
and let y(t) be a time-warped version

y tð Þ ¼ x ψ tð Þð Þ ð1Þ

in which the time-warping function ψ(t) represents a causal
data transformation, meaning warped time never pauses or
reverses direction: if t2 > t1, then ψ(t2) > ψ(t1). In this
case, the warping function is an invertible function.
The notation t ¼ ψ−1ðsÞ is used herein to denote the in-
verse of s ¼ ψðtÞ.
In general, if the time warping is not an affine trans-

formation, ψðtÞ ¼ at þ b, or some periodic or polyperio-
dic generalization thereof, such as ψðtÞ ¼ at þ bðtÞ , in
which b(t) is a periodic or polyperiodic function, then
any cyclicity in x(t) is absent in y(t): the signal y(t) is not
CS or polyCS. Nevertheless, by de-warping time in y(t),
x(t) is recovered and therefore cyclicity is restored.
The periodically (or polyperiodically) time-varying

autocorrelation function for x(t) is given by

Rxx �ð Þ t; τð Þ ¼
X
α

Rα
xx �ð Þ τð Þ exp j2παtð Þ ð2Þ

where the cyclic autocorrelations Rα
xxð�Þ ðτÞ are defined in

the usual manner [1–3] in terms of either sinusoidally
weighted time averages of lag products or same for prob-
abilistic expected values of lag products. For CS x(t) with
period T1, we have fαg ¼ fh=T 1; h ¼ some integersg ;
and, for polyCS x(t), we have

αf g ¼

(
hp=Tp; p ¼ 1; 2;…; P < ∞; and;

for each p; hp ¼ some integers and

Tp ¼ one of P incommensurate periods

)
:

For example, the expected value of the lag product
with lag τ is given by
Rxx �ð Þ t; τð Þ ≜ E x t þ τð Þ; x �ð Þ tð Þ
n o

¼
X
α

Rα
xx �ð Þ τð Þ exp j2παtð Þ;

ð3Þ

where the superscript (∗) denotes optional conjugation
[1–3] of data (such as the baseband complex-valued rep-
resentations of real-valued bandpass signals) that is rep-
resented in terms of complex data values, and the cyclic
autocorrelation is given (ideally) by the limit of the si-
nusoidally weighted time average of the lag product, as
the averaging time T (ideally, for polyCS x(t)) approaches
infinity:

Rα
xx �ð Þ τð Þ ¼ lim

T→∞
E x t þ τð Þx �ð Þ tð Þ
n o

�exp − j2παtð ÞiT :

*

ð4Þ

The usual estimate of this statistical function, obtained
from the data x(t), is given by

R̂
α
xx �ð Þ τð Þ ¼ x t þ τð Þx �ð Þ tð Þ exp − j2παtð Þ

D E
T

ð5Þ

where T is the finite length of the time-averaging inter-
val used. Readers are warned that the presentation here
follows the convention in [5] for which the asymmetric
lag product x(t + τ)x(∗)(t) is adopted, whereas the earlier
treatments in all references herein by the Author fol-
low the alternative convention based on the symmet-
ric lag product x(t + τ/2)x(∗)(t − τ/2). Because of this
difference in convention, the asymmetric lag cyclic
autocorrelations in [5] and herein differ from the
symmetric lag autocorrelations in the original work
[1–3] in that the former equals the latter multiplied
by the lag-dependent phase-shifting factor exp(jπατ).
The choice of convention used herein was dictated by
the benefit gained by avoiding the need for transla-
tions back and forth between this paper and the im-
portant complementary source [5] and the directly
related upcoming publications by the author of [5],
and also because because τ/2 is generally undefined
for discrete time.
In the one special case for which x(t) is CS (not

polyCS), and the probabilistic expectation operation is
used as in Eqs. 3 and 4, the theory reveals that a finite
averaging time equal to the period of CS, T ¼ T 1 (or
any non-zero integer multiple thereof ) suffices in Eq. 4.
There is no need for an infinite amount of time-
averaging to obtain the idealized result. However, if the
probabilistic expectation is not used, then (ideally) infin-
ite averaging time is required to obtain the mathematic-
ally idealized cyclic autocorrelations.
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In contrast to x(t), the cyclic autocorrelations of the
time-warped data y(t), whether defined with or without
(cf. [10]) the probabilistic expectation operation, are gen-
erally zero, Rα

yyð�Þ ðτÞ ¼ 0, for all the values of α in Eq. 2, ex-

cept possibly α ¼ 0, and for all other non-zero values of α.
Before proceeding, it is clarified here that, although

the notation used does not reveal any dependence of the
time-warping function ψ(⋅) on the phenomenon charac-
terized by x(⋅), there is nothing in the theory or method
presented here that prohibits such dependence, with one
exception that is explained in Section 6. The only limita-
tion on the nature of such dependence is that, to be
physically viable, the dependence must (according to
generally—but not unanimously—accepted principles of
cosmology) be causal, meaning that the dependence
ψðtÞ ¼ ψðt; fxðvÞ : v < tgÞ is possible, but v in this ex-
pression cannot be allowed to exceed t. This clarifica-
tion can be summarized as follow:

The manner in which present cyclicity of a
phenomenon departs from being regular can depend
on past behavior of the phenomenon.

(The mathematical question of whether or not this
mathematical model should be modified to allow v to
equal t is not addressed here.)
As a final introductory remark on time warping and cy-

clicity, let us take into account the fact that data obtained
from measurement/observation of physical phenomena
cannot, in reality, exhibit exact RSC. This property is a
mathematical idealization of physical reality. The extent to
which data departs from exact RSC sets an upper limit on
how long sinusoidally weighted time averages (with sinusoid
frequencies approximately equal to the data’s cycle repetition
frequency and its harmonics) of the data, and/or
time-invariant nonlinear transformations of the data, can
be integrated (without dividing the integral by the in-
tegration time to produce an average value) before
the magnitude of the result stops growing with a lin-
ear trend with increasing integration time. This upper
limit is here referred to as the cycle coherence time
(CCT)—the maximum length of time over which the
cycle frequency is stable. (This is distinct from the
cyclic coherence time, which is defined to be the
width of the cyclic autocorrelation function of the
data—the maximum length of time separation (lag)
for which time samples are cyclically correlated.)

The objective of the data processing methods
presented herein is to increase the cycle coherence
time (CCT) of data–render the data’s statistical
cyclicity more regular or less irregular (increase RSC
or decrease ISC) – enough to be able to achieve
coherent cyclic processing gain sufficient for the
information-extraction task at hand.

Generally speaking, when unintentional time warp-
ing of data exhibiting some level of inherent regular-
ity of statistical cyclicity decreases the data’s CCT
(renders it less RSC or more ISC), the purpose of the
de-warping described herein is to recover the longer
CCT. But the same de-warping methods (but possibly
better interpreted in this case as warping methods)
can produce a substantial increase in CCT when the
cyclicity is inherently irregular even though the un-
processed data has not been subjected to any time
warping; in fact, useful levels of CCT can be obtained
in some cases even when the original data exhibits
such highly irregular statistical cyclicity that its CCT
is negligible to start with.

4 De-warping to restore cyclostationarity
If y(t) is de-warped using the inverse of the warping func-
tion that has transformed RSC in the data into ISC, the
regular statistical cyclicity present in x(t) is recovered:

y ψ−1 sð Þ� � ¼ x sð Þ ð6aÞ

or, changing the variable’s label from s to t, we obtain

y ψ−1 tð Þ� � ¼ x tð Þ: ð6bÞ

More generally, assuming that ψ−1(t) is completely or,
at least, partially unknown, it is in principle possible to
estimate it from the observed data y(t) by searching for
the particular function φ(t) (an estimate of ψ−1(t)) that
maximizes the strength of a measurement of some cyclic
feature, such as the cyclic autocorrelation function, for
the candidate de-warped data

y φ tð Þð Þ ¼ xφ tð Þ ð7Þ

at one or more values of lag τ and cycle frequency α, where
xφðtÞ ¼ yðφðtÞÞ ¼ xðψð½φðtÞ�Þ ¼ xðtÞ for φðtÞ ¼ ψ−1ðtÞ. In
some applications, doing this jointly for appropriate mul-
tiple values of τ and α can improve the quality of the esti-
mate. In such cases, the most appropriate values for τ may
be different from one value of α to another. In practice,
such values may be determinable only by experimentation
with trial values. Nevertheless, it is stated here, on the basis
of decades of experience, that more often than not the
magnitude of Rα

xxð�Þ ðτÞ peaks at τ ¼ 0 for physically realistic
models of x(t).
For any valid cycle frequency α and lag value τ for

which Rα
xxð�Þ ðτÞ is not zero and not negligibly small, the

property-restoral optimization proposed here is
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max
φ tð Þ

R̂
α
xφ τð Þ

��� ���2� �
ð8Þ

where R̂
α
xφðτÞ is a shorthand notation (the double sub-

script used in Section 3 is replaced with a single sub-
script from this point forward) for a measurement
(estimate) of the cyclic autocorrelation of xφ(t) obtained
from a finite time-averaging interval (and, of course, no
expectation operation):

R̂
α
xφ τð Þ ¼ xφ t þ τð Þx �ð Þ

φ tð Þexp − j2παtð Þ
D E

T
: ð9Þ

If no valid cycle frequency α for x(t) is known, then
this parameter also must be searched over in the
optimization Eq. 8. One possibility for initializing the es-
timate of α is described in Section 11, where there also
is described a possibility for initializing φ.
The values of cycle frequency α for which Eq. 8 is

a valid objective function for de-warping include any/
all cycle frequencies for which the cyclic correlation
coefficient for x(t) is non-negligible (not much less
than unity in magnitude). An alternative to the sin-
gle-cycle objective function Eq. 8 is a multi-cycle ob-
jective function which can be either a sum over cycle
frequencies of squared magnitudes of cyclic autocor-
relation functions or a sum of the complex values of
cyclic autocorrelations. The latter may perform best,
but it may be impractical in many cases because of
the need for equalizing the phases of the signal
component in each term in order to obtain coherent
addition (cf. literature on maximum-likelihood
multi-cycle detectors). Another alternative is to sum
squared magnitudes of cyclic autocorrelations over
multiple lag values τ (for either one or multiple
values of α). As illustrated in the example presented
in Section 14, multiple harmonically related values of
α could be useful as could a range of lag values τ
centered at τ ¼ 0 . However, in that example, the
strongest cyclic autocorrelation value occurs at the
first harmonic and at a lag of zero.
Substituting Eq. 7 into Eq. 9 yields the measured stat-

istic whose squared magnitude is the performance func-
tional to be maximized w.r.t the candidate de-warping
function φ:

R̂
α
xφ τð Þ ¼ y φ t þ τ½ �ð Þy �ð Þ φ t½ �ð Þ exp − j2παtð Þ

D E
T
:

ð10Þ

It is important to recognize that, although the
above concept and method is presented as if the ob-
served data arose from the time warping of other
data that exhibited regular cyclicity prior to time
warping, there is in fact no need for this conceptual
model—no need for there to be an underlying phys-
ical mechanism exhibiting regular statistical cyclicity
that is then transformed into irregular statistical cy-
clicity by some actual time-warping process. Direct
sources of ISC (e.g., an EKG from a beating heart or
many other biological functions that naturally produce
ISC, or some long-term climate, geological, or celes-
tial data, etc.) can, in principle, be de-warped in many
cases even if it were not warped to start with. How-
ever, in this case, we should say it can be “warped”
not “de-warped” since there is no original warping to
be removed. To summarize:
The objective addressed by the theory and method

presented here is twofold:

(i) To convert naturally occurring ISC in data into
RSC (or at least increase the data’s CCT) by time
warping—thereby rendering the converted data
(more) amenable to CS and/or polyCS data
processing techniques, algorithms, and theory;

(ii) To de-warp time in data that exhibited RSC prior
to having been subjected to time warping—thereby
increasing the data’s CCT, rendering it more
amenable to CS and/or polyCS data processing
techniques, algorithms, and theory.

The optimization method based on Eq. 8 is an ex-
ample of a property-restoral method for blind adaptation
(learning without training data). Introductions to cyclos-
tationarity restoral for blind adaptive spatial filtering and
frequency-shift spectral filtering for suppression of
additive noise and interfering signals, and to joint
cyclostationarity restoral for time-difference-of-arrival
estimation in the presence of additive noise and inter-
fering signals are presented in [1–3, 13, 14].
5 Warping compensation instead of de-warping
It is shown here that the search for an optimum

de-warping function φ ≡ ψ̂−1≅ ψ−1 , by the method de-
scribed in Section 4, can be transformed into an equiva-
lent search for an optimum warping compensation function
φ−1 ≡ ψ̂ ≅ ψ . Such a function, once found, can then be
inverted if it is desired to de-warp the data. By using the
definition

Δτ
φ φ−1 uð Þ� �

≜φ φ−1 uð Þ þ τ
� �

−φ φ−1 uð Þ� � ð11Þ

the measured statistic Eq. 10 to be used for optimization
of φ can be re-expressed as follows (using the change of
variables u ¼ φðtÞ):
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R̂
α
xφ τð Þ ¼ y φ t þ τ½ �ð Þy �ð Þ φ t½ �ð Þ exp − j2παtð Þ

D E
T

¼ y φ t½ � þ Δτ
φ tð Þ

	 

y �ð Þ φ t½ �ð Þ exp − j2παtð Þ

D E
T

¼ φ Tð Þj j
Tj j

�
y uþ Δτ

φ φ−1 uð Þ� �	 

y �ð Þ uð Þ

�exp − j2παφ−1 uð Þ� �
_φ−1 uð Þ

�
φ Tð Þ

≅
φ Tð Þj j
Tj j

�
y uþ τ= _φ−1 uð Þ� �Þy �ð Þ uð Þ

�exp − j2παφ−1 uð Þ� �
_φ−1 uð Þ

�
φ Tð Þ

ð12Þ
where |T| denotes the length of the averaging interval
T ≜ [to, to + T] (with some abuse of notation) and,
similarly, for the de-warped averaging interval:

φ Tð Þ ≜ φ toð Þ;φ to þ Tð Þ½ �
φ Tð Þj j ≜ φ to þ Tð Þ−φ toð Þ

and where the approximation in the last line of Eq. 12 is

Δτ
φ φ−1 uð Þ� �

≅ τ dφ=dt½ �t¼φ−1 uð Þ

¼ τ 1=dφ−1 uð Þ=du� �
≜ τ 1= _φ−1 uð Þ� �

:

This approximation is accurate when φ(t) is accurately
approximated as linear over intervals no longer than the
width of the function Rα

xð�Þ ≡ Rα
xxð�Þ ð�Þ , the cyclic coher-

ence time.
The inverse φ−1(t) of the candidate de-warping

function is a candidate warping-compensation function.
Equation 12 indicates that an estimate of the warping
function φ−1 ≡ ψ̂ ≅ ψ , from which its derivative _φ−1ðuÞ
≅ _ψðuÞ can be obtained, can be used to compensate
for warping in the data by time warping the sinusoids
and scaling, in a time-varying manner, their ampli-
tudes and the lags used in the data to compute the
cyclic autocorrelations. One can use Eq. 12 in Eq. 8
and search over φ−1 ≅ ψ instead of φ ≅ ψ−1, to directly
find the warping-compensation function φ−1 ≅ ψ; or, one
can use Eq. 10 in Eq. 8 to search directly for the
data-de-warping function φ ≅ψ−1. The relative advantages
and disadvantages of these two theoretically approximately
equivalent approaches are expected to involve somewhat
complicated tradeoffs between algorithmic efficiency and es-
timation accuracy. For an iterative search algorithm of the
sort described in Section 10, the efficiency depends on com-
putational complexity and storage requirements per iter-
ation, and the number of iterations required for
convergence. There are tradeoffs among these three effi-
ciency parameters for a specified level of estimation accur-
acy. And there are also tradeoffs between estimation
accuracy and algorithmic efficiency. Especially important is
the need for schemes, such as extensive diverse initializa-
tions of the iterative algorithm, which avoid mistaking sub-
stantially suboptimum local maxima (of which there can be
many) for the desired global maximum. These important
topics on search algorithm research are outside the scope of
this paper.

6 Error analysis
Substituting Eq. 1 into Eq. 10 and using an estimate α̂ of
a cycle frequency yields

R̂
α̂
xφ τð Þ ¼ x ψ φ t þ τð Þ½ �ð Þx �ð Þ ψ φ tð Þ½ �ð Þ exp − j2πα̂tð Þ

D E
T

ð13Þ
If φ is not exactly equal to the inverse of ψ, then there

is some de-warping-function error, which is denoted by

eφ≜φ−ψ−1 ≡ ψ̂−1−ψ−1 . This error may be due to error in
estimating ψ(t) and or error in inverting the estimated ψ(t)
or error in estimating ψ-1(t) directly.
In terms of this error, we have

ψ φ tð Þ½ � ¼ ψ ψ−1 tð Þ þ eφ tð Þ� �
≜ t þ e tð Þ ð14Þ

in which e(t) denotes the time de-warping error created
by the de-warping-function error:

e tð Þ ≜ ψ ψ−1 tð Þ þ eφ tð Þ� �Þ−ψ ψ−1 tð Þ� �
¼ ψ ψ−1 tð Þ þ eφ tð Þ� �Þ− t

ð15Þ
Using this error definition, Eq. 13 can be re-expressed as

R̂
α̂
xφ τð Þ ¼ 
x t þ τ þ e t þ τð Þð Þx �ð Þ t þ e tð Þð Þ

�exp − j2πα̂tð Þ�T :

ð16Þ
Assuming that ψ̂−1ðtÞ ¼ φðtÞ and, therefore, e(t) is not

statistically dependent on x(t) (this is, at best, an ap-
proximation when φ(t) is determined from x(t) in some
data-adaptive manner, because then there is a determin-
istic relationship between e(t) and x(t)), the probabilistic
expected value (w.r.t the probability density function for
x(t)) of Eq. 16 is given by

E R̂
α̂
xφ τð Þ

n o
¼
�X

α

Rα
x τ þ e t þ τð Þ−e tð Þð Þ

� exp j2π α− α̂ð Þt þ αe tð Þ½ �ð Þ
�

T

¼
�X

α

Rα
x τ 1þ _e tð Þh iτ
� �� �

�exp j2π α− α̂ð Þt þ αe tð Þ½ �ð Þ
�

T

ð17aÞ
where
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_e tð Þh iτ≜
1
τ

Z tþτ

t
_e uð Þdu:

This expression Eq. 17a also holds if e(t) is statistically
dependent on x(t) provided that the expectation is con-
ditional on the x(t)‐dependent e(t) being any particular
function of time. For an exact estimate of a cycle fre-
quency, α̂ ¼ αo, Eq. 17a reduces to

E R̂
αo
xφ τð Þ

n o
¼ 
Rαo

x τ 1þ _e tð Þh iτ
� �� �

�exp j2παoe tð Þð Þ�T
þ
�X

α≠αo

�
Rα
x τ 1þ _e tð Þh iτ
� �� �g

�exp j2παe tð Þ½ �
�exp j2π α−αoð Þt½ �

�
T

ð17bÞ
For a signal model with a specified set of cyclic autocor-

relation functions fRα
xðτÞg , indexed by cycle frequency,

Eqs. 17a and 17b can be used to study the sensitivity of
the expected value of the objective function in Eq. 8 to the
de-warping error and/or cycle frequency error.
The second term in Eq. 17b is called cycle leakage [2] (the

term cyclic leakage used by some authors is conceptually
misleading—the leakage is not cyclic; it represents the
amount of the cyclic feature for each and every cycle fre-
quency α and strength and phase Rα

xðτÞ that leaks into the
measurement of the feature with cycle frequency α̂ ¼ αo
and strength and phase Rαo

x ðτÞ). If the cyclicity, with cycle fre-
quency α− αo, in the product of the two factors in the sum
in Eq. 17b that depends on t through the quantities e(t) and
h_eðtÞiτ is negligible, this leakage term approaches zero as the
averaging time T grows without bound. The first term in
Eq. 17b is a time average of the actual cyclic autocorrelation
prior to time warping in x(t) and subjected to time-variant
lag shift and complex-amplitude scaling.
If α̂ ¼ α is invalid for every cycle frequency α exhib-

ited by x(t), then the first term in the right member
of Eq. 17b vanishes, and the value of the left member
is due entirely to cycle leakage—the second term in
the right member with αo replaced by α̂ . Also, it is
noted that for sufficiently slowly varying e(t), defined
by jh_eðtÞiτj << 1, Eq. 17b is closely approximated by

E R̂
αo
xφ τð Þ

n o
¼ Rαo

x τð Þ expð j2παoe tð Þh iT
þ
X
α≠αo

Rα
x τð Þ
exp j2παe tð Þ½ �Þ

�exp j2π α−αoð Þt½ �Þ�T :

ð18aÞ
in which the lag smoothing is negligible and the weight-
ing function in the first term of the right member is a
time-independent scalar β that can be re-expressed as
β ¼ h cosð2παoeðtÞÞiT þ jh sinð2παoeðtÞÞiT . It can be
seen that, if e(t) has an approximately even
fraction-of-time amplitude density function, then the first
term in β dominates the second term; the same result
holds without this evenness assumption if the error is small
enough, say |e(t)| < 1/8|αo|, and in this case the dominant
term is close to 1. Therefore, the lower the cycle frequency
αo is, the larger the de-warping error that can be tolerated
without significant attenuation of the actual cyclic autocor-
relation, provided that |αoe(t)| << 1. In the event that
jh_eðtÞiτj << 1 is not satisfied, the first term in Eq. 18a is
still a close approximation if Rαo

x ðτÞ varies very little over
the range of h_eðtÞiττ for fixed τ; this is satisfied, regardless
of the size of the error e(t), if τ ¼ 0 is selected for use.
For τ ¼ 0, Eq. 17a reduces to

E R̂
α̂
xφ 0ð Þ

n o
¼ Rα

x 0ð Þ
�X

α

exp j2π α− α̂ð Þt þ αe tð Þ½ �ð Þ
�

T

ð17cÞ
Generally speaking, it is to be expected that the more

ψ(t) or ψ−1(t) deviates from t (the stronger the warping or
required de-warping), the larger eφ(t) and therefore e(t) is
likely to be and, as a consequence revealed by Eq. 17a, the
weaker the cyclic autocorrelation of the de-warped data is
likely to be. Interestingly, the scale for quantifying the
size of the timing error e(t) can be seen from the first
term in Eq. 17b to be determined by the cycle
frequency estimate α̂=αo.
For exact de-warping, e(t) ≡ 0, Eq. 17b reduces exactly to

E R̂
αo
xφ τð Þ

n o
¼ Rαo

x τð Þ þ
X
α ≠ α̂

Rα
xx �ð Þ τð Þ

� exp j2π α−αoð Þt½ �Þh iT
¼ Rαo

x τð Þ þ
X
α ≠ α̂

Rα
x τð Þ

� sin π α−αoð Þ Tj jð Þ
π α−αoð Þ Tj j

�exp jπ α−αoð Þ Tj j½ �Þ
ð18bÞ

and the expected value of the estimated cyclic auto-
correlation is equal to the actual cyclic autocorrel-
ation prior to time warping in x(t) plus the cycle
leakage term, which is inversely proportional to
π(α − αo)|T|. In the remaining sections of this paper,
T will be used in place of |T| to denote the length
of the integration interval.

7 Basis-function expansion of de-warping function
To reduce the infinite-dimensional optimization problem
in Eqs. 8 and 10 (searching over all functions φ(t)
defined on the time interval [to, to +T] for any start time
to), we can use the finite dimensional approximation
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φ tð Þ ¼
X
k¼1

K

akck tð Þ ¼ aTc tð Þ≜ ψ̂−1 tð Þ ð19aÞ

where ðckðtÞ; t∈ ½to; to þ T �ÞKk¼1 comprise a linearly in-
dependent set of functions chosen according to any
available information about the time-warping function
ψ(t) or its inverse ψ−1(t), and where aT denotes the
row vector obtained by matrix transposition of the
column vector a. For example, knowing nothing more
than the spectral bandwidth of ψ−1(t), it is known
that an optimum (minimum-dimension) set of basis func-
tions that spans the space of all functions of duration no
more than T and positive-frequency bandwidth of no
more than Bψ−1 Hz consists of K ¼ 4Bψ−1T prolate spher-
oidal wave functions [15]. For all other sets of functions
(that are not equivalent to this set in the sense of
not being just K linearly independent linear combi-
nations of the members of this set), larger values of
K are required to span this same space.
If the functions used in Eq. 19a are chosen to be

orthogonal, then the mean squared value of the error

eφðtÞ≜ ψ̂−1ðtÞ−ψ−1ðtÞ is minimized by K independent
minimizations of this same mean squared error w.r.t. to the
K unknowns {ak} executed in any order. But this does not
imply that the mean squared value of the error e(t) defined
by Eq. 14 behaves similarly. In general, a full joint
minimization of this mean squared error w.r.t. all K un-
knowns {ak} must be executed. Yet, a perturbation analysis
suggests that, for sufficiently small eφ(t), K independent
minimizations of the mean squared value of the error e(t)
using orthogonal basis functions yields approximately the
same result as a single joint minimization.
With no knowledge at all about ψ−1(t), except that

it varies smoothly, harmonically related sinusoids or
polynomials may be reasonable choices for {ck(t)}.
However, since ψ(t) will essentially always contain the

additive term γt, where γ ¼ 1 unless there exists a
constant-velocity Doppler effect in the data y(t), and since
ψ(t) will also contain the term ηt2 if the data is affected by

constant acceleration, then ψ̂−1ðtÞ may contain related
terms like μt or νt1/2. Consequently, even when sinusoids
are used as basis functions, a more efficient approximate
representation of ψ−1(t) may be obtained by adding a few
such terms. For example, Eq. 19a can be replaced with

φ tð Þ ¼ μt þ νt1=2 þ
X
k¼1

K

akck tð Þ

¼ aTc tð Þ ≜ ψ̂−1 tð Þ
ð19bÞ

where the vector a has dimension K + 2 with the first
two elements being a−1 ¼ ν and a0 ¼ μ. If ν ¼ 0, then
the dimension can be reduced to K + 1 and, if μ ¼ 1,
then a1 ¼ 1 is fixed. In the case of Eq. 19b, Bψ−1 in
the requirement K ≥ 4Bψ−1T might be taken to be the

bandwidth of the component ψ̂−1ðtÞ−μt−νt1=2 of ψ̂−1ðtÞ,
which could be more well-defined than the bandwidth of

ψ̂−1ðtÞ.
Using Eq. 19, the set of equations Eq. 8 through Eq. 10

Eqs. 19a or 19b reduces to

max
a

R̂
α
xφ τð Þ

��� ���2� �
ð20Þ

where

R̂
α
xφ τð Þ ¼ y aTc t þ τð Þ� �

y �ð Þ aTc tð Þ� �
exp − j2παtð Þ

D E
T
:

ð21Þ
Once the optimum vector of coefficients a ¼ ao is

found from Eq. 8, the data transformation from Eq. 7,

x̂ tð Þ ¼ y aTo c tð Þ� �
; t∈ to; to þ T½ �; ð22Þ

approximately de-warps y(t) to produce an approxi-
mation to the CS (or polyCS) data x(t). Stated an-
other way, the regularity of cyclicity of yðaTo cðtÞÞ is
higher than that of y(t).
If the largest value of lag τ, at which the statistical

dependence of x(t) and x*(t − τ) is not negligibly
small, is denoted by τmax , then all pairs of lag prod-
ucts that are separated in time by at least τmax + τ
will be statistically independent. In this case, a gener-
ally applicable condition on the integration time T for
obtaining a statistically reliable estimate of Rα

xðτÞ for

all jτj≤τmax is
ffiffiffiffi
T

p
>>

ffiffiffiffiffiffiffiffiffiffiffi
2τmax

p
. Here τmax upper bounds

the coherence time of the data, but τmax þ jτj ≤ 2τmax

upper bounds the coherence time of the lag product of
the data. In fact, the coefficient of variation of the estimate
(the ratio of its standard deviation to the magnitude of its
mean) is, under relatively broad conditions, roughly equal

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðτmax þ jτjÞ=Tp

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τmax=T

p
. When possible, a value

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τmax=T

p
as small as 10% (T ¼ 200τmax ) or even

smaller is generally desirable; however, if the data
with warped cyclicity (call it the signal) is corrupted
by additive noise, with a signal-to-noise ratio (SNR)
of average powers or mean squared values that is
not sufficiently high, then T may need to be consid-
erably larger.
The approximation Bx ≅ 1/τmax is generally useful

for the positive-frequency bandwidth of the power
spectral density function of x(t). (The exact relation-
ship depends on the exact functional shape of the
PSD and cyclic autocorrelation, and the particular
definitions of width Bx, τmax.) Using this in the above
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reliability condition, together with the accuracy condi-
tion K ≥4Bψ−1T (where, for Eq. 19b, Bψ−1 is the band-
width of the component ψ−1(t) − μt − νt1/2), yields the
alternative expression

K ≥ 4Bψ−1T >> 8Bψ−1=Bx ð23Þ

where for, high SNR, the symbol >> as used here means
at least 100 times greater as discussed above. The larger
the ratio of bandwidths Bψ−1=Bx , the larger the number
K of basis functions required to de-warp the data, unless
the warping function is known except for the values of a
“few” parameters, as illustrated below with two exam-
ples. To quantify >> in relation Eq. 23 for SNR that is
not high, one needs to know the value of SNR. This is
addressed in Section 13.
For applications involving low-SNR data (e.g., SNR

as low as 0 dB down to, say, − 20 dB), which is one
of the reasons CS processing is of interest [2, 3, 7, 8],
one may need a time-bandwidth product BxT as large
as, say, 10,000 to 1,000,000, instead of only 200 as in
the case of high SNR.
As explained in Section 10, the iterative search al-

gorithm proposed there is most practical when an
analytical expression for the gradient vector of the
objective function in Eq. 20 is available. Using stand-
ard differentiation methods for complex functions of
a real variable, the following gradient expression can
be derived from Eq. 21:

∇ R̂
α
xφ τð Þ

��� ���2 ¼ 2 Re R̂
α
xφ τð Þ�∇ R̂

α
xφ τð Þ

h i
: ð24Þ

For the case in which φ(t) is given by Eqs. 19a or 19b,
we have

∇ R̂
α
xφ τð Þ ¼ 
 _y aTc t þ τð Þ� �

y �ð Þ aTc tð Þ� �
� exp − j2παtð Þc t þ τð ÞiT

þ
y aTc t þ τð Þ� �
_y �ð Þ aTc tð Þ� �

� exp − j2παtð Þc tð ÞiT
ð25Þ

Equations 24 and 25 are valid as written as long as the
vector a is real valued, provided that one simply inter-
prets the gradient symbol to mean the sum of the gradi-
ents of the real and imaginary parts of the function:
∇ ðreþ jimÞ ¼ ∇reþ j∇im . However, when a is com-
plex valued (as it will be when c(t) is complex valued,
e.g., complex sinusoids), the theory of complex gradient
operators is needed to obtain the correct modification of
these equations, cf. [16].
8 Inversion of warping functions
To obtain the best results, the choice for the basis

functions ½ckðtÞ�Kk¼1 that is most efficient should be
sought. For example, if the functional form of a time
warp is known, it is sometime possible to deduce the
functional form of its inverse. If the time-warp is a
time-varying delay and/or advance, ψðtÞ ¼ t þ δðtÞ as
it is when the warping is due to the Doppler effect
resulting from possibly time-varying velocities and/or
accelerations of data sensors and/or sources, then by
using the definition s ≜ ψ(t), we obtain the equation
ψ−1ðsÞ ¼ s−δðψ−1ðsÞÞ ¼ t þ δðtÞ−δðtÞ ¼ t for the in-
verse. In some cases of practical interest, the equation
ψ−1ðsÞ ¼ s−δðψ−1ðsÞÞ can be solved for ψ−1(s). Some
examples follow. But first, it is mentioned that the ap-
proximate inverse ψ−1(s) ≅ s − δ(s) can be quite accurate if
the constraint |δ(t)/t| << 1 is satisfied sufficiently strongly
for the range of time values of interest.
For constant velocities of a source and sensor moving

along a single straight line, δðtÞ ¼ aðt þ bÞand the solution
to the above equation is ψ−1ðsÞ ¼ ðs−abÞ=ð1þ aÞ ¼ a0ðs−
b0Þ. But, more generally, constant velocities lead to a quad-
ratic equation for δ(t) having 3 coefficients that are quad-
ratic (or lower-order) functions of elapsed time, and
quadratic (or lower-order) functionals of the velocity vec-
tors and initial-position vectors. For constant accelerations
δ(t) is the solution to a quartic equation, whose four coeffi-
cients are quartic (or lower-order) functions of elapsed
time, and quadratic (or lower-order) functionals of the ac-
celeration vectors and initial velocity and position vectors.
For the sake of simplicity in demonstrating exact in-

version, a time advance that grows quadratically with
time, δðtÞ ¼ at2 is considered here; then, we have

ψ−1 sð Þ ¼ s−δ ψ−1 sð Þ� �
ψ−1 sð Þ ¼ s−a ψ−1 sð Þ� �2
ψ−1 sð Þ� �2 þ 1

a
ψ−1 sð Þ− s

a
¼ 0

This quadratic equation has the solution

ψ−1 sð Þ ¼ −1=2a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4a2 þ s=a

p
¼ 1=2að Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4sa
p

−1
� �

which can be verified by substituting s ¼ t þ at2 . If
we knew the time-warp had this functional form, we
could simply use this form and maximize the ob-
jective function w.r.t. the single unknown parameter
a. For example, the search algorithm presented in
Section 10 could be used by calculating the gradient

of the objective function w.r.t. a in ψ̂−1 . Otherwise,
we could choose a set of polynomials of order K or
any other basis functions as in Eqs. 19–21.
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As another example, if the time warping is believed
to be a time-varying compression and/or expansion
of time, ψðtÞ ¼ tεðtÞ , say a linearly growing compression

εðtÞ ¼ at, then we have ψðtÞ ¼ at2 ¼ s and ψ−1ðsÞ¼ ffiffiffiffiffiffiffi
s=a

p
.

Again, if this form were known, we could use it and
maximize the objective function w.r.t. the unknown param-
eter a. Otherwise, we could choose a set of polynomials of
order K or any other basis functions as in Eqs. 19–21.

9 Basis-function expansion of warping-compensation
function
By analogy with the approach described in Section 7, we
can use a finite dimensional approximation to reduce the
infinite-dimensional optimization problem in Eqs. 8 and
12: searching over all functions φ−1(t) defined on the
time interval [φ−1(to),φ

−1(to +T)] for any start time to.
The analog of Eq. 19b is

φ−1 tð Þ ¼ γt þ ηt2 þ
X
k¼1

K

bkck tð Þ ¼ bTc tð Þ ≜ ψ̂ tð Þ:

ð26Þ

Although the set of basis functions used in Eq. 19
for representing φ(t) may very well be the same as
those used in Eq. 26 for φ−1(t), they also can be dif-
ferent. If they are the same, the vectors of coeffi-
cients a and b will certainly differ from each other.
It is expected that, when using the concepts in this
paper, one would typically choose to use either
Eq. 19 or Eq. 26, but not both except possibly for
the objective of comparing these two approaches
and selecting the one that seems to perform best
according to any criteria the user may select.
Substituting Eq. 26 and its consequence _φ−1ðtÞ ¼ bT _cðtÞ

into Eq. 12 yields

R̂
α
xφ τð Þ ¼ 1

T

Z φ toþTð Þ

φ toð Þ
y uþ Δτ

φ φ−1 uð Þ� �	 

y �ð Þ uð Þ

�exp − j2παφ−1 uð Þ� �
_φ−1 uð Þdu

≅
1
T

Z φ toþTð Þ

φ toð Þ
y τ= _φ−1 uð Þ þ u
� �

y �ð Þ uð Þ

� exp − j2παφ−1 uð Þ� �
_φ−1 uð Þdu

¼ 1
T

Z φ toþTð Þ

φ toð Þ
y τ=bT _c uð Þ þ u
� �

y �ð Þ uð Þ

� exp − j2παbTc uð Þ� �
bT _c uð Þdu

ð27aÞ

Under the condition that the interval of integration in
Eq. 27a is not substantially different from [to, to + T] on a
percentage of overlap basis, Eq. 27a is usefully approxi-
mated by
R̂
α
xφ τð Þ ≅ 1

T

Z toþT

to

y τ=bT _c uð Þ þ u
� �

y �ð Þ uð Þ

�exp − j2παbTc uð Þ� �
bT _c uð Þdu

ð27bÞ
which has the advantage of not requiring inversion of
the function φ̂−1ðtÞ ¼ bTcðtÞ to obtain φ̂ðtÞ at every
search point b. In fact, no function inversions are re-
quired by Eq. 27b. An example for which this condition
leading to Eq. 27b might not be met is a substantial ex-
pansion or contraction of time over the entire interval
[to, to + T]. But, even then, a substantial change in the
length of the interval of integration need not have a sig-
nificant impact on the gradient.
The gradient w.r.t. b of the squared magnitude of the

statistic Eq. 27 is given by

∇ R̂
α
xφ τð Þ

��� ���2 ¼ 2 Re R̂
α
xφ τð Þ�∇ R̂

α
xφ τð Þ

h i
ð28Þ

where

∇ R̂
α
xφ τð Þ≅ 1

T

Z toþT

to

∇ ½y uþ τ=bT _c uð Þ� �
y �ð Þ uð Þ

�exp − j2παbTc uð Þ� �
bT _c uð Þ�du

ð29Þ
In Eq. 29, the integrand is given by

∇ …½ � ¼ _y uþ τ=bT _c uð Þ� �
τ∇ 1=bT _c uð Þ� �

y �ð Þ uð Þ
�exp − j2παbTc uð Þ� �

bT _c uð Þ
− y uþ τ=bT _c uð Þ� �

y �ð Þ uð ÞbT _c uð Þ
� exp − j2παbTc uð Þ� �

j2παc uð Þ
þy uþ τ=bT _c uð Þ� �

y �ð Þ uð Þ
�exp − j2παbTc uð Þ� �

_c uð Þ;
ð30Þ

within which we can use the equation

∇ 1=bT _c uð Þ� � ¼ − _c uð Þ bT _c uð Þ� �−2
to obtain the re-expression

∇ R̂
α
xφ τð Þ ≅ 1

T

Z toþT

to

_y uþ τ=bT _c uð Þ� �
�y �ð Þ uð Þ exp − j2παbTc uð Þ� �
� − _c uð Þτ=bT _c uð Þ� �

du

þ 1
T

Z toþT

to

y uþ τ=bT _c uð Þ� �
�y �ð Þ uð Þ exp − j2παbTc uð Þ� �
� _c uð Þ− j2παbT _c uð Þc uð Þ� �

du

ð31aÞ
For both approaches described in this Section 9 and

Section 7, the continuous time data represented by the
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mathematics here must be time-warped or de-warped to
achieve the indicated time-warping compensation in Eq. 31a
or de-warping in Eq. 25 in order to evaluate the gradient at
every iteration of the iterative gradient-ascent search
method described in Section 10. Assuming that
time-sampled data is used in the search algorithm for
optimization described in the Section 10, the re-warping is
implemented by re-interpolating the data. The computation
and storage cost here depend significantly on the amount
of data being processed. Using the minimum
time-sampling rate 4Bx, that avoids overlap of both aliased
cycles and aliased spectral components, and a
time-bandwidth product of BxT ¼ 200, we generally need
about 800 time samples. But for low SNR (e.g., 0 dB or less),
the number needed can be considerably larger (see Eq. 42).
Because K ≥ 4BψT, where Bψ is the bandwidth of the com-

ponent ψ(t)− γt − ηt2 of ψ(t), the stronger the inequality
T >> 2/Bx that is required due to low SNR, the larger K, the
number of basis functions, must be: K ≥ 4BψT >> 8Bψ/Bx.
This is the counterpart, for warping compensation, to the
requirement Eq. 23 for de-warping.
If the computational cost of the data interpolation is

excessive, the following approach to circumventing data
interpolation altogether should be considered. The term
uþ τ=bT _cðuÞ in Eqs. 27–31a represents the only
time-interpolation of the data that is required when
using the warping-compensation method. When the
cyclic autocorrelation of x(t) is non-negligible at zero lag
τ ¼ 0 (which is where the maximum commonly occurs),
one can choose to use only this value of lag, in which
case τ=bT _cðuÞ ¼ 0 and the need for data interpolation
vanishes. As one example, applications where τ ¼ 0 ac-
tually produces a maximum cyclic autocorrelation mag-
nitude include those for which the signal consists of a
periodic pulse train with random amplitudes and (i) flat
pulses having width ≤ To/2 (e.g., Eq. 43 with all hn ¼ 1
and p(t) equal to a rectangle of width W ≤ To/2), or (ii)
arbitrary pulses having non-negative Fourier transforms.
In contrast, for flat pulses having width W >To/2 (case
(iii)), the value of the cyclic autocorrelation of x(t) at τ ¼ 0
approaches zero asW→To.
For τ ¼ 0, Eq. 31a reduces to

∇ R̂
α
xφ τð Þ ≅ 1

T

Z toþT

to

y uð Þy �ð Þ uð Þ

� exp − j2παbTc uð Þ� �
� _c uð Þ− j2παbT _c uð Þc uð Þ� �

du :

ð31bÞ

In applications where the cyclic autocorrelation at zero
lag is too weak to be used for warping compensation (e.g.,
case (iii) in the example above, with W close to To), but is
sufficiently strong at one or more non-zero values of lag
(e.g., τ ¼ To=2 in the same example with W ¼ To ) for
which the time-varying lag τ=bT _cðuÞ has dynamic range
over u ∈ [to, to+T] that is small compared with some repre-
sentative value, say τ/g, one can consider replacing τ=bT _cðuÞ
with the constant τ/g, rounded off to the nearest integer
multiple of the data-sampling time-increment, which
eliminates the need for data interpolation. For example, if
bTcðuÞ ¼ guþ εðuÞ and j_εðtÞj << g , then bT _cðuÞ≅ g . In
this case, Eq. 31a reduces to the close approximation:

∇ R̂
α
xφ τð Þ ≅ −τ

gT

Z toþT

to

_y uþ τ=gð Þy �ð Þ uð Þ

� exp − j2παbTc uð Þ� �
_c uð Þdu

þ 1
T

Z toþT

to

y uþ τ=gð Þy �ð Þ uð Þ

�exp − j2παbTc uð Þ� �
� _c uð Þ− j2παgc uð Þ½ �du :

ð31cÞ

As another simplifying approximation, if the
time-warping function varies slowly enough, relative to
the cycle frequency, j _cðuÞj << 2πjαgcðuÞj, then the _cðuÞ
term in Eq. 31b can possibly be deleted without having
much impact on the gradient.

10 Iterative gradient-ascent search algorithm
Let J(a) be an objective function—such as that in Eqs. 8
and 10, or Eqs. 20 and 21, or Eqs. 20 and 27—that is
maximized when some vector of parameters such as a in
Eq. 21 or b in Eq. 27, generically denoted by a in this
section, take on optimum values. There are many varied
options for optimization algorithms. Solely for purposes
of illustration, the algorithm selected here to optimize a
is Cauchy’s iterative gradient-ascent search algorithm,
modified by use of an alternative step-size sequence: the

candidate solution âðiÞ at iteration i is updated to obtain

the next candidate solution âðiþ1Þ at iteration i + 1 by
moving from the ith candidate location in the direction
of steepest ascent on the hypersurface J(a) (when the
step-size parameter is positive), which is the direction of
the gradient vector evaluated at the ith location:

â iþ1ð Þ ¼ â ið Þ þ μ ið Þ∇ J â ið Þ
	 


ð32Þ

where ∇J(a) = [∂J(a)/∂a1, ∂J(a)/∂a2,…, ∂J(a)/∂aK]
T is the

gradient vector and μ(i) is the step size at iteration i.
The following formula for the step-size sequence is one
of many that have been proposed for iterative
gradient-ascent algorithms:
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μ ið Þ ¼ −
â ið Þ− â i−1ð Þ
h iT

∇ J â ið Þ
	 


−∇ J â i−1ð Þ
	 
h i

∇ J â ið Þ
	 


−∇ J â i−1ð Þ
	 
��� ���2 :

ð33aÞ
It has been reported to produce rapid convergence in

a computationally efficient manner [17]. This step size
can be re-expressed as

μ ið Þ ¼ μ i −1ð Þ 1

∇ J â ið Þ
	 


−∇ J â i−1ð Þ
	 
��� ���

�
∇ J â i−1ð Þ
	 
T

∇ J â i−1ð Þ
	 


−∇ J â ið Þ
	 
h i

∇ J â i−1ð Þ
	 


−∇ J â ið Þ
	 
��� ���

ð33bÞ
from which it can be seen that the current step size is a
scaled version of the previous step size, and the scalar
consists of two factors: (i) the reciprocal of the size of
the change in the gradient vector from previous to
current step and (ii) the inner product between the pre-
vious gradient vector and the unit vector with direction
equal to that of the difference between the previous and
current gradient vectors. Consequently, if there is a large
change in the gradient vector, then the first factor scales
down the current step size from the previous one. The
second factor can both scale the step size up or down
and change its sign, which happens when the current
gradient is larger and oppositely directed relative to the
previous gradient. This possibility of occasional gradient
descent, instead of consistent gradient ascent, means
that Eq. 32, with step-size sequence Eq. 33, is generally a
gradient-ascent algorithm but can occasionally produce
a gradient descent to find a better point from which to
resume ascending.
An alternative to the single-formula approach in

Eq. 33 to specifying a step-size sequence, which has been
said to better accommodate troublesome surfaces, is to
alternate between two or more formulas for the
step-size sequence [18].
The step-size algorithm Eq. 33 was used in the simula-

tions reported in Section 14 simply as an example. The
search algorithm Eqs. 32–33, like many search algo-
rithms, may be challenged by either multimodal object-
ive functions containing local peaks above hyperplanes
of any dimension M from 1 to N and/or otherwise
troublesome surfaces, such as those containing long nar-
row ridges of any dimension M from 2 to N. In some
such cases, another search technique may be used in
concert with Eqs. 32 and 33. There are many varied op-
tions among which are those that simply select multiple

starting locations fâð0Þn : n ¼ 1; 2;…;Ng on a possibly
uniform grid of points covering what is considered to be
the smallest admissible region of the search space and
run the iteration Eqs. 32 and 33 for each and every start-
ing location, and then simply compare all the local max-
ima found and select the largest one. This is called
“brute-force” or “exhaustive” initialization.
11 Synchronization-sequence methods
Two methods are described here, one for initializing the
iterative gradient-ascent algorithm described in Section
10 and another for replacing that algorithm with an
elegant two-step method.
Another approach to initializing the iterative

gradient-ascent method of Section 10, which can be used
instead of the brute-force method, is as follows. A
synchronization sequence is defined to be a point process
for which the time locations of the points are the times
at which some particular repeating feature in the data
exhibiting irregular cyclicity is detected. The feature
must be one that occurs, for the most part, once every
cycle of the data exhibiting irregular cyclicity, and the
phase at which it occurs in the cycle (the fraction of the
cycle period that has elapsed when the feature occurs)
must be, for the most part, approximately constant for
best results. The assumed identifiability of such features
limits applications of this method, but its simplicity
merits its mention here.
Examples of such features include peaks, doublets (a

positive (or negative) peak followed by a negative (or
positive) peak), an end point of a “quiet subinterval” or
“dead zone,” and the start time of a decaying oscillatory
burst. For example, such a feature might be detectable in
an EKG from one pair of sensors with a particular place-
ment on the body while the data from another pair of
sensors at some other particular placement is that which
is to be analyzed. Or, the synchronization sequence
could simply be the time of sunrise and/or sunset or
other observable cyclic event like the time of full eclipse
of Sun by Earth's Moon as observed from some specified
location on Earth; or the time of onset of some specific
easily identifiable phase of a cyclic chemical process or
any other process that is cyclic. As discussed below, the
more features per cycle that can be identified, the better.

One can synthesize a smooth de-warping function ψ̂−1

ðtÞ from this point process. One approach, for the case
in which the cycle frequency is unknown and there is
one feature per cycle being detected is to first solve for
the best-fitting set of equally spaced time points

fδ þ nTogNn¼1 to the measured set of unequally spaced

points ftngNn¼1 . If the sum of squared differences be-
tween the values of these two sets of points is minimized
w.r.t. the fixed time-separation value (period) To and the
timing offset δ,



Gardner EURASIP Journal on Advances in Signal Processing         (2018) 2018:59 Page 14 of 25
min
δ;To

XN
n¼1

δ þ nTo − tn½ �2; ð34aÞ

then the optimum values are given by

T̂ o ¼ 1
N

XN
n¼1

n tn− δ̂
	 


1
N

XN
n¼1

n2
 !−1

δ̂ ¼ 1
N

XN
n¼1

tn−nT̂o
� �

ð34bÞ
The implicit form of Eq. 34b is interesting because the

solution is fully described in terms of temporal averages
and correlations of the time-series {tn} and {n}, and the
mean square value of {n}; but, because these two simul-
taneous equations are linear, they can easily be explicitly

solved for each of δ̂ and T̂ o.
As an aside, this is a possible method for initializing the

unknown cycle frequency, α̂ ¼ 1=T̂ o or, possibly α̂ ¼ 2=T̂ o

even if some other approach to initializing the search over
the coefficient vector a is to be used.
As a second step, one can find a smooth

de-warping function ψ̂−1 that at least approximately

satisfies ψ̂−1ðδ̂ þ nT̂oÞ ¼ tn; n ¼ 1; 2;…;N . This could
be done by simply doing a least squares fit of the lin-
ear combination of the basis functions in Eq. 19 to
the point process at the N measured time points:

min
a

XN
n¼1

ψ̂−1 δ̂ þ nT̂o

	 

− tn

h i2
ð34cÞ

Being a linear least squares problem, the solution is
obtained by simply solving a set of N linear equations in
K unknowns, a, obtained by equating to zero the gradi-
ent of the quadratic objective function in Eq. 34c, with

ψ̂−1ðtÞ ¼ aTcðtÞ substituted in. This approach cannot
be expected to perform well if N is not large enough
compared with K. However, the required value of K
typically increases with increasing length T of data
record, so the ratio N/K cannot be increased simply
by increasing T. Instead the average number of fea-

tures identified per interval of length T̂ o must be in-
creased, if possible.
If there are M identifiable features per cycle, then we

can simply replace the single objective function in
Eq. 34a with a sum of M such functions, each with its

own timing offset δ(m)and feature-occurrence times tðmÞ
n

and all sharing the same average period To:

min
δ;To

XM
m¼1

XN
n¼1

δ mð Þ þ nTo− t mð Þ
n

h i2
: ð35aÞ

In this case, the solution Eq. 34b is replaced with
T̂ o ¼ 1
M

XM
m¼1

XN
n¼1

n t mð Þ
n − δ̂

mð Þ	 
( ) XN
n¼1

n2
 !−1

δ̂
mð Þ ¼ 1

N

XN
n¼1

t mð Þ
n −nT̂o

	 

; m ¼ 1; 2; 3;…;M :

ð35bÞ

Similarly, Eq. 34c becomes

min
a

XM
m¼1

XN
n¼1

ψ̂−1 δ̂
mð Þ þ nT̂o

	 

− t mð Þ

n

h i2
ð35cÞ

The performance can be expected to improve as
the inequality NM/K >> 1 is strengthened. An example
of M ¼ 3 is the well-known QRS complex in an EKG
signal, which is repeated with every heartbeat. As in
the case of the implicit solution Eq. 34b, Eq. 35b is a
set of M + 1 simultaneous linear equations that are
fully described in terms of temporal averages and cor-

relations of ftðmÞ
n g and {n}, and the mean square value

of {n}, and that are easily solved explicitly.

Besides using synchronization sequences ftðmÞ
n gN; Mn; m¼1

for initialization of the iterative algorithm of Section 10,

the initial time de-warping candidate ψ̂−1ðtÞ specified by
Eq. 34c or Eq. 35c also can possibly be used to assess
which of the conditions on ψ(t), specified in this paper
for validating approximations that are to be used in de-
signing the search algorithm and predicting perform-
ance, are satisfied—although the solution to Eq. 36
below might be better suited.
The second method based upon synchronization se-

quences is revealed by the suggestion that the function

ψ̂−1ðtÞ found in this elegant manner could conceivably
be accurate enough to serve as the final de-warping
function. Similarly, a warping function can be found by
replacing Eq. 34c with Eq. 36

min
b

XN
n¼1

ψ̂ tnð Þ−nT̂o− δ̂
h i2

ð36Þ

or its generalization for M > 1. When this approach is
used, performance might be improved by identifying and

discarding outliers in the data setftðmÞ
n g.

Unfortunately, there are many applications in which
repeating features are hidden in erratic background fluc-
tuations, preventing identification of such features and
ruling out the methods of this section.

12 Pace irregularity
As inferred in preceding sections, de-warping or warping
compensation may not be possible for severe cases of
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time warping. In addition, there also are types of irregu-
lar cyclicity that are not due to time warping or cannot
be modeled as time-warped regular cyclicity. In some
such cases, it is possible that none of the methods de-
scribed in this and preceding sections would be able to
adequately reduce the irregularity of cyclicity. To illus-
trate, the following baseline signal model is considered:

y tð Þ ¼ x ψ tð Þð Þ ¼
X
n

qn ψ tð Þ−nToð Þ

where the pulses {qn(t)} are random, independent, and
identically distributed, and the synchronization times
{tn} for some repeating feature in y(t) or in the probabil-
ity density function for the random process y(t), due to
the behavior of qn(t) at say t∗, satisfy ψðtnÞ ¼ t� þ nTo .
This is expected to be a useful model for electrocardio-
grams with time-varying heart rate and corresponding
time-varying width of the pulse complex within each
beat. In general, signals of this type can be de-warped
using the methods discussed in preceding sections, since

y ψ−1 tð Þ� � ¼ x ψ ψ−1 tð Þ� �� � ¼X
n

qn t−nToð Þ

which is cyclostationary. However, if the baseline signal
model is changed to the following pace-irregular model

y tð Þ ¼
X
n

qn t− tnð Þ; tn ¼ ψ−1 2πnþ θ�ð Þ; ð37aÞ

then attempting to de-warp (using the symbol θ, instead
of s as in Section 8, for ψ(t)) yields

x θð Þ ≜ y ψ−1 θð Þ� �
¼
X
n

qn ψ−1 θð Þ−ψ−1 2πnþ θ�ð Þ� �
ð37bÞ

which is not cyclostationary as a function of θ unless the
time-warping function is linear, ψðtÞ ¼ ωt for some con-
stant ω, in which case the original data y(t) also is
cyclostationary.
The pace-irregular model Eq. 37a, and associated rota-

tion-angle model (with unwrapped angle θ), as Eq. 37b
shall be called, is useful for random vibrations y(t) from
rotating machinery with a fault point in some rotating
component. In this model, the pulses or bursts {qn(t)}
represent the machine structure’s vibration response
(typically damped ringing), which is modeled as inde-
pendent of the times of occurrence of the causative im-
pulsive shocks from the rotating fault. The advancing
rotation angle can be expressed in terms of instantan-
eous frequency as follows:
θ tð Þ ¼
Z t

to

ω uð Þduþ θ toð Þ:

The shapes of the bursts {qn(t)} are not affected in the
model Eq. 37a by the warping which is determined by ω(t).
Only their occurrence times tn are affected. In fact, these
occurrence times can be interpreted as warped versions of
the equally spaced (unwrapped) angles {2πn + θ∗} at which
the fault excites the system: tn ¼ ψ−1ðθnÞ≜ψ−1ð2πnþ θ�Þ
where ψ−1 (not ψ) is the warping function, and ψðtÞ ≡ θðtÞ
is the de-warping function.
Given ω(t) and using ψðtÞ ¼ θðtÞ, the warping function

ψ−1ðθÞ ¼ t can, in principle, be solved for. For example,
for ω ¼ at , the equation ψðtÞ ¼ θðtÞ ¼ ð1=2Þat2 þ θðtoÞ
can be solved to obtain ψ−1ðθÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=aÞ½θ−θðtoÞ�

p
. Or,

for ω ¼ expðatÞ, ψ−1ðθÞ ¼ ð1=aÞ lnða½θ−θðtoÞ�Þ.
When the speed of rotation ω ¼ dθðtÞ=dt is constant

(pace is regular), both y(t) and x(θ) are cyclostationary. But
when the speed changes with time, neither of these signals
are cyclostationary! Moreover, there is no de-warping func-
tion that will render either of y(t) or x(θ) cyclostationary!
Nevertheless, depending on the shapes of the bursts {qn(t)},
if they do not overlap each other too much, it may be pos-

sible to measure {tn}, fit an estimated period T̂ o to these
measurements ft̂ng (see Section 11), and then time-shift

the individual bursts from ft̂ng to fnT̂og. If there were no
errors in ft̂ng , then the burst-shifted signal would be
cyclostationary. Also, if the errors in ft̂ng are independent
and identically distributed random variables, the
burst-shifted signal would still be cyclostationary, but with
lower degree of cyclostationarity (see Section 13). If the er-
rors in ft̂ng are small, this procedure can substantially in-
crease the CCT (decrease the ISC) of the data, whether or
not the burst-shifted signal is exactly cyclostationary.
More generally, for an irregular-paced signal model such

as Eq. 37a, time warping as in Eq. 37b affects the pace-
maker’s rate and, as desired, can convert the irregular
pulse-times of occurrence to regular pulse-angles (in the case
of rotating machinery) of occurrence fθng ¼ f2πnþ θ�g ;
but, Eq. 37b also reveals that this time warping also
affects the time scale of the individual paced pulses
or bursts fqnðtÞg ¼ fqnðψ−1ðθÞÞg≜f~qnðθÞg and the
warped pulses f~qnðθÞg are no longer identically distributed.
Consequently, neither the irregular-paced signal nor the
time-warped regular-paced signal are cyclostationary. This is
particularly important to the study of rotating machinery vi-
brations when the RPM (meaning revolutions per minute or
rotations per minute) varies with time too fast to be treated
in the data analysis as locally constant (meaning all vibration
transients—e.g., from machine faults—have died away
before the RPM changes substantially, in which case
quasi-static approximations can yield accurate results).
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It follows that the recently proposed angle-time
(two-variable) model for vibration signals from rotat-
ing machinery [19] cannot be cyclostationary in angle
or time unless the RPM is constant or only slowly
varying. But, if it is constant, then nothing is gained
from the angle-time model because angle is propor-
tional to time and, consequently, the proposed order
is just the scaled classical cycle frequency and the
proposed order-frequency spectral correlation function
[19] is just the classical spectral correlation function,
with a scaled cycle frequency.
Furthermore, it is well known that time averages can-

not accurately approximate expected values for nonsta-
tionary signals that are not either slowly nonstationary
or CS or polyCS or almost-CS. Therefore, the proposed
angle-time model, which is a generally nonstationary
stochastic process (generally not stationary or CS or
polyCS or even time-warped CS), for rotating machinery
with non-slow variation in RPM, does not provide a
basis for a probabilistic theory of empirical signal pro-
cessing because the probabilistic parameters cannot be
estimated using empirical time averages and cannot pro-
vide a viable avenue for extending the theory of CS to vi-
bration signals from rotating machinery with rapidly
changing RPM. Similarly, the related concept of a
cyclo-nonstationary signal model [19], besides being
burdened with an unfortunate name, cannot do any
better because, again, the idealized-model characteris-
tics obtained from expected values cannot be accur-
ately approximated with empirical time averages. Any
attempt to develop a sound probabilistic theory for
the time-average processing of empirical data for such
nonstationary processes is destined to fail. This is not
a new result [20], but it is a result that should be
more broadly known and understood by signal pro-
cessing researchers wishing to add a novel theoretical
flavor to their work:

The parameters in generally nonstationary stochastic-
process models cannot be accurately estimated using
time-averages [20].

But there is a way to obtain a vibration signal with rapidly
time-varying RPM that is polyCS: If the variation of RPM
with time is periodic, then the nonstationarity can be cyc-
lic—the vibration signal can be polyCS with a period of CS
that is varied periodically as in a frequency-modulated sine
wave with a periodically time-varying frequency.

This provides motivation for machine testing with
RPM intentionally varied periodically; and it is hereby
suggested that such periodic-RPM test protocols be
investigated for purposes of exciting machine faults in
a manner that enhances their detectability.
13 Design guidelines
Two key parameters in the basis-function approach to the
optimization problem described in Sections 4, 5, 6, 7, 8, 9,
and 10 are the integration time T and the model order
(number of basis functions) K. The parameter T must be
large enough to suppress additive noise that corrupts the
signal and to adequately average the erratic (or random)
fluctuations in the signal itself in order to reveal the cyclic
autocorrelation present. At the same time, this parameter
must be no larger than necessary to keep the number of
basis functions K required in the model of the time-warping
function down to a minimum for those applications where
the warping function is not known to within the unknown
values of a small fixed set of parameters. As explained in
Sections 7 and 8, Eq. 23 ideally needs to be satisfied for the
de-warping method described in Section 7, and the counter-
part of Eq. 23, in which ψ−1 is replaced with ψ ideally needs
to be satisfied for the warping-compensation method de-
scribed in Section 9. But just how large does the ratio of the
LHS to the far-RHS of Eq. 23 need to be in order to satisfy
the “much greater than” requirement? One approach to an-
swering this question is presented here.
Qualitatively, the lower the degree of cyclostationarity

(DCS) of the measured data after ideal de-warping is,
the longer the integration time must be. The following
results can be straightforwardly obtained from the
fundamentals of the theory of CS developed in [2].
The DCS of the ideally de-warped measured noisy
data ~xðtÞ≜ yðψ−1ðtÞÞ , where yðtÞ ¼ sðψðtÞÞ þ nðtÞ from
which ~xðtÞ ¼ sðψ½ψ−1ðtÞ�Þ þ nðψ−1ðtÞÞ ¼ sðtÞ þ ~nðtÞ , is
defined to be the complex-valued correlation coefficient
(this is also called the cyclic correlation coefficient and is
one of several definitions of DCS—the utility of each def-
inition is strongly application-dependent (see [21])—

DCSα τð Þ ¼ Rα
~x τð Þ�� ��

R~x~x� 0ð Þ ð38Þ

(usage of the shorthand Rα
xð�Þ ≡ Rα

xxð�Þ ð�Þ from above con-
tinues here and below). It can be shown that

DCSα τð Þ ¼ ραs τð Þ�� �� SNR
1þ SNR

ð39Þ

where SNR≜Rsð0Þ=R~nð0Þ is the ratio of mean squared
signal to mean squared noise, and ραs ðτÞ ≜ Rα

ssð�Þ ðτÞ=Rss� ð0Þ
is the cyclic correlation coefficient (assuming the signal has
zero mean value or, equivalently, contains no finite-strength
additive sine-wave components), which has magnitude less
than or equal to unity.
A key objective to be met for the optimization to be

effective is to ensure that the coefficient of variation
(CV) for the estimated cyclic autocorrelation for the
de-warped data is small compared with unity, say 1/10
as an example target:
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CV≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var R̂

α
~x τð Þ

n or

mean R̂
α
~x τð Þ

n o��� ��� < 1=10 ð40Þ

The CV can be shown [2, 5] to be approximated by

CV≅
1ffiffiffiffiffiffiffiffi
BsT

p 1
DCSα τð Þ
� �

: ð41Þ

Substituting Eq. 39 into Eq. 41 transforms the require-
ment in Eq. 40 into

CV≅
1ffiffiffiffiffiffiffiffi
BsT

p 1

ραs τð Þ�� ��
 !

1þ SNR
SNR

� �
< 1=10

which can re-expressed as

T >
100
Bs

1

ραs τð Þ�� ��2
 !

1þ SNR
SNR

� �2
: ð42Þ

Because the order of the time-warping model, which
is the number of basis functions K, required to obtain
a good fit to the time de-warping function compo-
nent ψ−1(t) − μt − νt1/2 can be no smaller than 4Bψ−1T
(assuming the basis spans the set of signals having
duration T and bandwidth Bψ−1 ), K is, from Eq. 42,
lower bounded by

K ≥ 4Bψ−1T > 400
Bψ−1

Bs

1

ραs τð Þ�� ��2
 !

1þ SNR
SNR

� �2

ð43Þ

Equality in Eq. 43 might well suffice when the
optimum (most efficient) set of basis functions, which
is the smallest set that spans the space of all possible
time-warping or warp-compensating functions, is
used. For example, for the space defined by a max-
imum possible time-bandwidth product (e.g., not ex-
ceeding Bψ−1T ), the optimum set of basis functions
are the prolate spheroidal wave functions [15]. For
any other basis, K will generally need to be larger
than 4Bψ−1T for this particular space of possible warp-
ing functions. It follows from Eq. 43 that the smallest
the model order can be is the minimum of 1 and 400
Bψ−1=Bs. Thus, we have the following guideline:

The smaller the ratio of the bandwidth of the
de-warping function to the bandwidth of the signal is,
the less computationally costly the optimization can be.

One would hope for a bandwidth ratio no larger
than about 5% to 10%, in which case K need not
exceed 20 to 40 (for the above selected example tar-
get value of CV).
The averaging time requirement in Eq. 42 applies

generally to both the cyclicity-restoral and cyclicity-
irregularity-compensation approaches introduced in Sections
4, 5, 6, 7, 8, and 9. However, the model-order-require-
ment in Eq. 43 applies only to the former (de-warping)
method of Section 7. For the latter (warping compensa-
tion) method of Section 9, the condition K ≥4Bψ−1T used
to derive Eq. 43 must be replaced with K ≥ 4BψT, in which
case, we obtain

K ≥ 4BψT > 400
Bψ

Bs

1

ραs τð Þ�� ��2
 !

1þ SNR
SNR

� �2
: ð44Þ

Generally speaking, there does not appear to be any
specific relationship between the bandwidths of a func-
tion ψ(t) and its inverse ψ−1(t). For this reason and
others, there is no general guideline presented here for
determining which of the methods of Sections 7 and 8 is
more efficient (requires smaller model order K) or is
otherwise superior for a particular application. Neverthe-
less, one can, in principle, apply both methods for mul-
tiple values of K and/or different sets of basis functions
and compare results. Two of various optional criteria for
selecting the “best” method are (i) that which produces
the smaller CV for a specified model order and (ii) that
which produces the smaller model order for a specified
CV. (It is not generally true that if the specified CV is
smaller than but close enough to the smallest [over these
two methods] CV for a specified K, then the smallest K
[over these two methods] for this specified CV will be
achieved with the same method.)
It is emphasized that the condition on averaging time

given in Eq. 42 is necessary and sufficient for obtaining a
low value for the CV, and the conditions on model order
given in Eqs. 43 or 44 are generally necessary for obtain-
ing a close approximation to ψ−1 or ψ in cases for which
there is no knowledge of the functional form of these
functions. As explained in Section 6, at least partly, the
more ψ(t) or ψ−1(t) deviates from t or more generally
from any trend such as ct + dt2 or gt + ht1/2 (i.e., the
stronger the warping or required de-warping), the
weaker the cyclic autocorrelation of the data de-warped
with a candidate estimate of ψ−1(t) is likely to be. And
the weaker it is, the poorer the quality of the
optimization of a based on maximizing it is likely to be.
The extent of deviation of ψ(t) or ψ−1(t) from a trend

is for the most part captured by the bandwidths of these
deviations, denoted by Bψ and Bψ−1 . Consequently,
Eqs. 43 and 44 capture for the most part the impact of
these deviations on the required values for the parame-
ters T and K. For example, scaling the derivative of the
deviation Δψ(t) ≜ ψ(t) − trend (without changing the



Fig. 1 Pulse p(t) for the signal specified by Eq. 45
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range of Δψ(t)), which requires time compression or ex-
pansion, scales its bandwidth Bψ by the same amount: d
ΔψðβtÞ=dt ¼ βðdΔψðtÞ=dtÞ and BψðβtÞ ¼ βBψðtÞ.
Due in part to the fact that there is generally no

amount of data (integration time T) and/or model order
K that will produce an arbitrarily small specified CV, we
have the following guideline:

Some amount of experimentation with parameter
values, T and K, and basis functions will typically be
required to obtain the best attainable results.

The performance of any particular method applied to
any particular data can generally be expected to exhibit
a minimum CV, for any specified set of basis functions
and any available computational precision, at some par-
ticular pair of values for T and K (unless the warping
function is of known form with a small fixed number of
unknown parameters, regardless of the value of T—in
which case, the larger T is, the smaller the CV will gen-
erally be); values larger than these optimum values for T
and K can be expected to degrade performance.
Summarizing, the integration time T required is dic-

tated largely by the condition given by Eq. 42, which is
independent of the order K of the model ψ̂ðtÞ for ψ(t).
On the other hand, the model order required, for a good
fit of ψ̂ðtÞ to ψ(t), with no knowledge about ψ(t) other
than its bandwidth, is dictated by the requirement K ≥
4BψT. Given a value of T large enough to produce a suf-
ficiently small CV when the exact ψ−1(t) or ψ(t) is used
for de-warping or warping compensation (call this a tar-
get value of CV), the choice for a value of K affects pri-

marily how well the model ψ̂ðtÞ or ψ̂−1ðtÞ can fit ψ−1(t)
or ψ(t) and therefore, how close to the target value of
CV the actual value is. The value of K can, in principle,
be chosen as large as needed, which is generally dictated
by T, to obtain any desired precision of fit. The im-
pact of large values of K is the effect it has on the
convergence of the iterative search algorithm de-
scribed in Section 10 or the accuracy of the model fit
using any method for optimizing the vector of param-
eters a or b.This is a numerical issue, unlike the stat-
istical issue of reliability, characterized here in terms
of the CV. While the performance characteristics de-
scribed in this section are promising in terms of the
suggested apparent breadth of applicability of the
methods introduced here, there are almost certainly
limitations on applicability depending on the band-
widths Bs and Bψ or Bψ−1 which further research
should seek to characterize.

14 Numerical example
Because the viability of cyclostationarity exploitation in
data processing in many fields of science and
engineering has been amply demonstrated in the litera-
ture in recent decades using real-world data, the only
purpose of this section is to demonstrate that the theory
of cyclicity restoration and/or irregular cyclicity compen-
sation by time de-warping or time-warp compensation,
presented herein, is itself viable.
14.1 Experimental setup
The signal model to be used for the example is the fol-
lowing pulse-amplitude/pulse-width modulated pulse
train with uniform spacing between pulse starting times:

s tð Þ ¼
X
n

gnp hn t−nTo½ �ð Þ ð45Þ

where the two sequences of random variables fgn ¼ �1;
iid uniform g and fhn ¼ 1; 2; 3; iid uniformg are statisti-
cally independent of each other, and the nominal pulse
shape p(t) in this pulse stream is as shown in Fig. 1.
The time-sampling increment is Ts, the pulse repeti-

tion period is To ¼ 160Ts , and the signal bandwidth is
approximated by the reciprocal of the width of the auto-
correlation function [2]: Bs ≅ 12/To. The averaging time
(data-record length) is T ¼ 32; 768Ts ≅ 205To includes
205 cycles. It can be shown that the cyclic correlation
coefficient is jραs ðτÞj ≅ 1.
The measured data y(t) contains the signal,

time-warped by ψ(t), in additive white Gaussian noise
n(t): y(t) = s(ψ(t)) + n(t) with SNR ¼ þ10 dB (ratio of
mean squared values of s and n equals 10) in case A
(strong signal), and with SNR ¼ −10 dB in case B (weak
signal). From Eq. 1, we have xðtÞ ¼ sðtÞ þ nðψ−1ðtÞÞ.
The time-warping function is given by the sum of

un-warped time t and a non-periodic function



Fig. 2 Case A: time-warping function deviation (ψ(t) − t)/Ts(blue), and
estimate ðψ̂ðtÞ−tÞ=Ts thereof (red), using inexact warping frequencies with
SNR ¼ 10 dB. Case B: for exact warping frequencies and SNR ¼ −10 dB,
results are graphically indistinguishable from those shown for case A

Fig. 3 Case A: magnitude of the cyclic correlogram of the un-warped
data, with SNR ¼ 10 dB, as a function of normalized cycle frequency
and lag, α/fs and τ/Ts ð f s ¼ 1=T sÞ

Gardner EURASIP Journal on Advances in Signal Processing         (2018) 2018:59 Page 19 of 25
ψ tð Þ ¼ t þ 3
20ωo

cos ωot þ π=3ð Þ

þ 1
20ωo

cos 3þ π=1000ð Þωotð Þ
ð46Þ

where ωo ¼ 1=10To, and the bandwidth of the compo-
nent ψ(t) − t is approximately Bψ ≅ ωo/2π, which yields
Bψ/Bs ≅ 0.002. The warping function estimate is given
by ψ̂ðtÞ ¼ bTcðtÞ from Eq. 26 with γ ¼ 1 and η ¼ 0. From

Eq. 44, we require K > 4BψT ¼ 13 > 0:48=jραs ðτÞj2 ≅ 0:5
provided that the basis functions span the space of func-
tions with duration T and bandwidth Bψ ≅ωo/2π. By using
partial knowledge of ψ(t) below, K < 13 becomes feasible.
Taking advantage of approximate knowledge of ψ(t),

we select the K ¼ 4 basis functions, c1 ¼ cosðω�tÞ ,
c2 ¼ sinðω�tÞ , c3 ¼ cosð3ω�tÞ , c4 ¼ sinð3ω�tÞ , with
fundamental frequency ω∗ = 1.001ωo (whose frequen-
cies do not exactly match the true frequencies in
ψ(t)) for case A, and with ω∗ and 3ω∗ replaced with
the exact values ωo and (3 + π/1000)ωo for case B.

14.2 Discussion of results
The results of executing the iterative gradient-ascent
optimization algorithm Eqs. 32 and 33 to estimate the
vector of basis-function coefficients b in Eq. 26 with γ ¼ 1,
η ¼ 0, and K ¼ 4, using the gradient expression Eq. 31a
with the conjugation choice ð�Þ ¼ �, are shown in the eight
figures in Section 14.2. Because the objective function Eq. 8
is highly multimodal, a substantial computational effort is
needed to find the best initialization of the iteration. This
costly task was circumvented by selecting a starting
vector for b known to be in the vicinity of the optimum
vector. Also, because the warping function is of the form
ψðtÞ ¼ t þ εðtÞ, with |ε(t)| << tmoderately well satisfied, the

approximate formula ψ̂−1ðtÞ ≅ t−ε̂ðtÞ for the inverse
of the estimate ψ̂ðtÞ was used as an expedient and,
for ε̂, the estimate ε̂ðtÞ ¼ ψ̂ðtÞ−t was used. Quantita-
tively, jεðtÞj < 1=5ωo ¼ 320Ts ; so a sufficient require-
ment for |ε(t)| << t is t/Ts >> 320, and the range of
t/Ts used is [0, 32768]. Therefore, the requirement is
met for only the latter 90% of the data, suggesting
this may not be a highly accurate approximation and
better results than those shown may be obtained
using a more accurate approximation to the inverse
of ψ̂ðtÞ, or restricting t to be greater than 320.
It can be seen that time warping with ψ(t) (Fig. 2) sig-

nificantly suppresses the cyclicity of the signal s(t)
(Figs. 3, 4, 5, 6), but that ψ(t) can be estimated quite
accurately from noisy data (Fig. 2), and inverted and
used to de-warp the noisy warped signal well enough
to substantially restore its cyclicity (Figs. 7, 8, 9).
These results reveal the substantial noise tolerance
exhibited by cyclostationary signals. Using the peak
value of the cyclic correlogram (which is the quantity
the optimization algorithm seeks to maximize) as a
metric, it can be seen that the de-warping method
for a signal with power level of only 1/10 that of the
noise (Fig. 9) performs almost as well as it does for
a signal with power level of 10 times that of the
noise (Fig. 8).

14.3 Remaining challenges
Compared with the above example, there are, no doubt,
substantially more challenging examples that arise in
many fields of science involving data exhibiting irregular
statistical cyclicity. Although the approach presented



Fig. 4 Case A: magnitude of the cyclic correlogram of the time-warped
data, with SNR ¼ 10 dB, as a function of α/fs and τ/Ts ð f s ¼ 1=T sÞ

Fig. 6 Case B: magnitude of the cyclic correlogram of the time-warped
data (thick red) and of the data before warping (thin blue), as functions
of α/fs and τ/Ts ð f s ¼ 1=T sÞ. (Exact warping frequencies, SNR ¼ �10 dB)
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here is quite tolerant of noisy data, it is expected to be
sensitive to the extent of the irregularity of the cyclicity.
Time-warping functions with too large of a bandwidth
can result in a required model order that may be too
high (according to some as yet unidentified criterion). In
addition, some important types of irregular cyclicity,
such as pace irregularity, cannot be modeled in terms of
time warping, as discussed in Section 12. Additional nu-
merical examples are provided in [22, 23].

15 Conclusions
It is shown in this work that statistical inference from
time-series data based on enhancement or restoral of
the property of cyclostationarity can be performed to
achieve two data processing preparatory tasks; this
Fig. 5 Case A: magnitude of the cyclic correlogram of the time-warped
data (thick red line) and of the data before warping (thin blue line) as
functions of lag τ/Ts at cycle frequency α ¼ 1=To (SNR ¼ 10 db)
achievement enables further processing of the time
series data based on exploitation of cyclostationarity
once it has been enhanced or restored and thereby iden-
tified by determining one of its cycle frequencies. The
preparatory tasks are (1) determination of a time
de-warping function or its equivalent time-warping
compensation function and (2) use of that determined
function to increase the degree of cyclostationarity
thereby rendering it more amenable to cyclostatio-
narity exploitation techniques that are well known to
be effective for various types of statistical inference
and decision objectives, particularly in situations
where the signal of interest present in the data is
masked by noise and/or interfering signals also
present in the data.
Fig. 7 Case A: magnitude of the cyclic correlogram of the de-warped
data, with SNR ¼ 10 dB, as a function of α/fs and τ/Ts ð f s ¼ 1=T sÞ



Fig. 8 Case A: magnitude of the cyclic correlogram of the de-warped
data (thick red line) and of the data before warping (thin blue line) as
functions of lag τ/Ts at cycle frequency α = 1/To (inexact warping
frequencies, SNR ¼ 10 dB)
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Since its inception 30 to 40 years ago (cf. [1–5, 7–11]),
cyclostationarity exploitation has proven to be an un-
usually versatile tool for extracting information that is,
in some sense, hidden or buried in the available data.
The achievement of the work reported here is the exten-
sion of this important and now widely used paradigm
for signal processing from data exhibiting regular cyclic-
ity to more challenging data exhibiting only irregular cy-
clicity. Strictly speaking, exactly regular cyclicity exists
only in mathematics. Measurement or observation data
obtained from the physical world can exhibit only ir-
regular cyclicity. Depending on the phenomenon giving
rise to the data, the degree of regularity in the cyclicity
Fig. 9 Case B: magnitude of the cyclic correlogram of the de-warped
data (thick red) and of the data before warping (thin blue), as functions
of α/fs and τ/Ts ð f s ¼ 1=T sÞ. (Exact warping frequencies, SNR ¼ �10 db)
can be very high, moderate, very low, or absent
altogether. Although cyclicity is ubiquitous in our world,
as a consequence of rotation of Earth about its axis, its
revolution about the Sun, the Moon’s revolution about
Earth, other planets’ revolutions about the Sun, and, in-
deed, the astrodynamics of stars, galaxies, etc.—which
has only recently been convincingly argued is a result of
the central role of electromagnetism in the behavior of
the Universe—the degree of irregularity in this naturally
occurring cyclicity is more often than not too high to be
ignored. This means the efficacy of cyclostationarity ex-
ploitation can often be substantially limited if the degree
of irregularity is not decreased through time de-warping.
And this typically requires statistical inference of an ap-
propriate de-warping function.

As a consequence of the theoretical framework
developed in this paper, the cyclostationarity
paradigm can be expected to be extended, through
statistically inferred time de-warping or time-warp
compensation, from its present broad and diverse array
of applications to a considerably more ubiquitous field
of applications.
16 Highlights of converting irregular cyclicity to
regular cyclicity

� Conversion of irregular cyclicity in time-series data
to regular cyclicity is demonstrated.

� Data with regular cyclicity can be modeled as
cyclostationary.

� The cyclostationarity paradigm for statistical
inference has proven to be a rich resource.

� Cyclostationarity exploitation offers noise- and
interference-tolerant signal processing.

� Cyclostationarity exploitation can now be extended
to many more fields of science/engineering.

17 Appendix
17.1 The use of cyclostationary data models in science
As a simple means of assessing the utility of the concept
of cyclostationarity in various fields of science and engin-
eering, a web search using https://scholar.google.com/,
performed in April 2018, was based on just under 50
nearly distinct applications areas in science and en-
gineering, and the search terms were chosen with the
intent of being minimally redundant: minimum num-
ber of hits, each of which results from more than one
application area. The results are shown in Table 1,
where it can be seen that the total number of hits
was about 136,000. Analysis showed that the hits
grew from a trickle of 1 to 2 figures per decade in
the 1960s/1970s to a total of 6 figures over the ensuing

https://scholar.google.com/


Table 1 Nearly Distinct Application Areasa

1 "aeronautics OR astronautics OR navigation"
AND "CS/CS"

3,190

2 "astronomy OR astrophysics" AND "CS/CS" 864

3 "atmosphere OR weather OR meteorology
OR cyclone OR hurricane OR tornado"
AND "CS/CS"

2,230

4 "cognitive radio" AND "CS/CS" 8,540

5 "comets OR asteroids" AND "CS/CS" 155

6 "cyclic MUSIC" 512

7 "direction finding" AND "CS/CS" 1,170

8 "electroencephalography OR cardiography"
AND "CS/CS"

742

9 "global warming" AND "CS/CS" 369

10 "oceanography OR ocean OR maritime OR
sea" AND "CS/CS"

3,060

11 "physiology" AND "CS/CS" 673

12 "planets OR moons" AND "CS/CS" 274

13 "pulsars" AND "CS/CS" 115

14 "radar OR sonar OR lidar" AND "CS/CS" 5,440

15 "rheology OR hydrology" AND "CS/CS" 639

16 "seismology OR earthquakes OR geophysics
OR geology" AND "CS/CS"

1,090

17 "SETI OR extraterrestrial" AND "CS/CS" 83

18 autoregression AND "CS/CS" 2,040

19 bearings AND "CS/CS" 3,980

20 biology AND "CS/CS" 2,030

21 biometrics AND "CS/CS" 309

22 chemistry AND "CS/CS" 2,020

23 classification AND "CS/CS" 10,900

24 climatology AND "CS/CS" 811

25 communications AND "CS/CS" 21,200

26 cosmology AND "CS/CS" 172

27 ecology AND "CS/CS" 356

28 economics AND "CS/CS" 2,050

29 galaxies OR stars AND "CS/CS" 313

30 gears AND "CS/CS" 2,000

31 geolocation AND "CS/CS" 676

32 interception AND "CS/CS" 2,270

33 mechanical AND "CS/CS" 4,770

34 medical imaging OR scanning
AND "CS/CS"

1,370

35 medicine AND "CS/CS" 2,990

36 modulation AND "CS/CS" 17,000

37 physics AND "CS/CS" 4,539

38 plasma AND "CS/CS" 542

39 quasars AND "CS/CS" 47

40 Sun AND "CS/CS" 4,320

41 UAVs AND "CS/CS" 238
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half century. The same is true, with 5 figures, for the
search performed on the single general search term
“cyclostationary OR cyclostationarity”. Also, as shown in
Table 2, a search was performed using just over 20 search
terms that represent partially-redundant general subjects
in science and engineering: that is, there were substantial
numbers of hits, each of which result from more than one
subjected. The total number of hits was about 258,000.
These hits also grew from a trickle per decade in the
1960s/1970s to a total of 6 figures over the ensuing half
century. The number of hits for just the compound term
comprised of the adjective and corresponding noun
“cyclostationary OR cyclostationarity” was over 25,000
and has grown by a factor of approximately 4 every decade
since the 1960s. To facilitate use of this data, it has been
ordered alphabetically by search application (specific and
general) in Table 1 or search subject (specific and general)
in Table 2 and numerically by number of hits in Tables 3
and 4. Despite the concerted effort to use the search-term
operators AND and OR judiciously and to select the
search applications in a manner that minimizes the likeli-
hood of more than one term producing the same hit (here
called “search-term redundancy”), the search results ob-
tained are suspicious. Given that there are only about
25,000 hits for the search subject “cyclostationary OR
cyclostationarity” then, by “ANDing” this term with
each of the approximately 50 approximately non-re-
dundant applications, the total of all the hits for the
“ANDed” terms should not exceed 25,000 by very
much, yet it is about 5 times larger than this! This
large of a total requires that either 1) the result of
25,000 is artificially limited by some search algorithm
employed (not taken into account here out of ignor-
ance) being used by the Google Scholar search en-
gine, or 2) the AND and OR operators are not
functioning correctly, or 3) the search application
areas are much more redundant than expected—or
possibly all three of these potential causes are in
effect. The results of future analysis and possible re-
finement of this search study is planned to be made
available in [6].
Table 5 highlights a particular scientific field in

which cyclicity is central, and Table 6 highlights a few
applications in which data measurement/analysis is
enhanced by artificially instilling cyclicity into the
data. These include use of optical spectral cloning for
ultrafast/wideband photonic implementations of sig-
nal-processing algorithms (e.g., for radio frequency
data) that were previously limited to slower and more
narrowband electronic implementation and use of
spectral redundancy insertion, such as spectral clon-
ing, for introducing some level of immunity to noise
and/or interference when used in conjunction with
frequency-shift filtering.



Table 2 Partially-Redundant General Subjectsa

1 "almost "CS/CS"" 8,840

2 "almost periodically correlated" AND
"sequences OR processes"

352

3 "Cyclic Wiener Filtering" OR "FRESH
filtering" OR "frequency-shift filtering"

676

4 "cyclostationary EOF" OR "cyclostationary
empirical orthogonal functions"
OR CSEOF

453

5 "exploiting "CS/CS"" 11,900

6 "Gardner relation" OR "Cyclic Wiener
Relation"

75

7 "periodically correlated" AND
"sequences OR processes"

1,740

8 "signal analysis" AND "CS/CS" 3,210

9 "signal processing" AND "CS/CS" 19,000

10 "spatial filtering" AND "CS/CS" 571

11 "spectral redundancy" AND "CS/CS" 1,170

12 computers AND "CS/CS" 17,700

13 cyclic spectrum AND "CS/CS" 9,580

14 cyclostationary OR cyclostationarity 25,000

15 equalization AND "CS/CS" 6,360

16 estimation AND "CS/CS" 20,800

17 filtering AND "CS/CS" 18,400

18 filtering OR smoothing AND "CS/CS" 12,400

19 higher-order OR cumulant AND
cyclostationarity

6,040

20 identification AND "CS/CS" 15,700

21 mathematics AND "CS/CS" 10,900

22 prediction AND "CS/CS" 9,540

23 sensing AND "CS/CS" 14,900

24 spectrum AND "CS/CS" 22,200

TOTAL 237,507
a"CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity"

Table 1 Nearly Distinct Application Areasa (Continued)

42 universe AND "CS/CS" 209

43 vibration OR rotating machines
AND "CS/CS"

3,240

44 walking AND "CS/CS" 990

45 wireless AND "CS/CS" 15,100

TOTAL 135,628
a"CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity"

Table 3 Nearly Distinct Application Areasa

1 communications AND "CS/CS" 21,200

2 modulation AND "CS/CS" 17,000

3 wireless AND "CS/CS" 15,100

4 classification AND "CS/CS" 10,900

5 "cognitive radio" AND "CS/CS" 8,540

6 "radar OR sonar OR lidar" AND "CS/CS" 5,440

7 mechanical AND "CS/CS" 4,770

8 physics AND "CS/CS" 4,539

9 Sun AND "CS/CS" 4,320

10 bearings AND "CS/CS" 3,980

11 vibration OR rotating machines
AND "CS/CS"

3,240

12 "aeronautics OR astronautics OR navigation"
AND "CS/CS"

3,190

13 "oceanography OR ocean OR maritime OR
sea" AND "CS/CS"

3,060

14 medicine AND "CS/CS" 2,990

15 interception AND "CS/CS" 2,270

16 "atmosphere OR weather OR meteorology
OR cyclone OR hurricane OR tornado"
AND "CS/CS"

2,230

17 economics AND "CS/CS" 2,050

18 autoregression AND "CS/CS" 2,040

19 biology AND "CS/CS" 2,030

20 chemistry AND "CS/CS" 2,020

21 gears AND "CS/CS" 2,000

22 medical imaging OR scanning
AND "CS/CS"

1,370

23 "direction finding" AND "CS/CS" 1,170

24 "seismology OR earthquakes OR geophysics
OR geology" AND "CS/CS"

1,090

25 walking AND "CS/CS" 990

26 "astronomy OR astrophysics" AND "CS/CS" 864

27 climatology AND "CS/CS" 811

28 "electroencephalography OR cardiography"
AND "CS/CS"

742

29 geolocation AND "CS/CS" 676

30 "physiology" AND "CS/CS" 673

31 "rheology OR hydrology" AND "CS/CS" 639

32 plasma AND "CS/CS" 542

33 "cyclic MUSIC" 512

34 "global warming" AND "CS/CS" 369

35 ecology AND "CS/CS" 356

36 galaxies OR stars AND "CS/CS" 313

37 biometrics AND "CS/CS" 309

38 "planets OR moons" AND "CS/CS" 274

39 UAVs AND "CS/CS" 238

40 universe AND "CS/CS" 209
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Table 5 Chronobiology

Chronobiology (45,300 search hits on Google Scholar). The study of how
solar- and lunar-related rhythms are governed by living pacemakers
within organisms constitutes the scientific discipline of chronobiology
(sometimes called chronomics). Parallel to the familiar spatial cellular
structure of living cells, temporal (time) organization is a vital part of the
survival and normal functioning of every species. Adaptations evolved
by organisms to cope with regular geophysical cycles in their
environment are evident in nearly every aspect of their lives. In fact,
biological timekeeping is a core property of life on a rotating and
revolving planet. Thus, cyclicity (or rhythmicity) is central to much of
chronobiology. That is chronobiology is in large part the study of
biological rhythms which represent irregular cyclicity and include
physiological or behavioral, and internally- (endogenous) or externally-
(exogenous) controlled rhythms; diurnal, nocturnal, and crepuscular
rhythms; circadian, ultradian, and infradian rhythms; and tidal, lunar, and
gene oscillation rhythms.

Chronobiological studies include but are not limited to comparative
anatomy, physiology, genetics, molecular biology and behavior of
organisms within biological rhythms mechanics [ Chronobiology:
Biological Timekeeping, by J. C. Dunlap; J. J. Loros, and P. J. DeCoursey,
Sinauer Associates Inc., 2009.] Other aspects include development,
reproduction, ecology and evolution. https://qz.com/1091769/the-2017-
nobel-prize-in-medicine-goes-to-hall-rosbash-and-young-for-their-work-
explaining-circadian-rhythm/.

Table 3 Nearly Distinct Application Areasa (Continued)

41 cosmology AND "CS/CS" 172

42 "comets OR asteroids" AND "CS/CS" 155

43 "pulsars" AND "CS/CS" 115

44 "SETI OR extraterrestrial" AND "CS/CS" 83

45 quasars AND "CS/CS" 47

TOTAL 135,628
a"CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity"

Table 4 Partially-Redundant General Subjectsa

1 cyclostationary OR cyclostationarity 25,000

2 spectrum AND "CS/CS" 22,200

3 estimation AND "CS/CS" 20,800

4 "signal processing" AND "CS/CS" 19,000

5 filtering AND "CS/CS" 18,400

6 computers AND "CS/CS" 17,700

7 identification AND "CS/CS" 15,700

8 sensing AND "CS/CS" 14,900

9 filtering OR smoothing AND "CS/CS" 12,400

10 "exploiting "CS/CS"" 11,900

11 mathematics AND "CS/CS" 10,900

12 cyclic spectrum AND "CS/CS" 9,580

13 prediction AND "CS/CS" 9,540

14 "almost "CS/CS"" 8,840

15 equalization AND "CS/CS" 6,360

16 higher-order OR cumulant AND
cyclostationarity

6,040

17 "signal analysis" AND "CS/CS" 3,210

18 "periodically correlated" AND
"sequences OR processes"

1,740

19 "spectral redundancy" AND "CS/CS" 1,170

20 "Cyclic Wiener Filtering" OR "FRESH
filtering" OR "frequency-shift filtering"

676

21 "spatial filtering" AND "CS/CS" 571

22 "cyclostationary EOF" OR
"cyclostationary empirical
orthogonal functions" OR CSEOF

453

23 "almost periodically correlated" AND "sequences OR
processes"

352

24 "Gardner relation" OR "Cyclic
Wiener Relation"

75

TOTAL 237,507
a"CS/CS" is an abbreviation for "cyclostationary OR cyclostationarity"

Table 6 Spectral cloning in optics

Instilling cyclicity: The utility of the concept of cyclostationarity in signal
processing is further broadened by the fact that some data processing
systems can benefit from artificially introducing cyclostationarity into
data that exhibits no cyclicity whatsoever. An example of this is systems
for amplifying and detecting fast transients that occur, for example, in
optical data processing, as briefly discussed below.

Minimum-noise optical amplification is “the ability to amplify optical
signals with minimum excess noise [and] is of critical interest in a wide
variety of photonic-systems applications that span optical
communications, imaging, sensing, metrology, and quantum state
processing, to name a few” [Stojan Radic, Advances in Optics and
Photonics, Vol. 5, Issue 3, pp. 318–384 (2013) https://doi.org/10.1364/
AOP.5.000318]. Spectral cloning is a relatively new approach to phase-
sensitive “subnoise” or “noiseless” optical amplification, which—to quote
Radic—is “opening diverse applications that rely on low-noise optical
operation: wavelength conversion, phase regeneration, and signal
spectral replication”. Spectral cloning is achieved with nonlinear optical
parametric amplification, but the underlying principle is that of
replicating the spectrum of a signal in multiple distinct bands and then
frequency-shifting all such bands to a common band where the replicas
are added. Because the spectral replication is able to be performed prior
to the processing stage that is the dominant source of receiver noise,
the creation and addition of the replicas results in coherent processing
gain against the low noise (idealistically called “noiseless” or “subnoise”
amplification), coming out of the cloning stage, and produces a
pre-amplified signal that can then be further amplified or processed by
subsequent noisier stages. This instillation and exploitation of spectral
redundancy is identical to instillation and exploitation of cyclostationarity.
This approach to performing “subnoise” detection of fast random events is
described in [V. Ataie, D. Esman, B. P.-P. Kuo, N. Alic, and S. Radic, “Subnoise
detection of a fast random event”, Science, sciencemag.org, 11 Dec 2015,
Vol. 350 Issue 6266].
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Abbreviations
CCT: Cycle coherence time; CS: Cyclostationary/Cyclostationarity;
CV: Coefficient of variation; DCS: Degree of cyclostationarity; ISC: Irregular
statistical cyclicity; polyCS: Polycyclostationarity; RSC: Regular statistical
cyclicity
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