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Abstract

Hidden periodicities in science data have long been a popular topic of inves-
tigation. The popularity stems from the fact that detecting and characterizing
periodicities can provide a means for extracting information from science data–
information that might not otherwise be accessible. In other words, periodicities
in data can be exploited for the purposes of statistical inference and decision
making. The long history of this topic is briefly reviewed with heavy reference to
a historical essay on the topic by H.O.A. Wold, written more than half a century
ago, following which the treatise focuses on a paradigm shifting advance in the-
ory and methodology for characterizing hidden periodicities that was initiated
by the second Author in the mid-1980s and further advanced by both Authors
since then, including a plethora of algorithms for performing the needed com-
putations in applications. The data models this theory is based on are generally
called cyclostationary but include variations that are labeled with modifiers like
wide-sense, strict sense, n-th order for n = 1, 2, 3, ..., almost, poly, and irreg-
ular. The theory is probabilistic, but is intentionally not based on stochastic
processes which, it is argued, are inappropriate for many, if not most, applica-
tions. The basis used is Fraction-of-Time (FOT) Probability. The concept, theory,
and methodology of FOT Probability is itself a major paradigm shift, also ini-
tiated by the second Author more than half a century ago, and it is an integral
part of the (preferred) non-stochastic theory of cyclostationarity. Since the birth
of this topic, both Authors have continued to advance these paradigm shifts,
including further development of theory, associated methodology, and computa-
tional algorithms. The most advanced of the concepts described (viz., irregular
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poly-cyclostationarity) is illustrated with an application of the associated algo-
rithms to science data consisting of time series of Sunspot numbers containing
approximately 75,000 daily measurements representing a period of about 200
years. The results include the first methodical characterization of the irregularity
of the poly-periodicity hidden in the data.

Keywords: cyclostationarity, hidden periodicities, fraction-of-time probability,
irregular periodicity, Sunspot number

1 Introduction and Historical Perspective

The following introduction to the topic of this essay was written by Herman O. A.
Wold more than half a century ago, as the opening paragraph in his survey contribution
to the topic “Cycles” in the International Encyclopedia of the Social Sciences (1968)
Wold (1968).

“Cycles, waves, pulsations, rhythmic phenomena, regularity in (investment) return,
periodicity–these notions reflect a broad category of natural, human, and social phe-
nomena where cycles are the dominating feature. The daily and yearly cycles in
sunlight, temperature, and other geophysical phenomena are among the simplest and
most obvious instances. Regular periodicity provides a basis for prediction and for
extracting other useful information about the observed phenomena. Nautical almanacs
with their tidal forecasts are a typical example. Medical examples are pulse rate as an
indicator of cardiovascular status and the electrocardiograph as a basis for analysis
of the condition of the heart. The study of cyclic phenomena dates from prehistoric
times, and so does the experience that the area has dangerous pitfalls. From the dawn
of Chinese history comes the story that the astronomers Hi and Ho lost their heads
because they failed to forecast a solar eclipse (perhaps 2137 B.C.). In 1929, after some
twelve years of promising existence, the Harvard Business Barometer (or Business
Index) disappeared because it failed to predict the precipitous drop in the New York
stock market.”

The historical essay presented at the University of California, Davis, educational
website (Gardner, 2018a, page 4.1) puts into perspective the breakthrough made in the
mid-1980s in modeling and statistical inference for time-series data exhibiting cyclic
behavior, often referred to as hidden periodicities. Up until this breakthrough, statis-
tical models for cycles–as a complement to nonstatistical cycles modeled, for example,
by differential equations–had been studied analytically using crude mathematical mod-
els for more than a century but had not moved beyond the following two models: 1)
the sum of one or more periodic time series and a featureless (randomly fluctuating,
erratic, unpredictable, stationary) times series, often referred to as noise, which sum
is amenable to more than just temporally local prediction, and 2) the response of a
linear time-invariant resonant dynamical system, mathematically modeled as a con-
volution or a corresponding differential equation, driven by a featureless time series,
which response is amenable to only local prediction, because the apparent cycles are
not true cycles. In a hypothesis testing setting, the null hypothesis (the alternative to
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models 1) or 2)) is an unpredictable nonstationary time series that may appear from
time to time to exhibit cyclicity but that, upon closer inspection, is found to exhibit
no true cycles and no substantive predictability. However, model 2) can be considered
to be included in the null hypothesis since the disturbed harmonics produced by this
model do not represent true cycles, and predictability is relatively limited. For an illus-
trative discussion of the general problem of cycles from a historical perspective, the
reader is referred to Appendices 1-3 in the above-cited historical essay, which consist
of excerpts from Wold’s article, “Cycles” Wold (1968).

The first method that emerged for analysis of data according to model 1), at the
turn of the 19th Century, is the periodogram (the squared magnitude of the Fourier
transform of a finite-length times series of data, normalized by the length of the data
segment) Schuster (1898), Einstein (1914), Fisher (1929), and this method was fol-
lowed by a variety of what were termed high-resolution and super-resolution model
fitting methods beginning around mid-20th Century Burg (1975), Cadzow (1980),
Capon (1969), Kaveh (1979), Kay and Marple (1981), Pisarenko (1973), van den Bos
(1971). The periodogram was proven to be the set of sufficient statistics for Maximum
Likelihood (ML) estimation of the period of a cycle due to a single sinewave in additive
white Gaussian noise (AWGN) and the amplitude and phase of the Fourier compo-
nent at the detected period produce ML estimates of a sinusoid with that period. The
complexity of the generalization to ML estimation for multiple sinusoids in AWGN,
especially those with cycle periods that are not substantially different from each other,
led to a wide variety of alternative model fitting method, which are surveyed in (Gard-
ner, 1987, Chap. 9), where Gardner introduces the use of the fraction-of-time (FOT)
probability model to circumvent the unnecessary abstraction of the stochastic process
model (cf. Gardner (2023)) which dominated the literature on this topic essentially
to the extent of complete exclusion of the FOT probability model (the focus in this
paper) once the stochastic process had been introduced. Data following model 2) were
referred to as disturbed harmonics Yule (1927) and were analyzed primarily by meth-
ods developed specifically for Autoregressive Models (AR) and AR-Moving Average
(ARMA) models Bhansali and Downhan (1977), Durbin (1960), Hannan and Quinn
(1979), Levinson (1946), Walker (1962), Walker (1971). See Artis et al. (2004) for a
comparison of these methods. These models were initially implicitly based on the FOT
model (i.e., on time averages of lag products, not probabilistic expected values) but
soon transitioned to the stochastic process model.

Coarse chronological outline of the development of key concepts in the study of
cycles:

� 2000 BC: Interest in the General Notion of Cycles (see excerpt from Wold Wold
(1968) in the second paragraph of the present essay)

� 1700s AD: Hidden Periodicities (Euler, Lagrange Lagrange (1873), Lagrange (1877);
see (Gardner, 1987, p. 13))

� 1898: Periodogram (Schuster Schuster (1898))
� 1914: Irregular Fluctuations (Einstein Einstein (1914))
� 1927: Disturbed Harmonics (Yule Yule (1927); see (Gardner, 1987, p. 13))
� 1930: Generalized Harmonic Analysis (Wiener Wiener (1930))
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� 1958: Power spectra measurement (Blackman and Tukey Blackman and Tukey
(1958))

� 1975–1978: Precursor to Regular (Almost) Cyclostationarity (Gardner; see Gardner
and Franks (1975), Gardner (1978))

� 1985–1987: Regular (Almost) Cyclostationarity (first in-depth treatises: Gardner;
(Gardner, 1985, Chap. 12), (Gardner, 1987, Part II))

� 1998–2012: Generalization of Cyclostationarity (Napolitano Napolitano (2012))
� 2015–2019: Irregular Cyclostationarity (see Gardner and Napolitano Gardner
(2018b), Napolitano and Gardner (2016), Napolitano (2017), (Napolitano, 2019,
Chap. 14))

In 1985 and 1987, two analytical books by Gardner Gardner (1985), Gardner (1987)
appeared, and introduced the first comprehensive theoretical investigations of two new
classes of models which he termed 3) cyclostationary time series exhibiting a single
periodicity and its generalization to 4) almost cyclostationary time series exhibiting
multiple incommensurate periodicities, that is, multiple incommensurate periods of
statistical cyclicity. Book Gardner (1985) introduced these models in terms of stochas-
tic processes and briefly explained their duals defined in terms of time averages instead
of expected values and the book Gardner (1987) maintained close ties to empirical data
by developing for the first time a comprehensive theory based on times averages alone
or, equivalently, Fraction-of-Time (FOT) probabilities. The term statistical cyclicity
means that precise cycles appear only in carefully prescribed time averages performed
on nonlinear transformations of the data, generally not in the raw data itself, which
may or may not exhibit imprecise cycles. For the stochastic process model, these aver-
ages are expected values of functions of the data, which can be approximated with
averages over statistical samples from a population of data sets. For the alternative
non-stochastic model, these averages are ideally infinitely-long time averages of func-
tions of the data, which can be approximated by finite-time averages. The two models
are mathematical duals and, in addition, they are essentially equivalent for a very
special subclass of stochastic processes that satisfy the ergodic hypothesis (Gardner,
1987, Chap. 8).

The original models 1) and 2) were first described prior to the advent of the
concept of a stochastic process and later were replaced with stochastic-process alter-
natives. The two new models 3) and 4), which generalize models 1) and 2), were first
treated comprehensively almost simultaneously in both forms, stochastic and non-
stochastic, in Gardner (1985), and the non-stochastic alternative was greatly expanded
on in Gardner (1987), because of its parsimony and more direct relevance to most
applications– those for which only a single time series of measurements is available
instead of a set of multiple statistical samples of time series from a population which is
the situation originally motivating the stochastic process model. There were a few iso-
lated journal papers prior to (and cited in) Gardner (1985), Gardner (1987), Gardner
et al. (2006) which briefly treated the stochastic process model, but there had been no
attempt to develop a comprehensive theory of these stochastic processes, and not even
a mention of the alternative theory of non-stochastic models for non-population time
series first proposed in Gardner (1985), Gardner (1987) (cf. Napolitano and Gardner
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(2022), Gardner (2023), Kac and Steinhaus (1938), Kac (1959), Leśkow and Napoli-
tano (2006)) let alone non-stochastic models for periodically and almost periodically
time varying higher-than 2nd order moments, cumulants, and probability density func-
tions. A few papers and books Bass (1963), Bass (1969), Hofstetter (1964), Lee (1960),
Pfaffelhuber (1975) follow up the non-stochastic approach for generalized harmonic
analysis originally adopted by Wiener Wiener (1930), Masani (1979) with reference to
a stationary (i.e., not periodically or almost-periodically time variant) statistical model
for signals. The almost-periodically time variant model is considered for mechanical
applications in Antoni (2009). Cyclostationary and almost-cyclostationary processes
have also been referred to as periodically and almost periodically correlated processes,
respectively Gladyshev (1961), Gladyshev (1963), Hurd and Miamee (2007).

The fundamental concept underlying (almost) cyclostationarity does not require
the concept or mathematical model of a population of time series and a corresponding
stochastic process. Rather (almost) cyclostationarity can be defined directly in terms a
single instance of a time series by introducing time-series models consisting of (almost)
periodically time-varying FOT probability density functions defined independently of
the probability space notion upon which the stochastic process is defined. The earliest
work on the underlying measure theory foundation for FOT probability is presented
in Leśkow and Napolitano (2006), and further discussion is presented in Dehay et al.
(2013), Dehay et al. (2018), Napolitano and Gardner (2022), Gardner (2023) on the
key mathematical differences between FOT probability, which is constructed from a
single time series, and Kolmogorov’s abstract axiomatically defined probability theory
Kolmogorov (1933), which is defined in terms of what is called a probability space.
Periodically (and almost periodically) time varying moments and cumulants can be
characterized in terms of FOT probability. The breadth of this class of models and
the phenomena to which they apply dwarfs the earlier models of cycles of type 1)
referred to above. In fact, the model 1) is the most elementary example of a cyclosta-
tionary time series–so elementary that it does not need the mathematical machinery
of FOT probability to analyze. More specifically, in the model of type 1) a true cycle
corresponds to a periodic mean and a residual (the centered time series) that is purely
stationary (defined in this paper) and, in the model of type 2), an apparent but not
true cycle corresponds to damped oscillation in the lag parameter of the autocorrela-
tion function of the process. In cyclostationary (or almost-cyclostationary) processes,
any order moment or cumulant can be periodic (or almost periodic with multiple
incommensurate periods). For example, a cyclostationary process or time series can
have a constant (time-invariant) mean and constant variance, but a periodic covari-
ance producing cycles in coherence time; or it can have 1st and 2nd order moments
all of which are constant, but higher-order moments or cumulants that are periodic.
In general, (almost) cyclostationary processes have (almost) periodic joint probabil-
ity density functions. Gardner’s more general FOT probability model of cycles does
not rely on a hypothetical deterministic model (a periodic function or a convolution)
mixed with or driven by a featureless noise. Rather, it constructs the model from time
averages of functions of the time series. This model can consist of FOT probability
density functions, joint moments of multiple time samples with any time separations,
corresponding joint cumulants, etc. Nevertheless, the FOT probability model can be
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derived from a mathematical model of deterministic dynamics driven by featureless
noise, in term of the FOT model of such noise, which is typically chosen to be a series
of statistically independent identically distributed (in the FOT probability sense) vari-
ables. In this case, the statistical cyclicity arises from periodic or almost periodic time
variation of the dynamical system being driven by stationary noise.

It is worthwhile to underline that the advantage of the FOT probability framework
is mainly conceptual and/or methodological, when a population of signals does not
exist. In some cases, calculations and proofs are similar to their counterparts in the
stochastic process approach. However, examples of dichotomies between properties of
a stochastic process and those of its sample paths are illustrated in Napolitano and
Gardner (2022), were properties that are valid for stochastic processes are shown to
be not valid for their sample paths. Several technicalities and calculations/proofs in
the FOT probability framework can be found in (Gardner, 1987, Part II), Gardner
and Brown (1991), Leśkow and Napolitano (2006), (Napolitano, 2012, Sec. 6.5), Dehay
et al. (2013), Dehay et al. (2018), (Napolitano, 2019, Secs. 2.6, 4.11), (Napolitano and
Gardner, 2022, Appendix).

Implementation of the time series analysis methods referred to in this paper is
today invariably based on digital signal processing technology, which is derived from
the discrete-time probability theory of cyclostationarity. Both Authors have carried
out their development work for both discrete- and continuous-time theory. But this
treatise presents the continuous-time theory because of its closer ties with the physics
underlying the science giving rise to the data subjected to the signal processing meth-
ods for studying hidden periodicities. The discrete theory is highly analogous and is
not treated herein for the sake of brevity and avoidance of redundancy.

Before proceeding to the body of the summary of the theory of cyclostationarity,
the method of classification of cyclostationary time series is explained. This exposes
the immense degree of generality of this theory of cyclicity in time series data.

The time series model 1) can be partitioned into subclasses, which reflect dis-
tinct mathematical properties and issues that arise in performing analysis. Using the
Fourier series representation for a sum of periodic signals, these subclasses can be
categorized in terms of their spectral content (spectrum), which is characterized in
terms of the ordered countable sequence of Fourier frequencies, well known in the
theory of Fourier Analysis Bloomfield (1976), Champeney (1973), Zemanian (1987):
Class 1a) is a single non-zero frequency, Class 1b) is a finite number of commensurate
(harmonically related) frequencies, and Class 1c) is a countably infinite number of
commensurate frequencies. These are all periodic functions. By adding periodic func-
tions with incommensurate periods, we obtain almost periodic functions that are not
periodic Besicovitch (1932), Corduneanu (1989). The spectrum becomes the ordered
union of the sets of Fourier frequencies for the individual periodic functions. By consid-
ering numbers of incommensurate periods that are, say, two, or greater than two but
finite, or countably infinite, we obtain a hierarchy of quite a large number of almost-
periodic functions. For those sub-classes that contain between 2 and at most some
finite number greater than 2 incommensurate periods, the functions are poly-periodic.

By applying this basis for classification to statistical functions derived from a
time series according to the methods discussed in the following sections of this paper,
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when such functions are comprised of sums of periodic FOT moments, or cumulants,
or probability distributions, we obtain a hierarchy of models for cyclostationary and
almost cyclostationary times series, as discussed below.

It should be clarified that because of the additive noise in Model 1), none of the
time series from this model are periodic or poly-periodic, or almost periodic. But they
are said to exhibit periodicity, and this exhibited periodicity can be measured in terms
of the periodic, poly-periodic, or almost periodic mean function calculated from the
time series.

More generally, when the more general statistical functions, such as FOT moments,
cumulants, and probability distributions are periodic, or poly-periodic, or almost peri-
odic, we say the time series are cyclostationary, or poly-cyclostationary, or almost
cyclostationary. The frequencies in the Fourier spectrum of the time-varying statis-
tical functions are called the cycle frequencies. In addition, when any formal subset
of the spectrum of cycle frequencies is chosen for a model, and the resultant statisti-
cal functions are not all identically zero for non-zero cycle frequencies, the time series
is said to exhibit cyclostationarity or poly-cyclostationarity or almost cyclostationar-
ity. Therefore, a time series can, for example, exhibit cyclostationarity without being
cyclostationary. A cyclostationary statistical function for such a model is only one
additive periodic component of the almost cyclostationary statistical function. More
discussion of the hierarchy of cyclostationarity is provided in Gardner (1994).

Most of the existing literature on cyclostationarity, poly-cyclostationarity,
and almost cyclostationarity focuses on periodicity, poly-periodicity, and almost-
periodicity of second- and higher-order moments and cumulants of time series. This
paper reviews these results but emphasis is given to the periodic, poly-periodic, and
almost-periodic cumulative distribution function (CDF) and probability density func-
tion (PDF) of time series (Gardner, 1987, Chap. 15), (Napolitano, 2019, Chap. 2) that
only recently have been applied for signal detection Dehay et al. (2023).

The paper is organized as follows. First-order hidden periodicities are characterized
in Section 2. Second-order cyclostationarity is treated in Section 3 and extension to
higher-order cyclostationarity is treated in Section 4. Models and methods for dealing
with irregular cyclicities are treated in Section 5. As an example of application, hidden
periodicities present in the well-known Sunspot number time series are analyzed in
Section 6. Conclusions are drawn in Section 7.

2 First-Order Hidden Periodicity

2.1 Decomposition into Almost-Periodic Component and
Residual Term

Every signal z(t) such that the sinusoidally weighted infinite time average

〈
z(t) e−j2πηt

〉
t
≜ lim

T→∞

1

T

∫ t0+T/2

t0−T/2
z(t) e−j2πηt dt (2.1)
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exists for every η ∈ R (independent of t0), can be expressed as the sum of a (possibly
zero) almost-periodic (AP) component zap(t) and a residual term zr(t) not containing
any finite-strength sine wave component. That is,

z(t) = zap(t) + zr(t) (2.2)

where 〈
zr(t) e

−j2πηt〉
t
= 0 ∀η ∈ R . (2.3)

The almost-periodic term is given by the superposition of complex sine waves

zap(t) =
∑
η∈E(1)

zη e
j2πηt (2.4)

where E(1) is a countable set of possibly incommensurate frequencies and the Fourier
coefficients zη are given by

zη ≜
〈
zap(t) e

−j2πηt〉
t
=

〈
z(t) e−j2πηt

〉
t
. (2.5)

In particular, if E(1) contains frequencies that are all integer multiples of a fundamental
one, say η0 = 1/T0, then zap(t) is a periodic function with period T0. If zap(t) is the
superposition of a finite number of periodic functions with incommensurate periods,
then it is dubbed poly-periodic. Under the condition∑

η∈E(1)

|zη| <∞ (2.6)

the convergence in (2.4) is uniform and the function zap(t) is referred to as uniformly
almost periodic Besicovitch (1932). Generalized forms of almost periodicity can be
defined considering weaker forms of convergence for the Fourier series (2.4) (Besi-
covitch, 1932, Chap. 2), Corduneanu (1989), (Napolitano, 2012, Secs. 1.2.2-1.2.5),
(Napolitano, 2019, Sec. B.4).

Let E{α}{·} denote the almost periodic component extraction operator. That is,
the operator that extracts all the additive finite-strength sine-wave components of its
argument Gardner and Brown (1991). It results

E{α}{z(t)} = zap(t) . (2.7)

The power spectral density (PSD) of the signal z(t), defined in a generalized sense,
contains spectral lines (Dirac deltas) at frequencies η ∈ E(1) and z(t) is said to exhibit
first-order periodicities. If the almost-periodic component is weak relative to the resid-
ual term, then the first-order periodicities might not be evident and the signal is said
to contain hidden periodicities. However, because of the associated spectral lines at
frequencies η ∈ E(1), the hidden periodicites can be detected through techniques of
spectral analysis.
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In general, signals may contain more subtle kinds of hidden periodicities. Spec-
tral lines might not be present in the PSD but could be generated, that is, converted
from higher-order periodicities into first-order periodicities, by transforming the signal
with a bounded-input bounded-output (BIBO) stable time-invariant non-linear trans-
formation. That is, the signal z(t) in (2.2) can be such a kind of transformation of a
finite average-power original signal x(t)〈

|x(t)|2
〉
t
<∞ . (2.8)

When a transformation that generates a sinewave is homogeneous quadratic, the
signals are said to exhibit second-order cyclostationarity Gardner (1986), (Gardner,
1987, Part II), (Sec. 3). When a higher-than-second order homogeneous transformation
generates spectral lines, then the signal is said to exhibit higher-order cyclostationarity
Gardner and Spooner (1994), Spooner and Gardner (1994), (Sec.4).

Let us assume that the time series z(t) contains an additive periodic compo-
nent with period T0. Such a component can be extracted by synchronized averaging
(Gardner, 1985, Chap. 12), (Gardner, 1987, Sec. 10.B.2), (Napolitano, 2019, Sec. B.5):

ET0 {z(t)} = lim
N→∞

1

2N + 1

N∑
n=−N

z(t− nT0) . (2.9)

This is simply the discrete average over all nT0-translates, {z(t− nT0) : n ∈ Z}.
Note that two different notations are used in the superscript of the periodic or

almost-periodic component extraction operator: If a periodic component is extracted,
then the period is indicated in the superscript (see (2.9)). If the almost-periodic
component is extracted, then the generic {α} is indicated in the superscript (see (2.7)).

2.2 Almost-Periodic FOT Probability

Only real-valued signals are treated in this paper for the sake of simplicity. In this paper
the properties of the first-order CDF are analyzed in detail. A first-order characteriza-
tion of a complex-valued almost cyclostationary signal must be made by considering
the second-order joint CDF of its real and imaginary parts making the presentation
unnecessarily more complicated.

A characterization of the real-valued signal x(t) can be obtained by considering,
for every fixed ξ ∈ R, the non-linear transformation z(t) = u(ξ − x(t)), where u(·) is
the unit-step function, that is, u(ξ) = 1 for ξ ⩾ 0 and u(ξ) = 0 for ξ < 0. We have the
following decomposition

u(ξ − x(t)) =
∑
γ∈Γξ

F γx (ξ) e
j2πγt + v(t; ξ) . (2.10)

In (2.10), Γξ is a countable set of possibly incommensurate frequencies, the Fourier
coefficients F γx (ξ) are given by

F γx (ξ) =
〈
u(ξ − x(t)) e−j2πγt

〉
t

(2.11)
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provided that the time average exists ∀γ ∈ R, and〈
v(t; ξ) e−j2πγt

〉
t
≡ 0 ∀γ ∈ R . (2.12)

The almost-periodic component in (2.10), when not identically zero, not only
reveals the presence of hidden periodicities in the signal x(t), but also provides a
probabilistic characterization of the signal x(t). In fact, it can be shown that the
almost-periodic function of t,

Fx(t; ξ) ≜
∑
γ∈Γξ

F γx (ξ) e
j2πγt (2.13)

for every fixed t, as a function of ξ is a valid CDF except for the right-continuity
property. That is, the function ξ 7→ Fx(t; ξ) is nondecreasing and takes on values only
in the interval [0, 1] Gardner and Brown (1991), (Napolitano, 2019, Sec. 2.3.1). The
Fourier coefficients F γx (ξ) are referred to as cyclic CDF s.

From (2.10) and (2.13), it follows that

Fx(t; ξ) = E{α}{u(ξ − x(t))} . (2.14)

Therefore, by analogy with the stochastic counterpart of (2.14), we have that the
almost-periodic component extraction operator E{α}{·} is the expectation operator in
almost-periodic FOT probability theory with respect to the distribution (2.13).

If the set
Γ(1) ≜

⋃
ξ∈R

Γξ (2.15)

is countable, then the sum in (2.10) can be taken over Γ(1) (Napolitano, 2012,
Sec. 2.2.1), (Napolitano, 2019, Sec. 2.3.1).

From this point forward, we shall consider the case for which Γ(1) is countable.
If Γ(1) contains incommensurate frequencies, then x(t) is said to be first-order

almost cyclostationary in the strict sense; if the frequencies are all integer multiples
of a same fundamental frequency, then x(t) is said to be first-order cyclostationary
in the strict sense; if Γ(1) contains only the frequency γ = 0, then x(t) is said to be
first-order stationary in the strict sense.

Let T1, . . . , TP be the incommensurate periods of the additive periodic components
of u(ξ − x(t)). Thus, the CDF is poly-periodic and the following decomposition holds
(Gardner, 1987, Chap. 15)

Fx(t; ξ) = F 0
x (ξ) +

P∑
p=1

[
FTp
x (t; ξ)− F 0

x (ξ)
]

(2.16)

where each
FTp
x (t; ξ) ≜ ETp {u(ξ − x(t))} p = 1, . . . , P (2.17)

is a valid periodic CDF with period Tp.
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An almost-periodically time-variant probability density function (PDF) can be
defined as the limit (provided that it exists) as ∆ξ goes to zero of the ratio of the FOT
probability that x(t) is contained within an interval of length ∆ξ about the point ξ
to ∆ξ. That is, if the function Fx(t; ξ) is differentiable with respect to ξ, the PDF is
given by

fx(t; ξ) ≜
d

dξ
Fx(t; ξ) (2.18a)

=
∑
γ∈Γ(1)

fγx (ξ) e
j2πγt (2.18b)

where the Fourier coefficients, referred to as cyclic PDF s, are given by

fγx (ξ) =
d

dξ
F γx (ξ) . (2.19)

The cyclic CDFs and PDFs with γ ̸= 0 are complex valued in general. And
because this they are not cumulative probability distributions and probability density
functions. The following properties of the cyclic CDFs and PDFs hold.

1) F γx (−∞) = 0 ∀γ ∈ R

2) F γx (+∞) =

{
1 γ = 0
0 γ ̸= 0

3) |F γx (ξ)| ⩽ F 0
x (ξ)

4) For ξ2 > ξ1, |F γx (ξ2)− F γx (ξ1)| ⩽ F 0
x (ξ2)− F 0

x (ξ1)

5)

∫
R
fγx (ξ) dξ =

{
1 γ = 0
0 γ ̸= 0

6)

∣∣∣∣∣
∫ ξ2

ξ1

fγx (ξ) dξ

∣∣∣∣∣ ⩽
∫ ξ2

ξ1

f0x(ξ) dξ

where property 5 follows from 1 and 2 and 6 follows from 4, provided that the PDF
exists.

For the signal x(t) we have the decomposition

x(t) = xap(t) + xr(t) (2.20)

and it results that

E{α}{x(t)} = xap(t) (2.21a)

=

∫
R
ξ dFx(t; ξ) (2.21b)

=
∑
η∈E(1)

xη e
j2πηt (2.21c)
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with E(1) ⊆ Γ(1) and

xη =
〈
x(t) e−j2πηt

〉
t

(2.22a)

=

∫
R
ξ dF ηx (ξ) . (2.22b)

See Gardner (2023) for a generalization of this result when the almost-periodic
component extraction operator is replaced by a generic orthogonal projection operator.

The Fourier coefficients F γx (ξ) and xη can be estimated by replacing in (2.11)
and (2.22a) the infinite time average by finite time averages taken on the observa-
tion interval. In Dehay et al. (2023), kernel-based estimators are proposed for fγx (ξ)
and F γx (ξ). These estimators generalize to almost-periodically time-variant CDFs and
PDFs the estimators for the time-invariant CDFs and PDFs originally proposed at
discrete time in Parzen (1962), Rosenblatt (1971), and then considered at continuous
time in Castellana and Leadbetter (1986).

2.3 Example 1: Sine Wave with Additive Noise

Let us consider a sine wave

c(t) = A0 cos(2πf0t+ ϕ0) (2.23)

embedded in additive zero-mean strictly-sense stationary Gaussian noise n(t)

x(t) = c(t) + n(t) (2.24)

with

fn(t; ξ) = fn(ξ) =
1√
2πσn

e−ξ
2/(2σ2

n) (2.25)

The sine wave is a deterministic signal in the FOT sense. Thus, its probability density
function is

fc(t; ξ) = δ(ξ − c(t)) = δ(ξ −A0 cos(2πf0t+ ϕ0)) (2.26)

and it is FOT independent of any other signal Gardner and Brown (1991), Napolitano
and Gardner (2022). Therefore,

fx(t; ξ) = fc(t; ξ)⊗ fn(ξ) (2.27a)

= δ(ξ −A0 cos(2πf0t+ ϕ0))⊗
1√
2πσn

e−ξ
2/(2σ2

n) (2.27b)

=
1√
2πσn

e−(ξ−A0 cos(2πf0t+ϕ0))
2/(2σ2

n) (2.27c)

which is Gaussian with a sinusoidal mean, where ⊗ denotes convolution. The Fourier
coefficients fγx (ξ) for γ = kf0, k ∈ Z, of this periodic PDF are given by (see Appendix
A)

fkf0x (ξ) ≜
〈
fx(t; ξ) e

−j2πkf0t
〉
t

12



=
1√
2πσn

e−ξ
2/(2σ2

n) e−A
2
0/(4σ

2
n) ejkϕ0

∞∑
m=−∞

j(k−m) Jk−2m(−jξA0/σ
2
n) Jm(jA2

0/(4σ
2
n)) . (2.28)

In (2.28), the Bessel function of the first kind of order n with imaginary argument
Jn(jx) can be replaced by jn In(x) (NIST, 2010, Eq. 10.27.6), where In(x) is the
modified Bessel function of the first kind of order n with real argument x.

Since n(t) has zero mean, then it does not contain any finite-strength additive
sine-wave component. Therefore, from (2.24) it follows that the almost-periodic FOT
expected value of x(t) is given by

E{α}{x(t)} = c(t) = A0 cos(2πf0t+ ϕ0) . (2.29)

In the stochastic approach, the time-invariant PDF is derived in Rice (1948) and
the frequency estimation problem is addressed in Quinn and Thomson (1991). The
FOT cyclic PDFs for a single sine wave are derived in Shevgunov (2022).

In the following, an illustrative numerical experiment is carried out. N = 218

samples of the signal (2.24) are taken with sampling frequency fs = 1/Ts. The signal
n(t) is stationary colored Gaussian noise obtained filtering white Gaussian noise with
a linear time-invariant (LTI) filter with harmonic response H(f) = (1+j2π(f/2B))−1,
with B = 0.005fs. The sine wave c(t) has f0 = 0.0251fs, ϕ0 = 0, and A0 is such that
SNR = –10 dB (Fig. 1 (Top)) or SNR = 10 dB (Fig. 1 (Bottom)). Only the first 3000
samples are reported in Fig. 1.

The magnitude of the estimate of (Top) the cyclic CDF and (Bottom) the cyclic
PDF, as functions of the cycle frequency γ and the parameter ξ, are reported in Fig. 2
for SNR = –10 dB and in Fig. 3 for SNR = 10 dB.

In Fig. 2 (SNR = –10 dB), the slice for γ = 0 is practically coincident with a
Normal CDF (Top) and PDF (Bottom). In Fig. 3 (SNR = 10 dB), the slice for γ = 0
is a smoothed version of the stationary CDF (Top) and PDF (Bottom) of a sinusoidal
function (Napolitano and Gardner, 2022, Eq. (42), Fig. 6).
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Fig. 1 Sine wave in additive colored Gaussian noise. (Top) SNR = –10 dB; (Bottom) SNR
= 10 dB.
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Fig. 2 Sine wave in additive colored Gaussian noise (SNR = –10 dB). Magnitude of the
estimate of (Top) the cyclic CDF and (Bottom) the cyclic PDF, as functions of the cycle
frequency γ and the parameter ξ.
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Fig. 3 Sine wave in additive colored Gaussian noise (SNR = 10 dB). Magnitude of the
estimate of (Top) the cyclic CDF and (Bottom) the cyclic PDF, as functions of the cycle
frequency γ and the parameter ξ.
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2.4 Example 2: Sine Wave with Multiplicative Noise

Let us consider the product waveform

x(t) = n(t) c(t) (2.30)

where n(t) and c(t) are the same as those in Example 1 (Sec. 2.3).
Since c(t) is periodic, it is a deterministic signal (in the FOT probability sense) and,

hence, it is independent of every other signal Gardner and Brown (1991), Napolitano
and Gardner (2022). The PDF of the product of two FOT independent functions can
be expressed by the classical formula (Ash, 1970, Chap. 2, Problem 14)

fx(t; ξ) =

∫
R
fc(t; s) fn(ξ/s)

1

|s|
ds (2.31a)

=

∫
R
δ(s−A0 cos(2πf0t+ ϕ0))

1√
2πσn

e−(ξ/s)2/(2σ2
n)

1

|s|
ds (2.31b)

=
1√

2πσn|A0 cos(2πf0t+ ϕ0)|
e−ξ

2/(2σ2
nA

2
0 cos2(2πf0t+ϕ0)) (2.31c)

Since | cos(2πf0t+ϕ0)| and cos2(2πf0t+ϕ0) are both periodic with period 1/(2f0),
then fx(t; ξ) is periodic with period 1/(2f0). Since fx(t; ξ) is an even function of ξ,
then the signal x(t) has zero mean:

E{α} {x(t)} =

∫
R
ξ fx(t; ξ) dξ = 0 . (2.32)

That is, fx(t; ξ) is a zero-mean Gaussian PDF with periodically time-variant variance.
The obtained results are in agreement with those of the example in (Napolitano

and Gardner, 2022, Sec. VI.B). Note that for ξ ̸= 0 and 2πf0t → π/2 + kπ − ϕ0, we
have fx(t; ξ) → 0. For ξ = 0 and 2πf0t = π/2 + kπ − ϕ0 one has the impulsive PDF
δ(ξ) obtained by (2.31c) in the limit as the variance approaches zero. This behavior
corresponds to the jump in the degenerate CDF u(ξ) (see (Napolitano and Gardner,
2022, Fig. 9)).

In the following, an illustrative numerical experiment is carried out. The first 3000
samples of x(t) are reported in Fig. 4. The signals n(t) and c(t) are the same as those
of Section 2.3.

It could be said that the periodicity in Example 2 is more well hidden than that in
Example 1, because a nonlinear transformation of that data is required to produce a
finite-strength additive periodic component in the data. In subsequent sections, exam-
ples of increasingly well hidden periodicities are given. It is seen that the higher the
order of the nonlinearity required to reveal periodicity, the more well hidden the peri-
odicity is. In practice, the higher the order required, the longer the required integration
time in the computation of the Fourier integral needed to extract an almost-periodic
component or just a single sine wave.

In Fig. 5, the magnitude of the estimate of (Top) the cyclic CDF and (Bottom) the
cyclic PDF, as functions of the cycle frequency γ and the parameter ξ, are reported. For
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Fig. 4 Sine wave in multiplicative colored Gaussian noise.

every fixed t, the PDF in (2.31c) is a Gaussian PDF. In contrast, the stationary PDF
corresponding to the slice for γ = 0 in Fig. 5 is non Gaussian. Such a result is discussed
in (Napolitano and Gardner, 2022, Sec. IV.B) to motivate the advantage of using the
FOT approach for signal analysis with respect to classical stochastic approach.
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Fig. 5 Sine wave with multiplicative colored Gaussian noise. Magnitude of the estimate of
(Top) the cyclic CDF and (Bottom) the cyclic PDF, as functions of the cycle frequency γ
and the parameter ξ.
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3 Second-Order Cyclostationarity

In this section, the second-order characterization of cyclostationary and almost-
cyclostationary time series in the FOT probability framework is presented Gardner
(1986), (Gardner, 1987, Part II), Gardner and Brown (1991), (Napolitano, 2019,
Chap. 2).

3.1 FOT Characterization

A second-order characterization of the real-valued signal x(t) can be obtained by
considering, for every pair (ξ1, ξ2) ∈ R2, the nonlinear transformation z(t) = u(ξ1 −
x(t + τ1)) u(ξ2 − x(t + τ2)). By reasoning as in the first-order case, it can be shown
that the almost-periodic function

Fx(t, τ1, τ2; ξ1, ξ2) ≜ E{α} {u(ξ1 − x(t+ τ1)) u(ξ2 − x(t+ τ2))} (3.1a)

=
∑
γ∈Γ(2)

F γx (τ1, τ2; ξ1, ξ2) e
j2πγt (3.1b)

for every t is a valid second-order joint CDF in the variables (ξ1, ξ2), except for the
right-continuity property with respect to each variable ξ1 and ξ2. In (3.1b), Γ(2) is a
countable set of possibly incommensurate cycle frequencies and the Fourier coefficients

F γx (τ1, τ2; ξ1, ξ2) ≜
〈
u(ξ1 − x(t+ τ1)) u(ξ2 − x(t+ τ2)) e

−j2πγt〉
t

(3.2)

are referred to as 2nd-order cyclic CDFs.
From this joint CDF, a valid almost-periodically time-variant autocorrelation func-

tion can be constructed, which can be shown to be equal to the almost-periodic
component of the second-order lag product waveform

E{α} {x(t+ τ1) x(t+ τ2)} =

∫
R2

ξ1 ξ2 dFx(t, τ1, τ2; ξ1, ξ2) . (3.3)

Let x(t) be a finite average-power signal (see (2.8)) and let us consider, for every
fixed τ , the decomposition of the lag-product waveform yτ (t) ≜ x(t + τ) x(t) into
an almost-periodic component and a residual term not containing any finite-strength
sine-wave component

x(t+ τ) x(t) =
∑
α∈Aτ

Rαx (τ) e
j2παt + ℓx(t, τ) . (3.4)

In (3.4), Aτ is a countable set of possibly incommensurate frequencies, referred to as
second-order cycle frequencies, the Fourier coefficients

Rαx (τ) =
〈
x(t+ τ) x(t) e−j2παt

〉
t

(3.5)
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are referred to as cyclic autocorrelation functions, and〈
ℓx(t, τ) e

−j2παt〉
t
≡ 0 ∀α ∈ R . (3.6)

The cyclic autocorrelation function (3.5) at cycle frequency α can be expressed in
terms of the cyclic CDF at the same cycle frequency as

Rαx (τ) =

∫
R2

ξ1 ξ2 dF
α
x (τ, 0; ξ1, ξ2) (3.7)

which is in agreement with (3.3).
The countability of the set Aτ is an immediate consequence of the finite-power

assumption (2.8) (Brown, 1987, Secs. 1.2, 2.1), Wintner (1941). If the set

A ≜
⋃
τ∈R

Aτ (3.8)

is countable, then the sum in (3.4) can be over the set A and the signal x(t) is
said to be second-order almost-cyclostationary Gardner (1986), (Gardner, 1987, Part
II). If the set A contains only the integer multiples of a fundamental frequency, say
α0 = 1/T0, then the almost-periodic component reduces to a periodic function with
period T0 and the signal is referred to as second-order cyclostationary. If A is the
union of a finite number of sets {k/Tp, k ∈ Z} with incommensurate periods Tp, then
the almost-periodic component is poly-periodic and the signal is called second-order
poly-cyclostationary. If the set A is uncountable, then the signal x(t) is said to be
second-order generalized almost-cyclostationary (GACS) Izzo and Napolitano (1998),
(Napolitano, 2012, Chap. 2). See also Miao et al. (2021).

Let us consider in the following, unless otherwise specified, the case of ACS time
series. That is, A defined in (3.8) is countable.

It can be easily shown that the almost-periodic autocorrelation function is definite
non negative. In fact, for every function h(τ) ∈ L1(R) it results∫

R2

h(τ1) h(τ2) x(t+ τ1) x(t+ τ2) dτ1dτ2 =

∣∣∣∣∫
R
h(τ) x(t+ τ) dτ

∣∣∣∣2 ⩾ 0 (3.9)

and, consequently,∫
R2

h(τ1) h(τ2) E
{α} {x(t+ τ1) x(t+ τ2)} dτ1dτ2

= E{α}
{∫

R2

h(τ1) h(τ2) x(t+ τ1) x(t+ τ2) dτ1dτ2

}
⩾ 0 . (3.10)

In (3.10), the right-hand term is non negative since the almost-periodic component
of a non negative function is non negative (Napolitano, 2019, Lemma 2.18) and the
order of integral and almost-periodic component extraction operator can be inverted
according to (Napolitano, 2019, Theorem 2.32).
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Finally, note that a first-order characterization of a complex-valued almost cyclo-
stationary signal can be made considering the second-order joint CDF of its real
and imaginary parts. Similarly, the second-order characterization is made by consid-
ering the fourth-order joint CDF of the real and imaginary parts of the signal and
its time-shifted version Brown (1987), (Napolitano, 2019, Secs. 1.3, A.2). In such a
case, both cyclic autocorrelation function (where the second term in (3.5) is conju-
gated) and conjugate cyclic autocorrelation function (where the second term in (3.5)
is not conjugated) must be considered for a complete characterization of the second-
order cyclostationarity of the complex-valued signal Spooner and Gardner (1994). The
exploitation of both functions finds application, for example, in the minimum mean-
squared error (MMSE) linear almost-periodically time-variant filtering (cyclic Wiener
filtering) of the complex envelope of communications signals Gardner (1993).

3.2 Second-Order Spectral Line Generation

Let us consider the decomposition (2.2) for the signal x(t)

x(t) = xap(t) + xr(t) (3.11)

where, according to (2.2) and (2.7),

E{α} {x(t)} = xap(t) (3.12)

and the residual term xr(t) does not contain any finite-strength additive sine-wave
components and possibly has finite power.

The second-order lag-product waveform is given by

x(t+ τ1) x(t+ τ2) = [xap(t+ τ1) + xr(t+ τ1)][xap(t+ τ2) + xr(t+ τ2)]

= xap(t+ τ1) xap(t+ τ2) + xr(t+ τ1) xap(t+ τ2)

+ xap(t+ τ1) xr(t+ τ2) + xr(t+ τ1) xr(t+ τ2) . (3.13)

In (3.13), since the product of AP functions is an AP function (Besicovitch, 1932,
Chap. I, Par. I), (Napolitano, 2019, Theorem B.9), then the term xap(t+τ1)xap(t+τ2)
is an AP function of t. Since xr(t) does not contain any finite-strength additive sine-
wave components, then the terms xr(t+τ1)xap(t+τ2) and xap(t+τ1)xr(t+τ2) do not
contain any finite-strength additive sine-wave components. The term xr(t+τ1)xr(t+τ2)
can contain additive finite-strength sine-wave components.

Any almost-periodic component contained in xr(t + τ1) xr(t + τ2) cannot contain
a product of sine waves, since neither factor contains any sine waves. For this reason,
the sine waves of the (generalized) Fourier series expansion of such an almost-periodic
component are called pure 2nd-order sine waves and the corresponding frequencies
pure 2nd-order cycle frequencies. In contrast, the finite-strength sine waves in xap(t+
τ1) xap(t + τ2) are due to only the products of first-order finite-strength sine waves
and, hence, are called impure 2nd-order sine waves and the corresponding frequencies
impure 2nd-order cycle frequencies Gardner and Spooner (1994) (which are called
beat frequencies). Note that a second-order sine wave at a given cycle frequency α
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may contain a portion which is pure and another portion which is impure. The pure
2nd-order sine waves are extracted by the autocovariance function:

E{α}
{[
x(t+ τ1)− E{α}{x(t+ τ1)}

] [
x(t+ τ2)− E{α}{x(t+ τ2)}

]}
(3.14a)

= E{α}
{
x(t+ τ1) x(t+ τ2)

}
− E{α}{x(t+ τ1)} E{α}{x(t+ τ2)} (3.14b)

= E{α}
{
xr(t+ τ1) xr(t+ τ2)

}
(3.14c)

=
∑
β∈B

Cβx (τ1 − τ2) e
j2πβ(t+τ2) (3.14d)

where for (3.14b) and (3.14c), equation (3.13) has been accounted for, and, in (3.14d),
B ⊆ A denotes the set of pure second-order cycle frequencies and the Fourier
coefficients Cβx (τ) are referred to as cyclic autocovariance functions.

If x(t) does not contain any additive finite-strength sine-wave component, that is,
xap(t) ≡ 0 in (3.11), then the possible AP component in the lag product waveform
x(t+ τ1)x(t+ τ2) is due to the product of only the time-shifted versions xr(t+ τ1) and
xr(t + τ2) of the residual term. In this case, we have that periodicities that may be
hidden at first order are generated in the second-order lag-product waveform, or not.
If not, they may be generated in higher-order lag-products as explained in Section 4.

Note that, in the case of communication signals, a sine wave or a periodic signal
(e.g., a pulse train) is modulated by random data. For this reason, in previous works
Gardner and Spooner (1994), (Napolitano, 2019, Secs. 2.3.1.6, 4.2.3) that focus on
communication applications, the term “regenerated” is adopted instead of “generated”
for sine waves or periodic signals (spectral lines) obtained by nonlinear transformations
of the data. More generally, as for example in climate data, there is no underlying sine
wave or periodic signal that is modulated. In this case, the term “generated” is more
appropriate than “regenerated”. The term ”generated” is clearly more appropriate for
data with irregular cyclicities, like the ECG or other biological signals (Sec. 5) or the
Sunspot number time series (Sec. 6).

Let us consider the decomposition (2.2) when z(t) is the second-order lag-product
waveform x(t+ τ1) x(t+ τ2):

x(t+ τ1) x(t+ τ2) = E{α} {x(t+ τ1) x(t+ τ2)}+ ℓx(t, τ1, τ2) (3.15a)

=
∑
α∈A

Rαx (τ1 − τ2) e
j2πα(t+τ2) + ℓx(t, τ1, τ2) (3.15b)

where ℓx(t, τ1, τ2) does not contain any finite-strength additive sine-wave component.
In (3.15b), the almost-periodic term is the (generalized) Fourier series expansion of
the sum of the first and fourth term in (3.13), and the residual term ℓx(t, τ1, τ2) is
equal to the sum of the second and third term in (3.13).

If α is an impure second-order cycle frequency, then the cyclic autocorrelation
function Rαx (τ), as a function of τ , oscillates and does not decay to zero as |τ | → ∞
Gardner and Spooner (1994), (Napolitano, 2012, Sec. 1.4). In contrast, for finite or
practically finite memory time series, Cβx (τ) ∈ L1(R), ∀β ∈ B and therefore the
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cyclic autocovariance does decay to zero as |τ | → ∞ Gardner and Spooner (1994),
(Napolitano, 2012, Sec. 1.4.1), (Napolitano, 2019, Sec. 4.2.3.1).

For ACS time series, any homogeneous quadratic time-invariant (QTI) transfor-
mation of the signal x(t) has the form

y(t) ≜
∫
R2

k(τ1, τ2) x(t+ τ1) x(t+ τ2) dτ1 dτ2

=
∑
α∈A

∫
R2

k(τ1, τ2)R
α
x (τ1 − τ2) e

j2πατ2 dτ1 dτ2 e
j2παt

+

∫
R2

k(τ1, τ2) ℓx(t, τ1, τ2) dτ1 dτ2 (3.16)

where k(τ1, τ2) is the kernel of the QTI transformation. That is, finite-strength additive
sine-wave components can be generated by homogeneous QTI transformations Gard-
ner (1987), Gardner and Brown (1991), Gardner (1994). In contrast, for stationary
time series (A containing the only element α = 0), no spectral line at nonzero fre-
quency can be generated in the lag-product or by QTI transformations. In (Gardner,
1987, Sec. 10.B.4), the kernel k(τ1, τ2) of the optimum QTI transformation is derived
such that the power in the generated spectral line at a specific frequency α0 is maxi-
mized. The maximization procedure leads to a kernel whose double Fourier transform
is proportional to the conjugate of the signal cyclic spectrum at cycle frequency α0.

More generally, a time series x(t) is said to exhibit higher-order cyclostationarity
if finite-strength additive sine-wave components can be generated by homogeneous
nonlinear time-invariant transformations of x(t) of order greater than two Gardner
and Spooner (1994), Spooner and Gardner (1994), (Sec. 4). In such a case, almost-
periodically time-variant higher-order moment and cumulant functions can be defined
by the almost-periodic component extraction operator Gardner and Spooner (1994),
Spooner and Gardner (1994), Izzo and Napolitano (1998). For communications ACS
signals, cycle frequencies of second- and higher-order statistical functions are related
to parameters such as sine-wave carrier frequency, pulse rate, symbol rate, frame rate,
sampling frequency. Therefore, spectral line generation by second- or higher-order
time-invariant transformations leads to signals suitable for synchronization purposes
Gardner (1987).

In (Bass, 1974, pp. 497-502), conditions are derived such that linear combinations
of powers of pseudo-random functions can be decomposed into the sum of a periodic
function and a pseudo-random function.

3.3 Spectral Correlation

In the case of A countable, in (Gardner, 1987, Chap. 11) it is shown that the presence
of a finite-strength additive sine-wave component at cycle frequency α in the second-
order lag-product waveform (3.4) is equivalent to the existence of correlation between
spectral components of the signal x(t) whose frequency separation is equal to α. That
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is, denoted by

X1/∆f (t, f) ≜
∫ t+1/(2∆f)

t−1/(2∆f)

x(s) e−j2πfs ds (3.17)

the spectral component of x(t) at frequency f with finite bandwidth ∆f , the function

Sαx (f) ≜ lim
∆f→0

lim
T→∞

1

T

∫ T/2

−T/2
∆f X1/∆f (t, f)X

∗
1/∆f (t, f − α) dt (3.18)

is not identically zero if the signal x(t) exhibits cyclostationarity at cycle frequency
α. The function Sαx (f) is referred to as the cyclic spectrum at cycle frequency
α or the spectral correlation density function. In fact, it represents the temporal
correlation (with zero lag) between the two spectral components X1/∆f (t, f) and
X1/∆f (t, f − α) when the averaging time T becomes infinite and the bandwidth ∆f
becomes infinitesimal. For α = 0 the cyclic spectrum is coincident with the PSD.

The cyclic spectrum is linked to the cyclic autocorrelation function by the Fourier-
transform relationship

Sαx (f) =

∫
R
Rαx (τ) e

−j2πfτ dτ (3.19)

originally introduced in Gardner (1987), which is referred to as the Gardner relation
(Napolitano, 2019, Sec. 2.3.1.10). It is also dubbed cyclic Wiener relation since for
α = 0 it reduces to the Wiener relation that links the time-average autocorrelation
function with the PSD Wiener (1930).

The cyclic spectrum of the residual term

xr(t) = x(t)− E{α}{x(t)} (3.20)

is referred to as second-order cyclic polyspectrum of x(t) and is denoted by P βx (f). It
is linked to the cyclic autocovariance function by the Fourier-transform relationship

P βx (f) =

∫
R
Cβx (τ) e

−j2πfτ dτ . (3.21)

For finite or practically finite memory signals, Cβx (τ) ∈ L1(R) (Sec. 3.2). Thus, its
Fourier transform P βx (f) exists in the ordinary sense. In particular, it does not con-
tain Dirac impulses. In contrast, if α is an impure second-order sine wave, then Rαx (τ)
contains sinusoidal terms in τ . Consequently, its Fourier transform is defined in a gen-
eralized sense and contains Dirac impulses Gardner and Spooner (1994), (Napolitano,
2019, Sec. 1.4).

3.4 Statistical Function Measurements

In this section, a brief overview of the estimators of cyclic statistical functions is
presented. For extensive treatments, see (Gardner, 1987, Chaps. 2, 13), (Napolitano,
2019, Sec. 5.6).
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Let [t0, t0 + T ] be the observation interval of the time series x(t). The cyclic
autocorrelation function can be estimated by the cyclic correlogram

R(T )
x (α, τ ; t0) ≜

1

T

∫ t0+T

t0

x(t+ τ) x(t) e−j2παt dt . (3.22)

When t0 ranges in a time interval of length Z, the cyclic correlogram is a mean-square
consistent and asymptoically complex normal (as T → ∞ and Z → ∞ with Z/T →
∞) estimator of the cyclic autocorrelation function Dehay et al. (2018). The cyclic
spectrum can be consistently estimated by the frequency-smoothed cyclic periodogram

S(T,∆f)
x (α, f ; t0) =

∫
R

1

T
XT (t0, λ)X

∗
T (t0, λ− α)

1

∆f
W

(λ− f

∆f

)
dλ (3.23)

where the finite-time Fourier transform XT (t0, λ) is defined according to (3.17) and
W (f) is a unit-area frequency-smoothing window. In the right-hand sides of (3.22)
and (3.23), the dependence on t0 can be omitted if this does not create ambiguity.
The frequency-smoothed cyclic periodogram can be shown to have asymptotically the
same performance as that of the time-smoothed cyclic periodogram (Gardner, 1987,
Sec. 11.C)

G(∆f,T )
x (α, f ; t0) =

1

T

∫ t0+T/2

t0−T/2
X1/∆f (t, f)X

∗
1/∆f (t, f − α) dt (3.24)

when the data-record length T approaches infinity and the spectral resolution ∆f
approaches zero. For α = 0, the time- and frequency-smoothed cyclic periodograms
reduce to the classical estimators of the power spectral density Bartlett (1948), Bartlett
(1950), Blackman and Tukey (1958), Brillinger (1981), Fano (1950), Grenander and
Rosenblatt (1957), Parzen (1957), Welch (1967). For the advantages of using other-
than-rectangular data-tapering and time- or frequency-smoothing windows, see Harris
(1978), Nuttall (1981) for power spectral densities and (Gardner, 1987, Chaps. 2, 13)
for both power and cyclic spectral densities.

Estimators for the 2nd-order cyclic polyspectrum and the cyclic covariance when
the first-order cycle frequencies are unknown are proposed in Napolitano and Spooner
(2000) and discussed in (Napolitano, 2019, Sec. 5.2.5). Estimators for the cyclic CDF
and PDF are presented in Dehay et al. (2023).

3.5 Example 1 (cont’d): Sine Wave with Additive Noise

The second-order lag product of the signal (2.24) is

x(t+ τ) x(t) = [c(t+ τ) + n(t+ τ)] [c(t) + n(t)]

= c(t+ τ) c(t) + n(t+ τ) c(t) + c(t+ τ) n(t) + n(t+ τ) n(t)

= A2
0 cos(2πf0(t+ τ) + ϕ0) cos(2πf0t+ ϕ0)

+ ℓnc(t, τ) + ℓcn(t, τ) +Rn(τ) + ℓn(t, τ)
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=
A2

0

2
[cos(2π2f0t+ 2πf0τ + 2ϕ0) + cos(2πf0τ)]

+ ℓnc(t, τ) + ℓcn(t, τ) +Rn(τ) + ℓn(t, τ) (3.25)

where n(t + τ) c(t) = ℓnc(t, τ) and c(t + τ) n(t) = ℓcn(t, τ) do not contain any finite-
strength additive sine-wave component and similarly for ℓn(t, τ) in the decomposition
n(t+ τ) n(t) = Rn(τ) + ℓn(t, τ).

The almost-periodically time-variant autocorrelation is given by

E{α} {x(t+ τ) x(t)} = Rn(τ)+
A2

0

2
cos(2πf0τ)+

A2
0

2
cos(2π2f0t+2πf0τ+2ϕ0) (3.26)

and the autocovariance by

E{α}
{[
x(t+ τ)− E{α} {x(t+ τ)}

] [
x(t)− E{α} {x(t)}

]}
= E{α} {[x(t+ τ)− c(t+ τ)] [x(t)− c(t)]}
= E{α} {n(t+ τ) n(t)}
= Rn(τ) (3.27)

Comparison of (3.26) and (3.27) reveals that while the autocorrelation function of
the signal (2.24) is a periodic function of time, its autocovariance function does not
depend on time. Therefore, for the signal (2.24), the second-order cyclostationarity,
that is, the presence of finite-strength additive sine-wave components in the second-
order lag-product, is due to only the products of the first-order sine waves present
in x(t). When such sine waves are canceled in computing the autocovariance, their
effect in the second-order lag product vanishes. All the nonzero second-order cycle
frequencies are impure second-order cycle frequencies.

In Fig. 6, (Top) the magnitude of the cyclic correlogram (3.22) as a function of
α and τ and (Bottom) the magnitude of the frequency-smoothed cyclic periodogram
(3.23) as a function of α and f are reported for the case SNR = –10 dB. The slice
for α = 0 in Fig. 6 (Top) corresponds to the first two terms in (3.26). A sine wave
superimposed to an exponentially decaying shape can be recognized. Due to the low
value of SNR, the peak-to-peak oscillation of the sine wave is small if compared with
the maximum value of the exponentially decaying term and cyclic features at cycle
frequencies α = ±2f0 have a small strength compared to that at α = 0. Accordingly,
four spikes whose magnitude is small compared to that of the low-pass component
of the PSD are centered in the four points (0,±f0) and (±2f0, 0) in the (α, f) plane
(Fig. 6 (Bottom)). The shape of the spikes is equal to the shape of the magnitude of
the frequency smoothing window.

In Fig. 7, (Top) the magnitude of the estimate of the cyclic autocovariance as a
function of α and τ and (Bottom) the magnitude of the estimate of the 2nd-order
cyclic polyspectrum as a function of α and f are reported for the case SNR = –10 dB.
Since all the nonzero second-order cycle frequencies are impure, no significant cyclic
features can be recognized for α ̸= 0 in Fig. 7 (left and right). In addition, according
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to (3.27), the cyclic autocovariance at α = 0 is constituted by only the exponentially
decaying term and there is no added sinusoidal term.

In Fig. 8, (Top) the magnitude of the cyclic correlogram (3.22) as a function of
α and τ and (Bottom) the magnitude of the frequency-smoothed cyclic periodogram
(3.23) as a function of α and f are reported for the case SNR = 10 dB. In such a
case, the strength of the sine wave is much bigger than that of the stationary noise.
Therefore, the sinusoidal terms in (3.26) are predominant. As already observed, all
the sine waves in the lag product waveform are impure. When the additive sine wave
is removed in computing the covariance, the impure sine waves are removed and one
obtains the cyclic autocovariance and cyclic second-order polyspectrum estimates in
Fig. 9 (left and right) that are coincident with those in Fig. 7 (left and right). There
are no cyclic features for α ̸= 0 since there is no pure second-order cyclostationarity.

The substantial odd-order harmonic content in the cyclic CDF and PDF (Sec. 2.3)
is a result of the step discontinuity in the event indicator function of the sine wave plus
noise whose sine-wave components are calculated. In contrast, the presence of only
low-order harmonic content in the cyclic autocorrelation and cyclic spectrum reflects
the smoothness of the nonlinear transformation of the data, the lag product, whose
harmonic content is calculated.
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Fig. 6 Sine wave in additive colored Gaussian noise (SNR = –10 dB). (Top) Magnitude of
the estimate of the cyclic autocorrelation as a function of the cycle frequency α and the lag
parameter τ . (Bottom) Magnitude of the estimate of the cyclic spectrum as a function of the
cycle frequency α and the spectral frequency f .
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Fig. 7 Sine wave in additive colored Gaussian noise (SNR = –10 dB). (Top) Magnitude of
the estimate of the cyclic autocovariance as a function of the cycle frequency α and the lag
parameter τ . (Bottom) Magnitude of the estimate of the 2nd-order cyclic polyspectrum as a
function of the cycle frequency α and the spectral frequency f .
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Fig. 8 Sine wave in additive colored Gaussian noise (SNR = 10 dB). (Top) Magnitude of
the estimate of the cyclic autocorrelation as a function of the cycle frequency α and the lag
parameter τ . (Bottom) Magnitude of the estimate of the cyclic spectrum as a function of the
cycle frequency α and the spectral frequency f .
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Fig. 9 Sine wave in additive colored Gaussian noise (SNR = 10 dB). (Top) Magnitude of
the estimate of the cyclic autocovariance as a function of the cycle frequency α and the lag
parameter τ . (Bottom) Magnitude of the estimate of the 2nd-order cyclic polyspectrum as a
function of the cycle frequency α and the spectral frequency f .

32



3.6 Example 2 (cont’d): Sine Wave with Multiplicative Noise

The second-order lag product of the signal (2.30) is

x(t+ τ) x(t) = c(t+ τ) c(t) n(t+ τ) n(t)

= A2
0 cos(2πf0(t+ τ) + ϕ0) cos(2πf0t+ ϕ0) [Rn(τ) + ℓn(t, τ)]

=
A2

0

2
Rn(τ) [cos(2π2f0t+ 2πf0τ + 2ϕ0) + cos(2πf0τ)]

+
A2

0

2
ℓn(t, τ) [cos(2π2f0t+ 2πf0τ + 2ϕ0) + cos(2πf0τ)] (3.28)

and its almost-periodically time-variant autocorrelation is given by

E{α} {x(t+ τ) x(t)} =
A2

0

2
Rn(τ) [cos(2π2f0t+ 2πf0τ + 2ϕ0) + cos(2πf0τ)] . (3.29)

Since E{α} {x(t)} = 0, the almost-periodically time-variant autocovariance is coin-
cident with the almost-periodically time-variant autocorrelation. Consequently, unlike
the case of signal (2.24), for the signal (2.30), the second-order cyclostationarity, that
is, the presence of finite-strength additive sine-wave components in the second-order
lag-product, is not due to products of the first-order sine waves present in x(t) and is
entirely generated by the lag-product of the zero-mean residual term. That is, all the
second-order sine waves are pure second-order sine waves.

In Fig. 10, (Top) the magnitude of the estimate of the cyclic correlogram as a
function of α and τ and (Bottom) the magnitude of the frequency-smoothed cyclic
periodogram as a function of α and f are reported. Since all the second-order sine
waves are pure, the estimates of the cyclic autocovariance and the second-order cyclic
polyspectrum (Figs. 11) are coincident with those of the cyclic autocorrelation and
the cyclic spectrum (Fig. 10), respectively. The slight difference is due to the bias
introduced by the median filtering adopted for the cyclic polyspectrum estimation
Napolitano and Spooner (2000), (Napolitano, 2019, Sec. 5.2.5). Since the colored Gaus-
sian noise has practically finite memory, all the cyclic autocorrelations of x(t) decay
to zero for large |τ | and the cyclic spectra do not contain impulses.

As in Example 1, the cyclic CDF contains more harmonics than the cyclic auto-
correlation and cyclic spectrum since the lag product is a nonlinear transformation of
the data that is smoother than the event indicator function.
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Fig. 10 Sine wave with multiplicative colored Gaussian noise. (Top) Magnitude of the esti-
mate of the cyclic autocorrelation as a function of the cycle frequency α and the lag parameter
τ . (Bottom) Magnitude of the estimate of the cyclic spectrum as a function of the cycle
frequency α and the spectral frequency f .
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Fig. 11 Sine wave with multiplicative colored Gaussian noise. (Top) Magnitude of the esti-
mate of the cyclic autocovariance as a function of the cycle frequency α and the lag parameter
τ . (Bottom) Magnitude of the estimate of the 2nd-order cyclic polyspectrum as a function of
the cycle frequency α and the spectral frequency f .
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3.7 Example 3: The Cyclic Spectrum is Richer Than the PSD

Let us consider a band-pass wide-sense stationary signal generated by filtering white
Gaussian noise w(t) by a band-pass LTI system (Fig. 12):

x(t) = w(t)⊗ hbp(t) (3.30)

where hbp(t) is the impulse response function of the band-pass LTI filter with harmonic
response Hbp(f) = [H(f − f0) + H(f + f0)]/2, with H(f) and f0 the same as in
Example 2 (Sec. 2.4).

Fig. 12 Band-pass wide-sense stationary Gaussian signal.

The signal (3.30) and that in Example 2 have very similar temporal behavior (com-
pare Figs. 4 and 12) and practically the same time-averaged autocorrelation function
and PSD (Fig. 13). The two estimated PSDs differ only around f = 0 where, however,
the PSD level is more than 20 dB below the main peak level.

From the analysis of the temporal behavior and the estimates of the time-averaged
autocorrelation function and PSD, one could infer that these two signals have the same
statistical characteristics. These signals, however, are generated by two completely
different mechanisms. The signal in Example 2 is generated by a linear periodically
time-variant filtering (the modulation operation at frequency f0) of a wide-sense sta-
tionary colored noise n(t). Thus, it is second-order cyclostationary with nonzero cycle
frequencies α = ±2f0. In contrast, the signal (3.30) is obtained by LTI filtering a
wide-sense stationary signal and, hence, it is in turn wide-sense stationary. The PSD
analysis does not enlighten such a difference and does not allow one to discover, for the
signal of Example 2, the existence of a periodic phenomenon in its generation. That
is, the PSD analysis does not allow one to discover the hidden periodicity. In contrast,
the estimates of the cyclic autocorrelation in the (α, τ) plane and the cyclic spectrum
in the (α, f) plane clearly show the difference between the two signals. The sine wave
with multiplicative noise (Example 2) is cyclostationary and significant cyclic features
are present at α = ±2f0 (Fig. 10). The signal (3.30) is wide-sense stationary and
significant features are present only at α = 0 (Fig. 14).

The parallel straight lines extending between the lower left and upper right quad-
rants in some of the bottom figures with figure numbers ranging from 6 to 14 and most
predominantly in Figures 7, 8, and 9 are artifacts of the spectral estimation method
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and are emphasized by the median filtering of the frequency-smoothed cyclic peri-
odogram adopted to estimate the second-order cyclic polyspectrum Napolitano and
Spooner (2000).
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Fig. 13 Sine wave with multiplicative noise (solid line) versus band-pass wide-sense sta-
tionary Gaussian signal (dotted line). (Top) Estimate of the autocorrelation function as a
function of the lag parameter τ . (Bottom) Estimate of the PSD as a function of the spectral
frequency f .
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Fig. 14 Band-pass wide-sense stationary Gaussian noise. (Top) Magnitude of the estimate
of the cyclic autocorrelation as a function of the cycle frequency α and the lag parameter
τ . (Bottom) Magnitude of the estimate of the cyclic spectrum as a function of the cycle
frequency α and the spectral frequency f .
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3.8 Example 4: Pure and Impure 2nd-Order Sine Waves

3.8.1 Case a

Let us consider the signal

x(t) = n(t) cos(2πf0t+ ϕ0) +A1 cos(2πf0t+ ϕ1) . (3.31)

Sine waves at cycle frequencies ±2f0 present in the second-order lag product have
a portion which is a pure second-order sine wave and another portion which is an
impure second-order sine wave. Such a situation is found in some vibroacoustic signals
in mechanics Javorskyj et al. (2017), Javorskyj et al. (2022) and in the underlying
cyclostationary signal in the electrocardiogram (ECG) signal Napolitano (2022).

3.8.2 Case b

Let us consider the signal

x(t) = n(t) cos(2πf0t+ ϕ0) +A1 cos(2πf1t+ ϕ1) (3.32)

where f0 and f1 are incommensurate.
The second-order lag-product waveform contains finite-strength additive sine waves

with frequencies α ∈ {±2f0,±2f1}. Sine waves at frequencies α = ±2f0 are pure
second-order sine waves. They are not present at first-order and are present in the
Fourier series expansion of both autocorrelation and autocovariance. Sine waves at
frequencies α = ±2f1 are impure 2nd-order cycle frequencies. They are present at
first-order and are present in the Fourier series expansion of the autocorrelation but
not of the autocovariance.

4 Higher-Order Cyclostationarity

There are time series for which the hidden periodicity cannot be regenerated by a
second-order non linear transformation but rather, by a higher-than-second order
transformation. For example, in communications, by a quadratic nonlinearity no cycle
frequencies related to the baud rate can be generated for a pulse-amplitude-modulated
(PAM) signal with bandwidth equal to the Nyquist rate and no cycle frequencies
related to the carrier frequency can be generated for a balanced quadrature-phase-
shift-keyed (QPSK) signal. For such signals, cycle frequencies can be generated by
adopting a fourth-order nonlinear transformation of the signal Gardner and Spooner
(1994). Furthermore, there are signals that exhibit the same second-order cyclic sta-
tistical functions but that can be distinguished on the basis of their higher-order
cyclostationarity properties Spooner (1995). In order to exploit the benefits of the
spectral line generation also for this class of signals, the second-order theory of cyclo-
stationary time-series has been extended to higher-orders in Gardner and Spooner
(1994), Spooner and Gardner (1994). See also Napolitano (1995), (Napolitano, 2019,
Chap. 4).
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4.1 Higher-Order Spectral Line Generation

TheNth-order temporal moment function is defined as the almost-periodic component
of theNth-order lag product waveform, which is the product ofN time-shifted versions
of a time series. The Fourier coefficients of its (generalized) Fourier series expansion
are referred to as the Nth-order cyclic temporal moment functions. As first shown
in Gardner and Spooner (1990) and then, in more detail, in Gardner and Spooner
(1994), the N th-order cyclic temporal cumulant function at cycle frequency α of a
time series provides a mathematical characterization of the notion of a pure N th-order
sine wave. It is the higher-order generalization of the definition given at second-order
in Sec. 3.2 and illustrated in the Examples of Secs. 3.5 and 3.8. The pure Nth-order
sine wave is that part of the sine wave at frequency α present in the Nth-order lag
product waveform that remains after removal of all parts that result from products of
sine waves in lower order lag products obtained by factoring the Nth-order product.
In contrast, the impure N th-order sine wave is the entire sine wave with frequency
α that is contained in the Nth-order lag product. Its amplitude and phase are the
magnitude and phase of the N th-order cyclic temporal moment function

Rαx(τ ) ≜

〈
N∏
i=1

x(t+ τi) e
−j2παt

〉
t

(4.1)

where x denotes the vector of N time-shifted versions of x(t), that is, x ≜ [x(t +
τ1), . . . , x(t+ τN )]T, and τ ≜ [τ1, . . . , τN ]T.

The temporal moments and cumulants of x are linked by the formulas Gardner
and Spooner (1994)

Cx(t, τ ) =
∑
P

[
(−1)p−1(p− 1)!

p∏
i=1

Rxµi
(t, τµi

)

]
(4.2)

Rx(t, τ ) =
∑
P

[
p∏
i=1

Cxµi
(t, τµi)

]
(4.3)

where P is the set of distinct partitions of {1, ..., N}, each constituted by the subsets
{µi, i = 1, ..., p}, |µi| is the number of elements in µi, xµi is the |µi|-dimensional
vector whose components are those of x having indices in µi. Equations (4.2) and (4.3)
are the FOT counterparts of the Leonov and Shiryaev formulas Leonov and Shiryaev
(1959) for stochastic moments and cumulants. That is, (4.2) and (4.3) are the same as
the Leonov and Shiryaev formulas obtained by replacing the ensemble average with
the almost-periodic component extraction operator. In (4.2) and (4.3), Rxµi

(t, τµi)
and Cxµi

(t, τµi) are the temporal moment and cumulant functions, respectively, of
the time-shifted time series xℓ(t+ τℓ) with ℓ ∈ µi.

Estimators of higher-order cyclic statistical functions are presented and discussed
in Spooner and Gardner (1994), (Napolitano, 2019, Sec. 5.7). Results in the stochas-
tic approach are presented in Dandawaté and Giannakis (1994a), Dandawaté and
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Giannakis (1994b), Dandawaté and Giannakis (1995). Estimation in the presence of
non-Gaussian noise is addressed in Zulawinski et al. (2024).

The extension to complex-valued signals of the above definitions of temporal
moment and cumulant functions is obtained by considering an optional complex con-
jugation for each of the complex-valued time-shifted signals x(t + τi) Spooner and
Gardner (1994), (Napolitano, 2019, Chap. 4). Thus, 2N−1 different conjugation con-
figurations can be considered. In general, at a given order, communications signals
exhibit different cyclostationarity properties for different conjugation configurations.
The strength of the cyclic features at second- and higher-orders for the several conju-
gation configurations constitutes a kind of finger print of the modulation format and
can be suitably exploited for modulation format classification Spooner (1995).

4.2 Example 5: Spectral-Line Generation by Fourth-Order
Nonlinearity

Let us consider a pulse-amplitude-modulated (PAM) signal xPAM(t) with binary white
modulating sequence, full duty-cycle rectangular pulse, and bit period T0. Let x(t)
be a version of such a PAM signal filtered by a strictly band-limited low-pass filter
with monolateral bandwidth equal to 0.45 α0, where α0 = 1/T0 is the smallest (in
magnitude) nonzero cycle frequency of the PAM signal (Gardner, 1987, Sec. 12.D),
(Napolitano, 2019, Sec. 7.3).

For a linear time-invariant (LTI) system with input and output signals xPAM(t) and
x(t), respectively, the input/output relationship in terms of cyclic spectra is (Gardner,
1987, Sec. 11.D), (Napolitano, 2019, Sec. 3.2.2)

Sαx (f) = SαxPAM
(f)H(f)H∗(f − α) (4.4)

where H(f) is the harmonic-response function of the filter.
Since the bilateral bandwidth of the considered filter is less than the smallest (in

magnitude) nonzero cycle frequency of the input signal xPAM(t), the supports of H(f)
and its frequency shifted version H∗(f − α) in (4.4) do not overlap for α ̸= 0. That
is, the output signal x(t) does not exhibit 2nd-order cyclostationarity (Fig. 15 (Top)).
In contrast, the hidden periodicity can be generated by considering the 4th-order lag
product. That is, the signal x(t) exhibits 4th-oder cyclostationarity (Fig. 15 (Bottom)).
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Fig. 15 Filtered PAM signal. (Top) Magnitude of the estimate of the cyclic autocorrelation
as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of the
estimate of a slice of the the 4th-order cyclic temporal moment function as a function of the
cycle frequency α and the lag parameter τ1.
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5 Irregular Cyclicity

In contrast to the examples given up to this point, there are other ways that periodicity
can become hidden in a time series. That is, instead of, or in addition to, the mixing
of random fluctuations with periodicity, there are situations in which time-variation
of a quantity is non-periodic because otherwise periodic behavior has been subjected
to time warping. Yet, it is possible in some situations to perform de-warping, thereby
uncovering otherwise hidden periodicity.

Let
y(t) = x(ψ(t)) (5.1)

be a time-warped version of the ACS signal x(t), where ψ(t) is an invertible time-
warping function with inverse φ(t) = ψ−1(t). Starting from the decomposition (3.4)
for the lag product of the underlying ACS signal x(t), one obtains the following
decomposition for the lag product of y(t)

y(t+ τ) y(t) = x(ψ(t+ τ)) x(ψ(t)) (5.2a)

=
∑
α∈A

Rαx (ψ(t+ τ)− ψ(t)) ej2παψ(t) + ℓx(ψ(t), ψ(t+ τ)− ψ(t)) .

(5.2b)

The ACS signal x(t) presents hidden periodicities that can be generated by
appropriate nonlinear transformations (Secs. 2, 3, 4). However, the time-warping
transforms regular paces into irregular ones. The analysis and characterization of
time-warped ACS time series is made in Napolitano and Gardner (2016), Gard-
ner (2018b), Napolitano (2017). Other approaches are proposed in Lupenko (2023),
Lupenko (2024). Models with irregular cyclicities have been considered for the electro-
cardiogram (ECG) signal Napolitano (2022), the electroencephalogram (EEG) signal
Olhede and Ombao (2013), signals of mechanical machinery Sun et al. (2021), astro-
physics signals Das and Genton (2021), signals reflected by accelerating targets Miao
et al. (2019), Miao and Zhang (2023), underwater communication signals Socheleau
(2022), and heavy-tailed data Napolitano and Wylomanska (2025). The modifications
of the almost-cyclostationarity properties of the transmitted signal due to relative
motion (with general motion law) between transmitter and receiver are analyzed in
(Napolitano, 2012, Chap. 7).

5.1 Cyclostationarity Restoral

Let us assume that x(t) exhibits cyclostationarity with at least one cycle frequency α0.

In Gardner (2018b), estimates ψ̂ or φ̂ = ψ̂−1 of ψ or ψ−1 are determined such that,
for the recovered signal xφ(t) = y(φ̂(t)), the amplitude of the complex sine wave at

frequency α0 contained in the second-order lag-product xφ(t+τ)x
(∗)
φ (t) is maximized.

Let {ck(t)}k=1,...,K be a set of (not necessarily orthonormal) functions. Two
procedures are proposed in Gardner (2018b):
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Procedure a) Consider the expansion

φ̂(t) = ψ̂−1(t) = aTc(t) (5.3)

where c(t) = [c1(t), . . . , cK(t)]T and a = [a1, . . . , aK ]T and maximize with respect to a
the objective function

Ja(a) =
∣∣∣R̂α0

xφ
(τ ;a)

∣∣∣2 (5.4)

with R̂α0
xφ

(τ ;a) an estimate of the cyclic autocorrelation of the de-warped signal
xφ(t) = y(aTc(t))

R̂α0
xφ

(τ ;a) ≜
1

T

∫ t0+T

t0

xφ(t+ τ) x(∗)φ (t) e−j2πα0t dt (5.5a)

=
1

T

∫ t0+T

t0

y(aTc(t+ τ)) y(∗)(aTc(t)) e−j2πα0t dt (5.5b)

Procedure b) Consider the expansion

ψ̂(t) = bTc(t) (5.6)

where b = [b1, . . . , bK ]T and maximize with respect to b the objective function

Jb(b) =
∣∣∣R̂α0

xφ
(τ ;b)

∣∣∣2 (5.7)

with

R̂α0
xφ

(τ ;b) =
1

T

∫ φ̂(t0+T )

φ̂(t0)

y(u+∆τ
φ[φ̂

−1(u)]) y(∗)(u) e−j2πα0φ̂
−1(u)

.
φ̂−1(u) du (5.8a)

≃ 1

T

∫ t0+T

t0

y(u+ τ/bT
.
c(u)) y(∗)(u) e−j2πα0b

Tc(u) bT
.
c(u) du (5.8b)

where (5.8a) is obtained from (5.5a) by the variable change u = φ̂(t) and

∆τ
φ[φ̂

−1(u)] ≜ φ̂[φ̂−1(u) + τ ]− φ̂[φ̂−1(u)]

≃ τ [1/
.
φ̂−1(u)] = τ/bT

.
c(u) . (5.9)

In (5.8b) and (5.9), the dot denotes first-order derivative.
The value of the vector a or b that maximizes the corresponding objective function

is taken as an estimate of the coefficient vector for the expansion of φ̂(t) = ψ̂−1(t) or

ψ̂(t). The maximization can be performed by a gradient-ascent algorithm, with starting
points throughout a sufficiently fine grid. The Barzilai-Borwein step size sequence
Barzilai and Borwein (1988) is used since it provides fast convergence for many kinds of
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objective functions. In both cases a) and b), the gradient of the objective function must
be computed whose expressions are provided in Gardner (2018b). Several important
design parameters are discussed in Gardner (2018b).

5.2 Warping Function Compensation and Estimation by Angle
Demodulation

Let us consider the warping function

ψ(t) = t+ ϵ(t) (5.10)

with ϵ(t) slowly varying, that is,

sup
t

∣∣ .ϵ(t)∣∣ ≪ 1 . (5.11)

In such a case, it can be shown Napolitano (2017) that the lag product is closely
approximated by

y(t+ τ) y(t) ≃
∑
α∈A

ej2παϵ(t) Rαx(τ) e
j2παt + ℓx(t+ ϵ(t), τ + ϵ(t+ τ)− ϵ(t)) . (5.12)

That is, y(t) is a modulated cyclical (MC) signal (Napolitano, 2016, Sec. 6.2.2),
Olhede and Ombao (2013) with “modulating function” mα

x(t) ≡ mα(t) = ej2παϵ(t)

(independent of x(t)).
Two methods are proposed in Napolitano (2017) for estimating the function ϵ(t).
The first one considers the expansion

ϵ̂(t) = eTc(t) (5.13)

where e = [e1, . . . , eK ]T, and provides estimates of the coefficients ek by maximizing
with respect to e the objective function

Je(e) ≜
∫
T

∣∣R̂(T )
y (α0, τ ; e)

∣∣2 dτ (5.14)

where

R̂(T )
y (α0, τ ; e) ≜

1

T

∫ T/2

−T/2
y(t+ τ) y(t) e−j2πα0t e−j2πα0e

Tc(t)dt (5.15)

and T is a set of values of τ where Rα0
x (τ) is significantly non zero. The maximization

can be performed by a gradient ascent algorithm, similarly to the approach in Sec. 5.1.
The estimated coefficients are such that the additive-phase factor ej2πα0ϵ(t) ej2πα0t in
the first term of the lag-product of y(t) (5.12) is compensated in (5.14) by using (5.15).

For the second method Napolitano (2017), (Napolitano, 2019, Sec. 14.3.3), let us
define

z(α0,W )(t, τ) ≜
[
y(t+ τ) y(t) e−j2πα0t

]
⊗ hW (t) (5.16)

46



with hW (t) the impulse-response function of a low-pass filter with monolateral
bandwidth W such that

B(α0) < W < inf
α∈A
α̸=α0

(
|α− α0| −B(α)

)
(5.17)

where B(α) is the monolateral bandwidth of w(t) = ej2παϵ(t). Thus, for the frequency-
shifted waveform y(t + τ) y(t) e−j2πα0t, which–by (5.12)–contains spectral content of
width B(α) centered at frequency α−α0 for all cycle frequencies α exhibited by x(t),
only the spectral content centered at 0 would be passed by the low-pass filter. This
implies that for sufficiently narrow bandwidth W (i.e., sufficiently long integration
time), subject to the left inequality in (5.17), the filtered waveform (5.16) also would
contain only the spectral content centered at 0: z(α0,W )(t, τ) ≃ Rα0

x (τ) ej2πα0ϵ(t).
Therefore, ϵ(t) can be estimated by

ϵ̂(t) = arguw

[
z(α0,W )(t, τ)

]
/(2πα0) (5.18)

to within the unknown constant arguw[R
α0
x (τ)]/(2πα0), where arguw denotes the

unwrapped phase. Therefore, under the above stated conditions on ϵ(t), this warp-
ing function can be estimated to within an unknown constant, representing a fixed
time delay, without the need for any optimization. This method is also extended in
Napolitano (2017) to the case where only a rough estimate of α0 is available and also
amplitude modulation is present.

Note that since angle-modulated sine waves have spectral support covering the
entire spectral domain, the filtering procedure in (5.16) only approximately extracts
the single angle-modulated sine wave Rα0

x (τ)ej2πα0ϵ(t). In fact, a portion of the spectral
content of such a desired term is filtered out and tails of the spectral contents of the
other modulated sine waves pass through the filter. Consequently, the estimate ϵ̂(t) is
biased. The bias is negligible provided that the power spectra of the angle-modulated
sine waves in (5.12) are concentrated on non overlapping frequency intervals. Such a
condition is verified in several real data sets that fit model (5.12), namely the electro-
cardiogram Napolitano (2022), the acoustic signal emitted by an aircraft Napolitano
(2020), and the Sunspot number time series (Sec. 6).

In Napolitano (2017), a Priestley spectral representation Priestley (1965) for the
signal is adopted and an estimation algorithm for the amplitude-modulation func-
tion is also derived and an amplitude-modulation compensation and time de-warping
procedure is presented to recover the underlying cyclostationary signal x(t).

5.3 De-Warping

Once the warping function ψ(t) or its inverse is estimated, the time-warped signal y(t)
can be de-warped in order to obtain an estimate x̂(t) of the underlying polycyclosta-
tionary signal x(t). If this dewarping is sufficiently accurate, it renders x̂(t) amenable
to well known signal processing techniques that are unique for polycyclostationary
signals (e.g., frequency-shift (FRESH) filtering).
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If the estimate ψ̂−1(t) is obtained by the Procedure a) of Sec. 5.1, then the estimate
of x(t) is immediately obtained as

x̂(t) = y(ψ̂−1(t)) (5.19)

which would have already been calculated in (5.5b). In contrast, if the estimate ψ̂(t)
is available by the Procedure b) of Sec. 5.1 or by one of the two methods of Sec. 5.2,

the estimate ψ̂−1(t) should be obtained by inverting ψ̂.

A general procedure for calculating ψ̂−1 is described in Gardner (2018b). In the
case of ψ(t) = t + ϵ(t), with ϵ(t) slowly varying (see (5.11)), in Napolitano (2017),
(Napolitano, 2019, Sec. 14.3.4) it is shown that ψ−1(t) ≃ t− ϵ(t) and a useful estimate
of x(t) is

x̂(t) = y(t− ϵ̂(t)) (5.20)

provided that the estimation error is sufficiently small in the sense that supt |ϵ̂(t) −
ϵ(t− ϵ̂(t)| ≪ 1/B where B is the bandwidth of x(t). This condition reduces to

sup
t

|ϵ(t)− ϵ̂(t)| ≪ 1/B (5.21)

when (5.11) holds. The samples of y(t− ϵ̂(t)) are obtained from those of y(t) and ϵ̂(t)
by an interpolation formula as explained in Napolitano (2017).

6 The Sunspot Number Time Series

The Wolf number Sunspot index, or Sunspot number in short, counts the average num-
ber of Sunspots and groups of Sunspots during specific time intervals Wolf (1852). This
is a typical example where the stochastic process model for signals is inappropriate. To
our knowledge, the Sun is the only star of essential the same mass, geometrical size,
particle content, quantitative plasma characteristics, spatial distribution of planets
revolving around it, statistically identical electromagnetic planetary characteristics,
and the same galaxy of which this solar system is a member. So, to assume that an
infinitely large ensemble of statistically identical Suns exists takes us outside of real-
istic astrophysics and is therefore a poor starting point for the study of the physical
phenomenon we call Sunspots. That is, there is one unique Sun producing one unique
Sunspot-number time series (SNTS), which is of interest on Earth. Such a time series
describes the solar activity that disturbs radio communications, the orbits of satel-
lites, and power grids. Considering an ensemble of SNTS’, generated by a hypothetical
ensemble of Suns, is meaningless.

The time series of Sunspot number is known to exhibit approximate periodicity.
In the brief study of this time series provided here, the details of the irregularity in
the periodicity are exposed by fitting an irregular almost-cyclostationary model to the
data, using the method presented in Section 5. The way of calculating the Sunspot
number is not unique Clette et al. (2014). In the following analysis, Sunspot data are
taken from the World Data Center SILSO, Royal Observatory of Belgium, Brussels
SILSO World Data Center (2023).
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Several previous studies have shown that the SNTS presents irregular cyclicities
Schuster (1906), Schuster (1911). In particular, a periodicity with approximate period
of 26-30 days and a periodicity with approximate period of 11 years can be observed
Kucera and Crannell (2001), Usoskin (2023). The SNTS has been analyzed using
several techniques. In Courtillot et al. (2021), the singular spectrum analysis is adopted
to analyze the quasi-periodic components of the SNTS. In Berger et al. (1990), it is
observed that classical Fourier techniques are not useful for the analysis since the SNTS
is recognized to be a substantially non-stationary process and the minimum cross-
entropy method is exploited to improve the maximum entropy spectrum. In Thomson
et al. (2007), the spectrogram is adopted for time-frequency analysis. Several works
infer the presence of periodicity from the PSD analysis or exploiting several kinds
of time-dependent spectra or wavelet analysis Kollath and Olah (2009), Krivova and
Solanki (2002), Petrovay (2010).

As shown in Section 3.7 (Example 3), PSD analysis alone does not enable discovery
of hidden periodicities in the data generation mechanism of the time series, whereas
cyclostationarity analysis is designed to reveal such characteristics. Prior to this essay,
no cyclostationarity analysis has been conducted on the SNTS. The analysis techniques
presented in Sec. 5 are shown here in this section to be ideally suited to the SNTS.

In the following, by two different experiments, it is shown that from the second-
order lag product of the SNTS two amplitude- and angle-modulated additive sine-
wave components can be extracted. The periods of the non-modulated sinusoids agree
with those already observed Berger et al. (1990), Courtillot et al. (2021), Kucera and
Crannell (2001), Thomson et al. (2007), Usoskin (2023). Moreover, the time-warping
functions in the model provide a mathematical description of the irregularity of the
cyclicities observed in the time series, something not previously attempted.

6.1 27.3-Day Irregular Period

In the first experiment reported here, the daily total Sunspot number in the years
1818–2023 (sampling period = Ts = 1/fs = 1 day) is considered (Fig. 16 (Top)). For
this time series, denoted by y(t), the discrete-time counterpart of the cyclic correlogram
(3.22) is computed as a function of the lag parameter τ and the cycle frequency α
for a data-record length T = NTs with N = 75361. As a measure of the strength of
a cyclic component at a cycle frequency α, the integrated squared magnitude of the
lag-indexed complex sine waves

λ(T )
y (α) =

∫
T

∣∣∣R(T )
y (α, τ)

∣∣∣2 dτ (6.1)

where T = (−512 Ts, 512 Ts), is reported in Fig. 17 (Top) as a function of α. From
Fig. 17 (Top), it appears that cyclic features are spread around a candidate cycle
frequency 0.0365fs. The rough estimate α̃0 ≃ 0.0365fs and a low-pass filter bandwidth
W = 0.003 fs are adopted for the estimation procedure described in Sec. 5.2. The
estimated time-warping function is reported in Fig. 16 (Bottom). The de-warping
procedure of Sec. 5.3 (as modified in Napolitano (2017) to also compensate amplitude
modulation) is adopted to recover the underlying cyclostationary signal x(t). Its cyclic
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correlogram, as a function of (α, τ) is computed (Fig. 18 (Top)) and its strength,
defined according to (6.1), is reported in Fig. 17 (Bottom). The presence of two sharp
peaks at α = ±α̂0 = ±0.0366 fs is evident. It confirms the cyclostationary nature of
x(t) and the validity of the conjectured presence of at least a time-warped sine wave in
the second-order lag-product of the SNTS. Moreover, from the plot of the magnitude
of the cyclic correlogram in Fig. 18 (Top), it is clear that periodic components (in the
variable τ) in the cyclic autocorrelation at cycle frequencies α = ±α̂0 = ±0.0366 fs
are present. These periodic components in the cyclic autocorrelation are due to an
additive periodic term in the underlying cyclostationary time series x(t) (see Sec. 3.5).
If the effects of this additive periodic term in x(t) are removed from the second-
order lag product, one obtains the pure second-order sinewaves whose amplitudes and
phases are the magnitude and phase of the cyclic autocovariance function. In Fig. 18
(Bottom), the magnitude of the estimate of the cyclic autocovariance is reported.

The Sun, in its outer regions at least, is constituted by plasma and, as a result,
the Sun’s outer regions do not rotate with the same angular speed at every latitude.
The poles of the Sun complete a rotation in about 33 days, while the area just above
the equator completes a rotation in about 25 days Kucera and Crannell (2001). The
detected period 1/α̂0 ≃ 27.3 days corresponds to an average rotation period of the
Sun around its axis.

Fig. 16 (Top) daily total Sunspot number in the years 1818–2023. (Bottom) estimated time-
warping function (α̃0 ≃ 0.0365 fs, W = 0.003 fs, Ts = 1/fs = 1 day).
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Fig. 17 Strength of the cyclic correlogram as a function of the cycle frequency α. (Top) time
series y(t) of the daily total Sunspot number in the years 1818–2023. (Bottom) de-warped
time series x(t).
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Fig. 18 De-warped time series x(t) of the daily total Sunspot number in the years 1818–
2023. (Top) Magnitude of the cyclic correlogram as a function of the cycle frequency α and
the lag parameter τ . (Bottom) Magnitude of the estimate of the cyclic autocovariance as a
function of α and τ .
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6.2 11-Year Irregular Period

In the second experiment, a zoom around small cycle frequencies is considered in order
to analyze the approximate 11-year periodicity of solar cycles. Solar cycles vary from
just under 10 to just over 12 years.

The strength of the cyclic correlogram (6.1) zoomed in the cycle-frequency interval
(−0.0006 fs, 0.0006 fs) is reported in Fig. 19 (Top).

A new time-warping function is estimated by adopting in the procedure of Sec. 5.2
the parameters α̃0 ≃ 0.00024906fs andW = 0.00010fs. The result is shown in Fig. 20.

The strength of the cyclic correlogram of the de-warped time series is reported in
Fig. 19 (Bottom). Peaks corresponding to cycle frequencies are significantly sharper
than those in Fig. 19 (Top). Their width is of the order of 1/(NTs) = 1/(75361 Ts) ≃
1.32 10−5 fs which is the cycle-frequency resolution for an observation-interval length
T = NTs (Gardner, 1987, Sec. 11.B), (Napolitano, 2019, Sec. 5.2.1).

The first peaks of non-zero cycle frequencies are at α = ±α̂0 ≃ ±0.0002496 fs
which correspond to a period T0 = Ts/0.0002496 ≃ 4006.4 days ≃ 10.97 years. Such a
detected period is in agreement with the values alredy found in Berger et al. (1990),
Courtillot et al. (2021), Kucera and Crannell (2001), Thomson et al. (2007), Usoskin
(2023).

In Fig. 21 (Top), the magnitude of the cyclic correlogram as a function of the cycle
frequency α and the lag parameter τ is reported for the de-warped signal x(t). Also in
this case x(t) is given by the superposition of a periodic and a zero-mean term. The
magnitude of the estimated cyclic autocovariance is reported in Fig. 21 (Bottom).

The approximate period estimated in the second experiment can also be observed
by considering the monthly mean total Sunspot number in the years 1749–2023 (sam-
pling period = Ts = 1 month) (Fig. 22 (Top)). This time series has been adopted in
previous works Courtillot et al. (2021), Berger et al. (1990), Thomson et al. (2007)
Kucera and Crannell (2001), Usoskin (2023) to detect the 11-year periodicity. The
estimated time-warping function is reported in Fig. 22 (Bottom).

In Fig. 23, the strength of the cyclic correlogram as a function of the cycle frequency
α is reported (Top) for the time series y(t) of the monthly mean total Sunspot number
in the years 1749–2023 and (Bottom) for the de-warped time series x(t). In Fig. 23
(Bottom), the first peaks of non-zero cycle frequencies are at α = ±α̂0 ≃ ±0.00757 fs
which correspond to a period T0 = Ts/0.00757 ≃ 132.10 months ≃ 11.01 years, which
is in agreement with the previous result.

In Fig. 24, for the de-warped time series x(t), (Top) the magnitude of the cyclic
correlogram as a function of α and τ and (Bottom) the magnitude of the estimate of
the cyclic autocovariance as a function of α and τ are reported. The periodic term in
τ in the cyclic correlogram is a consequence of an additive periodic term in the time
series x(t).
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Fig. 19 Strength of the zoom in α ∈ (−0.0006 fs, 0.0006 fs) of the cyclic correlogram as a
function of the cycle frequency α. (Top) time series y(t) of the daily total Sunspot number
in the years 1818–2023. (Bottom) de-warped time series x(t).

Fig. 20 Daily total Sunspot number in the years 1818–2023. Estimated time-warping
function (α̃0 ≃ 0.00024906 fs, W = 0.00010 fs, Ts = 1/fs = 1 day).
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Fig. 21 De-warped time series of the daily total Sunspot number in the years 1818–2023.
(Top) Magnitude of the cyclic correlogram as a function of the cycle frequency α and the lag
parameter τ . (Bottom) Magnitude of the estimate of the cyclic autocovariance as a function
of α and τ . Zoom in α ∈ (−0.0006 fs, 0.0006 fs).

55



Fig. 22 (Top) monthly mean total Sunspot number in the years 1749–2023. (Bottom)
estimated time-warping function. (α̃0 ≃ 0.00753 fs, W = 0.0030 fs, Ts = 1/fs = 1 month).

56



Fig. 23 Strength of the cyclic correlogram as a function of the cycle frequency α. (Top) time
series y(t) of the monthly mean total Sunspot number in the years 1749–2023. (Bottom)
de-warped time series x(t).
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Fig. 24 De-warped time series of the monthly mean total Sunspot number in the years 1749–
2023. (Top) Magnitude of the cyclic correlogram as a function of the cycle frequency α and
the lag parameter τ . (Bottom) Magnitude of the estimate of the cyclic autocovariance as a
function of α and τ .
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6.3 120-200-Year Irregular Periods

In Figs. 16 (Bottom), 20, and 22 (Bottom), the estimated time-warping function is
reported as a function of time (days or months). In all figures, a single cycle of 120-
200 years of a (noisy or disturbed) periodic function can be recognized. The period
cannot be accurately estimated since the daily total Sunspot number is observed for
205 years and the monthly total Sunspot number for 274 years. However, a crude
estimate can be obtained by measuring the distance between the main peaks in the
oscillating functions. In Fig. 16 (Bottom), the cycle is approximately 5 · 104 days,
which corresponds to 137 years. In Fig. 20, the cycle is approximately 6.5 · 104 days,
which corresponds to 178 years. In Fig. 22 (Bottom), the cycle is approximately 2400
months, which corresponds to 200 years.

Long (super-secular) cycles have not been studied using direct SNTS observations,
but by means of indirect proxies such as cosmogenic isotopes (Usoskin, 2023, Sec. 3).
Cycles whose length is comparable with those observed in Figs. 16 (Bottom), 20, and
22 (Bottom), are the Gleissberg cycle which is variable in length from 70-130 years and
the de Vries or Suess cycle with a period of 205-210 years (Usoskin, 2023, Sec. 4.1).
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7 Conclusion

Hidden periodicities present in science data have been characterized using the fraction-
of-time probability framework, which provides a probabilistic model constructed from
a single time series. This approach is an alternative to the stochastic-process approach:
It does not need to invoke the existence of an ensemble of realizations, that is, of an
abstract sample space. Measurement series, such as x(t+τ)x(t), obtained from a given
time series x(t), are decomposed into the sum of an almost-periodic component and a
residual term not containing any finite-strength additive sine-wave components. The
almost-periodic component extraction operator, that is, the operator that extracts all
the finite-strength additive sine-wave components of its argument, is recognized to be
an expectation operator. Thus, by applying such an operator to non-linear transforma-
tions of a time series and its time-shifted versions, all classical multivariate statistical
functions such as cumulative distribution, autocorrelation, autocovariance, moments,
and cumulants, are constructed. These statistical functions are the building blocks of
the fraction-of-time theory of cyclostationarity. A time series is dubbed second-order
cyclostationary, poly-cyclostationary, or almost-cyclostationary if its autocorrelation
function is periodic, poly-periodic, or almost-periodic, respectively. A similar classi-
fication can be made for all other multivariate statistical functions. The Nth-order
cumulative distribution characterizes all hidden Nth-order periodicities in the time
series.

Pure second-order sine waves are defined to be those (portions of) finite-strength
sine waves present in the second-order lag product that are not generated by products
of first-order sine waves, that is, sine waves of the additive almost-periodic component
present in the time series. In contrast, sine waves in the second-order lag product that
contain portions due to products of first-order sine waves are referred to as impure
second-order sine waves. Pure second-order sine waves characterize periodicities that
are hidden in the data, that is, that do not give rise to spectral lines in the Fourier
transform of the data. However, they can be generated by a quadratic homogeneous
transformation of the data.

As an indication of the suitability of the FOT probability theory of cyclostation-
arity to the study of hidden periodicities, it is noteworthy that the applied concept of
pure Nth-order sine waves gave rise to the definition of the Nth-order cyclic cumu-
lant. This may be the first time in the cumulant’s century-plus history that it has
been recognized to be the solution to a practical empirical problem.

As illustrative examples, a sine wave in additive noise and a sine wave in multi-
plicative noise are considered. A substantial odd-order harmonic content in the cyclic
cumulative distribution, for the case of additive noise, which is not present in the cyclic
autocorrelation is evidenced. It is a consequence of the step discontinuity in the event
indicator function in contrast to the smoothness of the quadratic transformation of
the data in the lag product which contains only the second harmonic.

The recently introduced model of time-warped almost-cyclostationary signals is
reviewed. It provides a rigorous and accurate model for describing phenomena with
irregular cyclicities, that is, phenomena for which the period(s) are time varying. Esti-
mation procedures are presented to restore the regular cyclostationarity by recovering
the underlying almost-cyclostationary signal from the original data.
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The Sunspot number time series is analyzed. It is shown that at least two hidden
irregular periodicites can be identified and modeled as amplitude-modulated time-
warped cyclostationary signals. The obtained results are in agreement with several
existing results. In particular, the 27.3-day and 11-year irregular periods are detected
by estimating the nonzero cycle frequencies of the underlying cyclostationary signals
obtained by properly de-warping the original Sunspot number time series. This is the
first time that a cyclostationary analysis has been made for this time series, and that
amplitude-modulated and time-warped sine waves are extracted from the second-order
lag product of the data.

From a historical perspective, we have in this paper reviewed a major paradigm
shift that occurred over the preceding 40 years in the field of statistical time series
analysis for the specific purpose of detecting and characterizing periodicities (often
called cycles) in otherwise randomly fluctuating data. The fraction-of-time probabil-
ity theory of cyclostationary time series is shown to be a well suited and very effective
tool for detecting and analyzing periodicities that are hidden in time series data by
virtue of mixing with random fluctuations and/or distortion due to time warping.
The Sunspot number time series example presented here is one of many published
examples from a variety of applications of the fact that the theory of Non-Population
Probability of single functions of time is methodologically superior to the standard
Population-Probability Theory of ensembles of time functions (stochastic processes)
when the time functions are properly modeled as stationary, or cyclostationary, or
almost cyclostationary. This is the natural conclusion to the development throughout
recorded history of theory and methodology for investigating cyclic phenomena, as
last reviewed by H. O. A. Wold over half a century ago, and the Sunspot series exam-
ple might well represent the first major breakthrough in methodology for analyzing
Sunspot series since Sir Arthur Schuster’s original application of the periodogram 125
years ago.

The Authors propose that progress on hidden periodicities was hindered for many
years by a misguided replacement of the budding non-stochastic theory of time series
analysis in the mid-20th century with the Kolmogorov theory of stochastic processes
for which population data is essential or, at the very least, should not be physically
impossible. Readers can find a comprehensive treatise on this theme at the educa-
tional website Gardner (2018a). It is conceivable that adoption of the FOT probability
theory of cyclostationarity will facilitate progress in the investigation of periodicities
in natural phenomena and that adoption of non-population probability more gener-
ally for stationary time series as well as time series exhibiting cyclostationarity of one
type or another will facilitate data analysis and statistical inference throughout the
field of time series analysis. As an illustrative example, the field of Signals Intelligence,
and Communications Intelligence in particular, was revolutionized by Gardner’s initial
1987 revelation of his non-population theory of cyclostationarity and his demonstra-
tion of its applicability to Signal Interception (cf., (Gardner, 2018a, pp. 6 and 12)).
More recently, the nascent movement in Econometrics referred to as Ergodicity Eco-
nomics is in essence a return from population-probability models and methods to their
non-population probability counterpart Peters (2019). The editorial introducing the
issue of Nature Physics, Nature Physics Editorial (2019), containing this article is in
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complete alignment with the editorial remarks on the wisdom of a return to non-
population probability the Authors have included throughout many of the publications
cited in this summary article. And this is in complete alignment with the remarks
from the editor of the Journal of Sound and Vibration cited in the article Gardner
(2023). Evidence in support of Gardner’s 1987 proposal for a paradigm shift in time
series analysis is mounting and suggests that the shift is solidly underway now.

Appendix A : Derivation of (2.28)

The Fourier coefficients of the periodic PDF (2.27c) can be found as follows:

fx(t; ξ) =
1√
2πσn

e−ξ
2/(2σ2

n) e−A
2
0/(4σ

2
n) eξA0 cos(2πf0t+ϕ0)/σ

2
n e−A

2
0 cos(2π2f0t+2ϕ0)/(4σ

2
n)

(A.1)
where the identity cos2(θ) = (1 + cos(2θ))/2 is used.

It results that (NIST, 2010, Eq. 10.12.1)

e
1
2 z(t−t

−1) =

∞∑
n=−∞

tn Jn(z) (A.2)

where Jn(z) is the Bessel function of first kind with index n (NIST, 2010, Eq. 10.9.2)

Jn(z) =
j−n

π

∫ π

0

ejz cos θ cos(nθ) dθ . (A.3)

Equation (A.2) with t = jejθ leads to

ejz cos θ =

∞∑
n=−∞

jn Jn(z) e
jnθ . (A.4)

By substituting z = −jξA0//σ
2
n and θ = 2πf0t+ ϕ0 into (A.4), one has

eξA0 cos(2πf0t+ϕ0)/σ
2
n =

∞∑
n=−∞

jn Jn(−jξA0/σ
2
n) e

j2πnf0t+nϕ0 (A.5)

and by substituting z = jA2
0/(4σ

2
n) and θ = 2πf0t+ ϕ0 into (A.4), one has

e−A
2
0 cos(2π2f0t+2ϕ0)/(4σ

2
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∞∑
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2
0/(4σ

2
n)) e
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Thus, substituting (A.5) and (A.6) into (A.1) one obtains

fx(t; ξ) =
1√
2πσn

e−ξ
2/(2σ2

n) e−A
2
0/(4σ

2
n)

62
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(A.7)

The Fourier coefficients fγx (ξ) for γ = kf0, k ∈ Z, are given by:

fkf0x (ξ) ≜
〈
fx(t; ξ) e

−j2πkf0t
〉
t

=
1√
2πσn

e−ξ
2/(2σ2

n) e−A
2
0/(4σ

2
n)

∞∑
n=−∞

∞∑
m=−∞

j(n+m) Jn(−jξA0/σ
2
n) Jm(jA2

0/(4σ
2
n)) e

j(n+2m)ϕ0

·
〈
ej2π(n+2m)f0t e−j2πkf0t

〉
t︸ ︷︷ ︸

δn+2m−k

(A.8)

from which (2.28) immediately follows.
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