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Abstract 

Traditional axiomatically defined probability is, by intention, completely non-empirical. This does not 

serve empirical science as well as two alternative 100%-empirical probabilities: one for applications 

involving populations, especially the life sciences, and one for applications not involving populations, 

but involving single records of empirical time-series data. This article presents an in-depth 

mathematical and pragmatic analysis and comparison of these probability definitions. Logical 

reasoning based on this careful and thorough critique leads to two related disruptive proposals: (1) a 

paradigm shift in the area within the field of Mathematical Statistics that serves the sciences and 

engineering as well and (2) an adjustment to college and university curricula that cover probability and 

statistics for the sciences and engineering. Part of the critique consists of proving two key justifications 

for stochastic processes to be mathematically false.  

 

Summary 

In empirical work in science involving time series analysis based on time-average statistics derived 

from available time series of empirical data, any probabilistic analysis of the statistics must be as 

realistic as possible. Yet, abstractions inherent in the orthodox definition of probability take us away 

from empiricism. The orthodox definition of probability used throughout the sciences (and engineering) 

is maximally abstract and includes a hypothesized abstract population, regardless of relevance to 

applications.  Upon careful review of this definition and consideration of its historical development, it 

becomes apparent that the originators of this definition were not strongly influenced by the needs of 

empirical science. Mathematician’s objective of defining “the real probability”, which would not exhibit 

the variability seen with empirical probability, ultimately led to a completely abstract or unrealistic 

definition for use in empirical science. Motivated by this observation, this article proposes an 

alternative definition of probability for single time-series records, with no population of time series, and 

provides a thorough comparative analysis between the orthodox definition and what is appropriately 

called the maximally empirical definition of probability—a definition that differs from both orthodox 

probability and orthodox so-called empirical probability (which still uses orthodox abstract probability). 

This cogent assessment is telling and leads directly to the conclusion that a paradigm shift in science 

and in the field of mathematical statistics that provides science with its tools for performing probabilistic 

analysis of statistics is long overdue.  In addition, the formula for creating an analogous maximally 

empirical probability theory for populations of time series, where nonstationarity is of interest, is 

provided and is even more straightforward and is again distinct from the orthodox sound-alike empirical 
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probability. Together, these two theories provide for both sciences not involving populations and the 

life sciences which typically do involve populations.  
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I. BACKGROUND 

Statistical Time Series Analysis is an older term from science and formal statistics for a broad field of 

study that has much in common with the newer field born in engineering and called Statistical Signal 

Processing. These two fields have been cross fertilizing each other for some decades now. A recent 

example of what statistical signal processing has to offer to time series analysis for an ancient problem 

in the physics of the solar system, given in [1], concerns the topic of hidden periodicities and addresses 

an application to irregular periodicity detection in the 200-year-long daily record of Sunspot numbers. 

This new Fraction-of-Time Probabilistic Method of data-model fitting led to the discovery of a new 132-

year cycle in this time series which, in turn, has led to hypotheses about galactic influence on our star, 

the Sun. This new discovery from a 200-year-old record of time series data speaks to the power of the 

methodology originating in engineering. As a metric for how old this is, the term scientist was first put 

into use a little under a decade less than 200 years ago, although the term science dates back to the 

14th century. The present article aims to apply decades of work in engineering to the broad topic of 

probabilistic analysis of time-average statistics derived from single records of empirical time series 

data arising from scientific and engineering experimentation and investigation when no population of 

time series is available and unnecessarily abstract models are undesirable.  

 

• This singular topic of interest in the primary portion of this article, which deals with 

non-population time-series data, is referred to as the target to emphasize that 

everything said in the main part of this article is intended to apply exclusively to this 

specific yet broad topic; namely, the probabilistic analysis of time-average statistics 

derived from a single record of time-series data. This is important in order to avoid 

unhelpful irrelevant complaints and protests from aficionados of stochastic processes 

The article briefly steps outside these target bounds in Appendix II. 
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The objective in this application of engineering work is to question the scientific appropriateness of the 

long-standing orthodox definition of probability, born in mathematics, that pervades all of science and 

engineering, by conducting a deep comparative analysis, specifically relevant to this topic of the 

differences between this old standard and a newer alternative definition that arose in engineering. The 

conclusion reached is a bold recommendation for a paradigm shift from the orthodox definition to the 

alternative specifically for use in the targeted topic.  In the larger scheme of things, the part of the 

study of probability having to do with interpretations of probability dwarfs the treatment in this article 

and its relatively narrow focus.  Treading far more lightly in the comprehensive overview, entitled 

Interpretations of Probability provided by Stanford’s Metaphysics Research Lab in the Department of 

Philosophy, which is accessible here https://plato.stanford.edu/archives/win2012/entries/probability-

interpret/, it still take 50% more verbiage there than the generous allotment in this article, and the 

concluding words there are: “It should be clear from the foregoing that there is still much work to be 

done regarding the interpretations of probability.”   

 

From time to time, authors take a critical look at probability and its uses in science. The present article 

has the same topical focus as two recent perspective articles and an editorial in Nature, as 

summarized below: the questioning of our pervasive use of orthodox probability in our work. But the 

present article differs from these previous items in that it has substantially broader scope within the 

specific topic, and substantially deeper analysis, and this is also true with respect to all known past 

treatments of this specific topic that the Author has been able to find in the literature. This article is 

based on the Author’s 40 years of diligent research on this topic.  

 

Detailed theoretical treatment of the argument in favor of empirical time-average probability over the 

orthodox abstract purely axiomatic definition of probability based on the concept of random draws from 

an abstract population, as well as extensive practical demonstrations, could easily occupy multiple 

lengthy research papers and book chapters and has been so addressed, as evidenced by the 

references cited in this article. But the succinct treatment of this fundamental issue in this review article 

is intended to capture the essence of all this work in a manner that is accessible to the broad audience 

comprised of scientists and engineers who use probability in their work in time series analysis of 

empirical data. 

 

Because of the widespread unawareness of the competitor to orthodox probability, which competitor 

is comprised of a fully developed theory that is strongly analogous to orthodox probability theory, it is 

the Author’s considered opinion that a concise overview, with the aims of that which he has been 

writing about for decades, is long overdue and of potentially significant importance for all scientists 

and engineers practicing probabilistic analysis of statistics derived from empirical time series data.  

 

Regarding the first of two recent articles in Nature [2], a comment thereon in [3] states “probability itself 

is an expression of uncertainty, but the calculations behind the percentages can seem objective. The 

author of that article, David Spiegelhalter, argues that this is impossible” and, to quote him, 

Spiegelhalter says, “My argument is that any practical use of probability involves subjective 

judgements.” In contrast to this perspective, this article explains that involvement of subjective 

judgements is not present when empirical probability is used properly. Spiegelhalter also states in his 

article [2] that “All of statistics and much of science depends on probability—an astonishing 

achievement, considering no one’s really sure what it is.” Again, in contrast, this article explains 

precisely what empirical probability is and what orthodox population probability is, though the latter is 

admittedly abstract with no solid links to real data or, therefore, to empirical science.  

 

Regarding the second of two recent articles in Nature [4], the author Peters argues that the ergodic 

hypothesis has been abused, especially in economics. The present article agrees with this without 

https://plato.stanford.edu/archives/win2012/entries/probability-interpret/
https://plato.stanford.edu/archives/win2012/entries/probability-interpret/
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restriction to economics, but the content of this article does not support Peters’ use of the term 

“ergodicity economics”, the reason being that Peters’ work is centered on non-ergodic behavior in 

economics, that is, on time-average statistical behavior over time for individuals in a population in 

contrast to highly distinct ensemble-average statistical behavior over the population. Peters’ 

recommendations for change in econometrics from using ensemble averages to using time averages 

has nothing to do with ergodicity. Peters is simply recommending the use of Fraction-of-Time (FOT)-

probability instead of population probability. This practice in other fields of statistical analysis, 

especially engineering, has been promoted in quite a few books and journal research papers since 

the seminal 1987 book [5].Yet, it remains an unorthodox practice, and this is the motive for this article’s 

objective of exposing the long-overlooked advantages of FOT-probability, especially for probabilistic 

analysis of time-average statistics derived from single time-series records, with no reference to real or 

hypothesized imaginary populations of time series. 

 

II. INTRODUCTION 

The next section provides a simple point-by-point comparison of (1) the Stochastic Process model 

based on axiomatically defined abstract population probability and (2a) the alternative empirical finite-

time Fraction-of-Time Probability model for statistical time series analysis and, separately, (2b) the 

non-empirical limit FOT-probability (in which the length of a hypothetical time-series record grows 

without bound) for statistical inference (parameter estimation and decision making) using 

mathematical models. To make the points of comparison there more concrete, we start here in the 

present section with an example of probabilistic analysis of time-average statistics obtained from a 

time series of data using FOT-probability, and we explain how this analysis would change if we were 

to use the orthodox method based on the population-probability of the stochastic process model.  

Example: An example of a time-average-based statistic from a time series is the empirical 

variance of a data record x(t) for some range W of time, t. For specificity, let x(t) represent any 

erratic time series of measurements on a physical system in a physics experiment for which 

the empirical variance is defined by 

σ2̂ =
1

𝑊
∫ [𝑥(𝑡) − 𝑚̂(𝑥)]2

𝑊

0

 �𝑡 

where 𝑚̂(x) is the empirical mean defined by 

𝑚̂(𝑥) =
1

𝑊
∫ 𝑥(𝑡)

𝑊

0

 �t 

(An alternative discrete-time model is completely analogous.) 

Assuming the data used above on the time interval [0, W] is only 10% of the entire available 

data record on the larger time interval [0, V], we can partition the data into 10 contiguous 

subsegments and calculate 10 independent measurements of empirical variance, indexed by 

n:                               

σ2̂(�) =
1

𝑊
∫ [𝑥(𝑡) − 𝑚𝑛̂(𝑥)]2

(𝑛+1)𝑊

𝑛𝑊

 �t,  � = 0,1,2,3, . . . , 9 
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As a metric for quantifying how reliable any one of these variance measurements is, we can 

calculate the percentage P of the 10 blocks of data of length W for which the deviation from 

the average of the 10 variances exceeds, say, 5% of that average: 

𝑃 =
1

10
∑ 𝑈[|σ2̂(�) − 𝑚̂(σ2̂)| − 0.05𝑚̂(σ2̂)]

9

𝑛=0

 

where U is the unit step function that is 0 when its argument is less than zero and one 

otherwise. 

This quantity P is the fraction of discrete time n for which the empirical variance exceeds the 

specified error bound. This Fraction of Time (FOT) of occurrence of an event has all the 

properties of the standard axiomatic definition of probability and is referred to as FOT-

Probability. It is an example of an element of a complete theory of finite-time probability (either 

discrete or continuous time) that can be used for probabilistic analysis of time series data 

[5],[6]-[9],[11]-[15]. 

In contrast to the above empirical method based entirely on real data, the classical method in 

mathematical statistics, misleadingly called empirical probability, which pervades science and 

engineering today, is to not use the data to measure the percentage (or probability) P over 

time, but rather to posit an abstract population-probability distribution function (model) for the 

statistic  interpreted as a random variable over a (non-existent) population, and then calculate 

the abstract probability of this hypothetical random variable deviating from its mean by more 

than 5% of this mean. This would correspond to replacing the uniform average over the 10 

real time samples in P, in the above formulation, with a probability-weighted average over all 

possible values of the random variable model of the statistic, the expected value of this random 

variable, or, equivalently, replacing the uniform average with the hypothetical ensemble or 

population average over infinitely many random samples of this random variable. Knowing that 

the average of time samples will, under mild conditions on a mathematical model of the time 

series, converge to the limit FOT-probability-weighted average, why would one create an 

abstract probability model for an imaginary population, instead of using the data at hand? 

Unfortunately, as an editor of Nature points out [16], “. . . we now instinctively calculate 

expectation values with the implicit belief that they reflect what happens over time.” which 

requires a property called ergodicity, but “. . . proving ergodicity mathematically is generally 

very hard: in fact, for any system that finds itself out of equilibrium it is safe to assume it is non-

ergodic.” Clarification: in the classical usage of the term empirical probability mentioned above, 

it is the probabilistic parameter that is empirical, but the quantity used in mathematical statistics 

to replace P is the abstract non-empirical probability. This distinguishes common practice 

today from the alternative proposed here.   

To complement this example, we briefly consider an alternative example which is a dual of the 

first example, where the statistic is an empirical variance and the probabilistic metric for this 

statistic is an empirical probability concerning the variance. In the dual problem, the statistic is 

a probability and the probabilistic metric is a variance. As an example, the estimated probability 

of the occurrence of an event, obtained by averaging over time the (0,1)-valued indicator of 

this event’s occurrence in the time series of data, could be probabilistically evaluated using 

the estimated variance of this estimate. Reminder: the estimates in the FOT-probability theory 
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are estimates of the limit-FOT-probability quantity, not the analogous quantity from an abstract 

population-probability model—a stochastic process.) Needless to say, in the target topic being 

addressed in this article, the statistic can be whatever the experimenter specifies and the 

empirical probabilistic metric also can be whatever the experimenter specifies, and both are 

defined in terms of, and computed directly from, the available empirical data.    

The probabilistic concepts used in this example are admittedly unsophisticated and even trivial, yet a 

formal and powerful probability theory and associated mechanics of probability manipulation and 

computation has been built upon this FOT-probability concept, and it is highly analogous to the 

orthodox purely abstract axiomatically defined probability, including key theorems like the 

Fundamental Theorem of Expectation [5], that we all have been indoctrinated with, typically without 

any mention of the existence of this empirical alternative. This situation suggests that pragmatic users 

of probability in the sciences and engineering may be figuring this out on their own to the best of their 

ability and using some version of FOT probability, despite its apparent complete absence from their 

training in university coursework and the statistical tools developed by mathematical statisticians. 

To seek an answer to the question posed in the first example above, the article includes further below 

a general point-by-point comparison of (1) the orthodox method of probabilistic analysis based on the 

abstract stochastic process model that hypothesizes a population of time series that does not exist 

and (2) the unorthodox method of probabilistic analysis based on the empirical FOT-Probability model 

that uses nothing more than time averages of available real data. But first, a few more words are 

merited to dispel the likely misinterpretation of the FOT-probability theories as essentially the same as 

the classical method well known as empirical probability.  

Empirical Probability --Two Meanings: Empirical Probability is a very well-known concept and 

technique presented in many books. In its most common form, it is viewed as the method of computing 

relative frequencies of occurrence of events from a population of experimental trials to produce an 

estimate of an unknown abstract population probability. Most of the relatively few treatments for 

extending this concept/method to time series data assume an abstract discrete-time stochastic 

process model with independent identically distributed (i.i.d.) time samples. This makes the 

hypothetical time samples from the stochastic process mathematically identical to statistically 

independent samples from a population; so, the concept/method applied to time series data is then 

identical to that developed for samples from a population (for which there is no time series).  We can 

group with the quantities addressed in this concept/method statistics that are not only empirical event-

probabilities but also are empirical moments formed as averages of powers of samples of random 

variables, as estimates of abstract population moments, such as means and variances, and averages 

of other functions. 

There appears to be only sparse consideration of this classical empirical probability concept for time-

series data for which it is not assumed that these are sequences of samples of abstract i.i.d. random 

variables—a seriously limiting assumption. The reason would appear to be that this situation of 

statistical dependence among time sample cannot be made equivalent to having statistically 

independent samples from an abstract population—a requirement dictated by orthodoxy! It follows 

that, although the Author refers herein to finite-time FOT-probability as an empirical probability 

(because this is a natural use of the broad meanings of these two terms), the concept, theory, and 

method of FOT-probability are distinct from what we might call classical empirical probability.  

Consequently, the powerful theory of FOT-probability, upon which the Author wrote a substantial book 



22 Aug 2025, v 1.2                                                                                                                Perspective Article 
 

8 of 34 
 

in the mid-1980s, is distinct from classical empirical probability and its minimal known extensions to 

time series data. Having no need for an assumption of i.i.d. time samples, for the sole purpose of 

respecting orthodoxy, FOT-probability applies generally to stationary time series and various forms of 

cyclostationary time series, which include statistical cyclicities (for which stochastic-process 

counterparts can include generalizations that incorporate a nonstationary component, described using 

the modifier asymptotically-mean–see Item 8 in Section VIII). Another distinction is that the theory of 

FOT-probability makes no assumption of an abstract population or associated population-probability 

distribution. Thus, it is not a part of the abstract theory of stochastic processes and consequently has 

no need for the abstract Birkhoff ergodic theorem. 

Despite the broad applicability of FOT-probability theory to empirical probabilistic analysis of time 

series data, and the absence of any need to assume an abstract population or assume an abstract 

stochastic process model, this theory has been largely ignored for 38 years by all except for a few of 

the Author’s colleagues and their co-authors, who we might refer to as disciples. This odd situation is 

addressed in this article.  

The FOT-probability referred to above involves only finite-length discrete- or continuous-time time 

series and makes no assumptions or use of stochastic processes; this makes it a 100% empirical 

theory. There also is another version of the theory based on a hypothetical infinitely long time series 

for which the limit as averaging time approaches infinity is taken. It is fairly well known from the past, 

dating back to N. Wiener’s Generalized Harmonic Analysis that that such infinite time averaging can 

be mathematically shown to get rid of all random effect in the time series. For example, the global 

temporal mean-square deviation of a sliding finite-time (local) temporal mean value about its infinite-

time average can be shown to converge to zero as the finite averaging time grows without bound.  

This is analogous to the expectation operation getting rid of all random effects in a random variable. 

In fact, the infinite-time average is an expectation operator in the limit-FOT-probability theory. 

Interestingly, the 100% empirical finite-time average can also be mathematically shown to be an 

expectation operator satisfying the Fundamental Theorem of Expectation [5], though there is no 

argument that the finite-time expectation operator gets rid of all random effects. It is mentioned here 

in passing that the limit FOT-probability is a valid candidate in mathematicians’ pursuit of “the real 

probability” discussed in Section VII on history. 

The preceding remarks are all mathematically proven in the seminal treatment [5] and re-proven in 6]-

[15]. 

In conclusion: 

• FOT-probability theory is distinct from the classical concept of empirical probability. 

And, to the Author’s knowledge, FOT-probability theory is not a part of the traditional 

field of Mathematical Statistics. It is therefore referred to herein as an unorthodox 

theory. 

The limit-FOT-probability theory complements the 100% empirical finite-time FOT-probability theory 

and has completely distinct uses, as explained here and elsewhere in this article. In particular, this 

theory is a dual to stochastic process theory and can replace that more abstract theory for purposes 

of fitting models to time series data or, in other words, it is a tool for parametric statistics and is every 

bit as viable for statistical inference and decision making, such as the Bayesian theory of minimum 
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risk inference and  the theory of maximum-likelihood parameter estimation and hypothesis testing, as 

the classical stochastic-process theory, as explained in Section III.    

 

 

III.  POINT-BY-POINT COMPARISON 

A detailed comparison of (1), the orthodox stochastic process model of a time series for probabilistic 

analysis of empirical statistics derived from time-average measurements on the time series and (2), 

the unorthodox empirical FOT-probability model of a time series for this same purpose, is presented 

below. 

1) No operational impact of FOT-probability on parametric statistical inference, but conceptually 

superior 

No modeling capability or applicability of the Bayesian Statisitcal Inference and Decision 

Theory/Method is forfeited by using infinite-time FOT-probability CDF models for single time series 

instead of abstract population models (stochastic processes). In fact, one can obtain a parametric 

formulaic FOT-probability model for a time series directly from a formulaic stochastic process model 

for any time series in statistical constant or cyclic or multi-cyclic equilibrium, whose stochastic-process 

counterpart can include all asymptotically mean-almost-cyclostationary time series (which include all 

stationary, asymptotically mean-stationary, cyclostationary or almost-cyclostationary, and 

asymptotically mean-cyclostationary or asymptotically mean-almost-cyclostationary processes) [7].  

The procedure simply requires that the specification of all abstract CDFs and moments in the 

stochastic process model be conceptually replaced with FOT-CDFs and FOT-moments, and all time-

invariant random parameters be replaced with unknown time-invariant parameters. By doing this, and 

assuming formulas for the parameter-conditional PDF of the observable random variables can be 

derived from the model, the Bayesian method for statistical inference and decision is immediately 

applicable. The only other adjustment to the model that is required arises in connection with Bayesian 

Learning, which is represented by the evolution of a prior probability into a sequence of posterior 

probabilities that result from sequentially adding more and more observations. The adjustment is that 

the prior probability for any random parameter in the stochastic-process model, which is often 

subjective, be replaced with a model consistent with the reinterpretation of all random parameters as 

unknown parameters: this consistent model for prior probabilities is a uniform distribution over some 

user-specified admissible set of parameter values. Then in the FOT-model, the relationship between 

the posterior and prior probabilities is as follows: 

 

where the prior  = 1/  for a inside A and  = 0 for a outside A, where A is the admissible region in 

parameter space for the parameter a. In this probability relation, f represents a joint limit FOT PDF 

model for the vector x of elements given by the set  from the hypothetical time series, and the vector 

argument y, of f , represents the actual vector of observed values of the data segment in the set of 
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time points V  as indicated in the left hand side of the equation. When V is a continuous time interval, 

this formula is just symbolic, because the number of time points in an interval of the real line is 

uncountably infinite, requiring an infinite dimensional integral. Only when V is a finite discrete set of 

time points does this symbolic formula become a quantity that can, in principle, be calculated.   

The definition of joint FOT-PDF is the joint derivative with respect to all variables in the argument 

vector y of the joint cumulative probability distribution (CDF) for the set of time samples of the time 

series. Conceptually, this CDF is the limit joint FOT-CDF defined by [5] 

 

 

 

where the angle brackets represent the limit of the average over time t as the averaging time 

approaches infinity, and U is the unit step function that is 1 for all positive values of its argument and 

0 otherwise. However, in the above probability relation, the PDFs are conditional PDFs and this is 

addressed as follows. 

A conditional FOT-PDF can either be posited, as is done in many applications of stochastic process 

models, or it can be mathematically derived from a formulaic model for the infinitely long time series. 

The above key probability relation generalizes in an obvious manner to vector-valued parameters. So, 

the concept of conditional probability does apply here, but in a different sense than for stochastic 

processes; for an FOT PDF, the vertical-bar symbol for conditioning on a simply means the PDF 

depends on a parameter with unknown value, and a is a hypothetical value for that parameter.  Thus, 

the mechanics of Bayesian inference are the same for limit FOT-probability models as they are for 

stochastic processes.  But the necessity of interpreting the PDFs in terms of a non-existent population 

of time series is absent and, with it, common confusion that is not effectively addressed by the ergodic 

theorem (see Item 3) below) also is absent. 

2) FOT-probability is less precise but more accurate than stochastic process 

FOT-Probabilistic analysis of empirical time-average statistics is based entirely on a less precise but 

potentially more accurate empirical probability model (the descriptors precise and accurate are used 

somewhat loosely here), in comparison with the stochastic process used in orthodox probabilistic 

analysis or the analogous limit FOT-CDF of a hypothetical infinitely long time series: In place of 

typically standard posited CDF models for abstract stochastic processes (abstract population 

probability models despite the absence of a population associated with the data), the alternative uses 

exact FOT-probability measured (typically directly) in terms of finite time averages of specified 

functions of the actual single-record of time-series data. Because the amount of real data must be 

finite, the model precision is finite--some random effects remain despite the time averaging. This is 

seen by the variation in such FOT-probabilities computed over multiple distinct time intervals. However, 

because there is generally no known relationship between empirical data and a stochastic process 

model, the stochastic process model’s accuracy is unknown, so its precision is not of much practical 

use. Moreover, the limit-FOT probability, like the stochastic process has perfect precision.  

3) The Stochastic Process is 100% subjective and has no known link to real data 
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All that can be done in the orthodox stochastic-process approach to probabilistic analysis of time-

average statistics, in an attempt to establish a link with real data, is to invoke the ergodic hypothesis, 

which is often unverifiable, to claim the abstract subjective probabilities or expected values used are 

asymptotes of time-averages as averaging time grows. However, these are hypothetical time averages 

that are made on hypothetical sample paths from the hypothetical ensemble (population) of the 

abstract subjective stochastic process, which has no known link to real data. This point exposes what 

seems to be a common misconception: The ergodic hypothesis gets us no closer to empirical reality. 

(This misconception is likely a result of the influence of orthodoxy on thought by technical specialists 

with dominant left-brain activity, in the absence of sufficient balancing right-brain activity [17]) 

4) FOT-probabilistic analysis of time-average statistics is 100% objective and empirical 

In contrast to the undesirable situation in the setting of empirical science in Item 3), the method in Item 

2) is 100% empirical and uses only objective probabilities calculated from the data.  

5) Low-reliability FOT-probabilistic analysis due to limited time-series data is better than 

undefined reliability of stochastic processes—optimizing for limited data 

In applications for which the length of the available times series of data is relatively limited, the 

empirical reliability of the FOT-probability model (CDFs or moments) is limited, and the degree of 

limitation cannot be quantified (because there is no more data available for this purpose if it is all used 

to compute the statistic). More generally, the empirical reliability of the time-average statistics of 

primary interest, calculated for each of a set of contiguous subsegments using an intra-segment 

average of some measurement function of the time-series data, is empirically quantified using the 

empirical CDFs or moments obtained from inter-segment averages of a performance-metric function 

over a set of subsegments, as illustrated in the example. It is acknowledged here that this is an 

undesirable but unavoidable situation in which estimates are used to evaluate estimates. The result of 

excessively limited data identifies the only drawback of the alternative FOT-probability approach: It 

may produce a low-reliability model (and, in fact, no model, if all the data is used to compute one 

instance of the statistic) due to the amount of data being too small. Yet, the subjective probability 

model, the stochastic process, has completely undefined reliability, unless a further layer of abstraction 

is introduced (similarly to what is done in the proof of the Law of Large Numbers); specifically, the 

introduction of the doubly stochastic process concept can be used, whereby its CDFs and moments 

are random variables with known means, variances, etc. This is again an undesirable situation, in that 

it is far removed from empirical realism and therefore inappropriate in empirical science. Furthermore, 

even when the available data is insufficient to obtain reliable probabilistic analysis of measured 

statistics using FOT-probabilities or moments, the statistics themselves might well be sufficiently 

reliable for the experimentalist’s purposes. This is determined by the subsegment length, not the 

number of subsegments. Finally, as a consolation prize for adopting the FOT-probability model when 

the amount of available data is insufficient to obtain reliable FOT-CDFs for probabilistic analysis of the 

finite time-average statistics, one may posit a model as presently done when stochastic processes are 

used, but there’s no need to assume this is a population probability, which is an integral part of using 

stochastic process models. Also, there is always the possibility of experimenting with the partition of 

the available data, by which the number of subsegments is traded off with their length, which means 

the reliability of the statistics is traded off with the reliability of the probabilistic model for evaluating the 

reliability of the statistics. Taken to the limit, one can use a maximal number of subsegments to obtain 

maximal reliability for an estimated CDF (or other probabilistic parameter to be used on the measured 
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statistic), which forces a minimal segment length used to obtain a minimal-reliability statistic and then, 

as a second step, use all the data to recompute the statistic, and adjust the measured already-

computed reliability of the initial statistic to reflect the factor by which the record length used for the 

statistic has been increased. For example, if the variance of the statistic is the probabilistic model for 

quantifying the reliability of the statistic, then the factor by which the segment length for computing the 

statistic has been increased can be used to divide the value of the measured variance computed for 

the statistic that uses the minimal amount of data. This factor is larger than the correct adjustment to 

the extent that the subsegments are not statistically independent. This process can be optimized by 

overlapping data segments by 50%, which doubles the number of subsegments at the cost of reducing 

the degree of their statistical independence. But it also reduces the correct value of the factor for 

adjusting the variance from the number of subsegments to the effective number of statistically 

independent subsegments. Classical work in power spectral density estimation has shown that 50% 

overlap tends to be optimal relative to larger or smaller percentages. (The approach described here 

reflects a level of pragmatism not often shown in highly orthodox methodology. It is suggested this is 

a reflection of the orthodoxy represented by complete reliance on the abstract stochastic process 

model.)  

6) FOT-probability theory/method maximally respects empiricism in science, and the Stochastic 

Process theory/method is ambivalent to empiricism in science 

If the time series data is obtained from a science experiment, in which the objective is to gain an 

understanding of a system or phenomenon, in which case accurate and precise models are scarce, 

then the obviously strong departure from realism of the stochastic process, that is described above, is 

inconsistent with the required empiricism in science. In contrast, the unorthodox alternative is 100% 

empirical. In those applications where limitations on the length of time series data is of concern, there 

is apparently no evidence that giving up altogether on empiricism and adopting the stochastic process 

approach is going to lead to better empirical science.   

7) FOT-probability theory/method is a success story for Finitism 

The argument here favoring the unorthodox option is not unrelated to the concept that forms the basis 

for Finitism: “If it’s infinite, it’s not science”.  There are two sources of infinity in the orthodox approach 

to probabilistic analysis of empirical time-average statistics: 1) the assumed population (sample space) 

for the posited axiomatically defined stochastic process is typically infinite for non-trivial experiments, 

2) the ergodic theorem provides a link between time averages and expected values for only infinite 

averaging time and, even then, the averages are hypothetically made on members of a hypothetical 

infinite population bearing no connection to the single record of real data being time averaged by the 

empiricist.  Thus, the orthodox stochastic process model is rejected by Finitism but, unlike many other 

items rejected by Finitism, there is an obvious finite replacement that is clearly pragmatically superior.  

8) FOT-probability is 100% objective and empirical; The stochastic process is 100% subjective 

and axiomatic 

This article touches on epistemology of science as it relates to current science methodology. It 

addresses the strange situation in the field of time series analysis of the dominance of a theory based 

on an abstract axiomatic definition of probability over a strongly analogous theory based on a non-

axiomatic empirical definition of probability in terms of time averages of measurements made on real 

times series data. This dominance of stochastic processes is an egregious violation of parsimony, 
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which is a cornerstone of science. The violation consists of a model based on the assumed 

mathematical existence of a physically non-existent entity in the specific science topic targeted in this 

article: a population of time series. The violation also consists of the key role played by the Ergodic 

Hypothesis because this hypothesis is often not validated (validation can be a substantial 

mathematical challenge and is, consequently, often avoided), and this theorem is all about infinities: 

infinite time averaging and infinite ensemble averaging in the empirical-like interpretation of Expected 

Value (from the Law of Large Numbers). Moreover, the ergodic hypothesis does not establish what is 

needed for the stochastic process model to be scientific in the sense of relating to the available data. 

That is, there is no link between the statistics calculated from empirical data, that are to be 

probabilistically analyzed, and the expected values or probabilities of functions of stand-in counterpart 

statistics calculated from the abstract model. Rather, this theorem establishes only equality, in an 

infinite limit, of time averages of hypothetical sample paths from the stochastic process to 

mathematical expected values from the stochastic process, neither of which have any link to the 

available data.  

• The orthodox probabilistic model, being 100% axiomatic, takes us as far from 

empiricism as possible.  By adopting the purely abstract axiomatic definition of 

probability, MATHEMATICIANS CLOSED THE DOOR ON ANY FORM OF REALISM AND 

ANY CONNECTION TO EMPIRICAL DATA, AS THOROUGHLY EXPOSED IN THIS 

ARTICLE.  NEITHER ERGODICITY NOR THE LAW OF LARGE NUMBERS CAN OPEN 

THIS DOOR. 

 

IV. THESIS 

In this article, many distinct practical advantages of the unorthodox empirical theory of probability over 

the dominant abstract theory are exposed (above) and subjected to a rational discussion. It is 

submitted here, as a thesis, that: 

• A reasonable conclusion to draw is that there is a need for a paradigm shift in education 

in the topic of probability and in the practice of probabilistic analysis of time series 

statistics in the field of mathematical statistics.  

Further support for this thesis is provided below and addresses the less-than-ideal implementation of 

the Scientific Method. The passage of 38-years since the seminal publication of a book on the FOT-

probability paradigm with no appreciable movement in the direction established by the Author’s 

proposal for a paradigm shift from the orthodox stochastic process model to the alternative, reflects 

the difficulty of, metaphorically speaking, releasing our grip on a rock. Numerous examples of 

theoretical and methodological breakthroughs resulting from use of this paradigm shift are cited in 

Sec. VIII and further support the suggestion that collective behavior and science by consensus may 

be responsible for the absence of a paradigm shift, which absence is illogical, otherwise non-scientific, 

and suggestive of human error.  

In this article, the dilemma, concerning (1) the dominant use of the stochastic process in science and 

(2) the non-scientific character of the stochastic process, is immediately resolved by replacing the 

stochastic process model of probability with the long-overlooked Fraction-of-Time (FOT) probability 

model. Mathematicians have argued that the stochastic process is mathematically superior to the FOT-

probability model, in large part, because the probability measure of event sets in the sample space 

and the sample space itself defining the stochastic process are axiomatically willed to possess the 
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properties of sigma additivity of sets and sigma linearity of the expectation operator (which properties 

concern infinite unions of sets and infinite linear combinations of random variables), whereas the 

theory of FOT-probability is based on the Lebesgue Measure on finite intervals of time and the Relative 

Lebesgue Measure on the entire real line of sets of time points. The former measure is and the latter 

measure is not sigma additive and the induced expectation operator is and is not sigma linear, 

respectively, and this reflects the character of the entities of interest; it is not a result that is simply 

willed by axiom as it is for the stochastic process. The concern about these sigma properties is a 

mathematical concern but not a mathematical showstopper—see below. This fact suggests that the 

historical abandonment of FOT-probability was due to a Red Herring (being thrown onto the path 

towards the theoretical development of FOT-probabiity eventually produced by the Author). Since the 

case of finite-time averaging is the only case that is possible in real science, the choice of the FOT-

probability definition over the stochastic-process definition gives up nothing from the standpoint of 

science. It does give up something from the mathematical standpoint of developing and proving 

mathematical theorems about abstract models of time series because finite-time FOT-probability is 

not as viable as the stochastic process for such purposes. The first reason is that edge effects 

associated with the ends of the finite-time interval used for computing statistics occur. For example, 

the input/output relation for the correlogram and periodogram statistics for filters, which is exact in the 

limit as the data segment length approaches infinity, is only approximate for finite-time averages 

[5,p.46]. The second reason is that the infinite-time version of FOT-probability does not possess the 

aforementioned sigma properties possessed by the stochastic process (as axiomatically dictated). 

Nevertheless, this is not a showstopper when one encounters an infinite union or an infinite sum. For 

example, when one encounters in mathematical manipulation of a time series the FOT-expected value 

of an infinite sum, evaluation must proceed by proper interpretation of the infinite sum as a limit of 

finite sums, and use of standard finite mathematical manipulation until the point is reached where the 

limit can be unambiguously evaluated [thereby avoiding just blindly interchanging expectation and 

infinite summation as done with a stochastic process, for which this is guaranteed to be valid by the 

axiomatically willed stochastic-process property of sigma linearity—provided that one’s stochastic 

process is truly a Kolmogorov process. (Does anyone ever check?)  

Consequently, there is no absence of sigma additivity and sigma linearity of the finite-time FOT-

probability model and, so, such absence is not a valid reason for outright rejection as a mathematically 

viable tool for the scientific purposes targeted in this article and it is also not a valid reason for outright 

rejection of the limit FOT-probability model for parametric statistics, which is addressed in Sec. III. In 

the case of interest in empirical probabilistic analysis of finite-time statistics, these sigma properties 

are either irrelevant or satisfied and, in the case of statistical inference, such as parameter estimation 

for limit FOT-probability models, the absence of the sigma properties can, in principle, be 

accommodated through more careful mathematical manipulation as described above. And, in practice, 

when this does not resolve the issue, the likely reason is that a contrived model has been chosen.     

In summary, sigma properties are mathematics; they are not science. Their absence in the case for 

which limit FOT-probabilities are used can likely be managed and the mentioned approximations that 

may arise with the finite-time model can often be characterized as a minor distraction in empirical 

science. So, let us dig further into this troublesome matter of the dominance of the abstract model over 

the empirical model for the purpose of fully exposing the present existence of a sound logical argument 

for initiating a paradigm shift in which we replace the comfortable role the theory of the stochastic 

process presently plays in probabilistic analysis of empirical time series data, as the only probabilistic 
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tool considered, with an equally comfortable role the theory of the FOT-probability model is fully 

qualified to play.  

It can be seen from the straightforward example given in Sec. II that empirical probabilistic analysis of 

real finite-time statistics is practically viable. The sometimes-erudite argumentation offered in this 

article is primarily intended to defend against mathematicians’ complaints that apparently led to the 

universal adoption of the stochastic process mid-last-century as the only viable option.  

• The elucidation here of mathematicians’ complaints and the reasons given here for the 

impotence of these complaints is intended to remove the mystery that empiricists may 

perceive and may be unduly concerned about: mysteries that may have left scientists 

of the past feeling impotent to resist the movement away from empirical probability and 

toward the abstract axiomatic definition of probability put forth by A. N. Kolmogorov, 

which was uniformly celebrated by mathematicians who, generally speaking, may not 

have much interest in empiricism—the core of science.    

 

V. ADDITIONAL DETAILS OF ANALYSIS  

Human nature’s resistance to conceptual change—one might call it mental inertia—is a common 

challenge to assimilating new ways of thinking. Case in point: early-to-mid-20th Century 

mathematicians became captivated by a particular way of thinking about probability, which had long 

been only an intuitive concept, and consequently moved away from another way of thinking already 

underway, but nascent, that is more natural, more intuitive—yet still mathematical—and more in tune 

with empiricism in science and engineering.  

• Mathematicians’ abstract axiomatic probability has become orthodox, and the empirical 

alternative, FOT-Probability, has all but vanished from formal recognition in academia 

and our research journals.  

To review the focus of this article before proceeding with deeper analysis, the particular area of study 

that is of concern is again defined by a desire to perform probabilistic analysis of data as a key 

conceptual tool in science and engineering. The particular object for probabilistic analysis considered 

here is pervasive throughout these fields: statistics obtained by time-averaging measurement 

functions of observations comprised of single records of time series data originating from physical 

phenomena with no interest in populations.  

As practiced today, the topic of Item1 in Sec. III is known as parametric statistics because it is based 

on use of an abstract probabilistic model, the stochastic process, of the empirical data, which model 

typically contains parameters with unknown values to be adjusted to fit the data in one way or another. 

The alternative topic of primary interest in this article is referred to as non-parametric statistics. Yet, 

as practiced today and discussed in Section III, non-parametric statistics in general still uses 

mathematicians’ preferred definition of abstract probability for quantifying performance of non-

parametric statistics rather than using the alternative, also viable (for the use of interest addressed 

herein) definition of empirical FOT-probability. A key observation here is that populations of actual 

times series data are not part of the area of study focused on in this article, though there is another 

branch of statistics that specifically addresses data from real populations of physical entities and, as 

discussed in Section VI, is apparently amenable to an analog of FOT-probability theory and 
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methodology called Fraction-of-Population Probability theory and methodology, which goes well 

beyond todays so-called empirical probability as explained in Sec. II. This immediately calls into 

question mathematicians’ formulation of probability based on the axiom of existence of a population 

of time series.  

• The axioms that fully define mathematicians’ preferred concept of probability render 

orthodox probability a completely abstract concept, free of any relationship to reality. 

Most of us have, over time, come to accept this abstract definition as the only option. 

But it is not—not across the broad range of uses of probability concepts and especially 

not in the identified target application area that naturally motivates interest in an 

alternative definition of probability.  

Before proceeding, it is mentioned that the images included here are a sampling of human pillars of 

science and its methodology, from our past, who studied epistemology and championed empirical 

methodology. A goal of this article is to honor these giants for the wisdom of their insights into science.  

                                                     

                         Francis Bacon 1561-1626        John L. Lock 1632-1704      George Berkeley 1685-1753       David Hume 1711- 1776 

Abstract probability: The population-based probability model of time series data is called the 

stochastic process. This model is today ubiquitous in the field of mathematical statistics, including 

specifically the part of this field that is targeted in this article. To illustrate the degree of abstraction in 

this probability model, we need to briefly dive into key characteristics of the model that arise in 

applications to empirical time-series analysis. In the identified target application area, heavy reliance 

is made on two fundamental results in the mathematical theory of probability: the Birkhoff Ergodicity 

Theorem and the Law of Large Numbers.  

• Ergodicity of a stochastic process model tells us that infinite time averages 

(unimplementable with real data ~ UWRD) on UWRD sample paths from the model equal 

UWRD expected values from the model. It also tells us that finite-time averages of 

UWRD samples paths from the model approximate both these UWRD model 

characteristics. 

 

• The Law of Large Numbers (LLN) tells us that UWRD infinite ensemble averages over 

UWRD sample paths (members of the hypothetical population) from a stochastic 

process model equal UWRD expected values from the model. It also tells us that finite-

ensemble averages of UWRD sample paths from the model approximate UWRD 

expected values from the model.        
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• Neither this fundamental theorem nor law says a word about the real data one works 

with in real science and investigative engineering!  

Any relationship to real data depends on how well the stochastic process model fits the real data, 

which is a problem about which the ergodicity theorem and the LLN offer no help and for which no 

generally applicable or universal methodology exists. 

The challenge of fitting a stochastic process model to real data, a problem in the field of parametric 

statistics, would seem to be off point for the target application area and specific objective here, which 

is a problem in non-parametric statistics not involving populations. Nevertheless, this topic is briefly 

delved into here to put FOT-probability into even broader perspective. 

With the stochastic process tool, the opportunities for getting misleading results from models that do 

not represent the data with fidelity are common for the simple reasons mentioned above. This should 

not be surprising given the tenuous link with real data such as (1) the absence of populations, (2) the 

gap between real data and the individual sample paths of the model, which are only surrogates, (3) 

the challenging mathematics of validating the ergodic hypothesis for specific models, which challenge 

has recently been taken to new heights in the new cycloergodicity theorems [8] relevant to data 

exhibiting statistical cyclicity which is pervasive in natural science and some fields of engineering as 

well, (4) the limited intuitive explanations of the mechanism(s) that are responsible for the ergodicity 

theorems’ validity, and (5) the hidden abstraction of the qualifier “with probability equal to 1” in 

ergodicity theorems and the related LLN.  

Empirical probability: Motivated by these five difficult issues, we consider the alternative in which 

the probability of an event of interest occurring in a given time series is defined to be the Fraction-of-

Time (FOT) the event occurs over time in the time series data. In contrast to the use of the abstract 

axiomatic stochastic-process tool, every numerical result one produces with the alternative FOT-

probability calculations comes exclusively from the data; the statistics one chooses to calculate from 

the data and the FOT-probabilistic quantities one chooses to evaluate the statistics both come from 

the data, consisting of a single time series record, exclusively. The example given in Section II nicely 

illustrates FOT-probability and its difference from the axiomatic definition of probability.  

Unlike the stochastic process, the finite-time version of this alternative is a non-population, non-

abstract, non-axiomatic probability that is 100% empirical [5],[7] and is referred to herein as empirical 

probability and is therefore well suited to non-parametric statistics which, for time series analysis, is 

taken in this article to mean statistical analysis not involving stochastic process models (possibly 

containing unknown parameters). For clarity, the modified term strict-sense non-parametric, which 

refers to both the statistics and the probabilistic analysis of these statistics as being non-parametric, 

could be used, to distinguish it from the traditional empirical probability which, as described in Section 

II, is very-much parametric when it comes to probabilistic analysis of statistics.  

The FOT-probability theory, in its original form produces time invariant models for both finite-time data 

and infinite-time data, such as empirical cumulative probability distributions. Such models are said to 

be stationary. The Author has generalized the theory of FOT-probability to produce periodically and 

almost periodically time variant probabilistic models, referred to as cyclostationary and almost 

cyclostationary, for applications to data exhibiting statistical cyclicity. Other forms of nonstationarity of 

the data, excluding minor variations on these, are not generally accommodated by FOT-probability but 

can be for special cases, most notably slow nonstationarity, also called local stationarity cf. [8]. The 
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time varying probability model of a generally nonstationary stochastic process has absolutely no link 

to real non-population times series data. So, there is no further discussion here of this irrelevant topic. 

Worthy of note in passing, the restriction to stationary models rules out long-term empirical-probability 

measurements on any life form, including animals (and humans) and, to a lesser extent in some cases, 

plants, because life forms age. So, applications to the biological sciences or natural science is limited 

and this explains why population probability dominates statistical analysis in this broad field of science, 

where populations do actually exist. Yet, as mentioned in Section VI (and addressed in Appendix II), 

an analog 100% empirical probability theory can apparently be built for actual non-stationary 

populations of time series, by calculating relative frequencies of occurrence of events over a finite 

population of time series for events depending on any selected sets of time points.  

One can refer to some or all of the time-average statistics and their FOT-probabilities as statistical or 

probabilistic data modeling but there’s no possibility here that these models do not fit the data exactly. 

Every ingredient in any probabilistic analysis of statistics using FOT-probability is determined by the 

data and only the data and no approximations need be made. An empirical model can never lie about 

the data (although users of empirical models can, even if unintentionally), which certainly cannot be 

said for stochastic process models specifically because of their tenuous link with real data.  

• The term and associated concept of probabilistic analysis of time series statistics in 

use today, even if the adjective empirical is inserted, is invariably based entirely on the 

standard abstract population probability model, as if the existence of both the strongly 

analogous totally empirical FOT-probability theory and the theory of the limit FOT-

Probability are completely unknown. 

 

• Orthodox empirical probability is not what its name implies: although the statistics that 

measure probability are empirical, the analysis of these statistics is today invariably 

done using the abstract non-empirical stochastic process. The one exception to this 

extreme situation is the genuine 100% empirical methodology used in publications by 

the Author and his colleagues.  

The tempting interpretation of the fact that half the references cited in this article are authored or co-

authored by the Author as an indication of limited utility of FOT-probability puts the cart before the 

horse, which has experimentally been shown to be ineffective for moving forward. A much more 

feasible argument for the unpopularity of FOT-probability in the literature is given in Section VII, 

History, and is the motivation for writing this article and being so explicit and sometimes redundant 

about all points to be made.   

As explained in Sec. III, even for parametric methods of statistical inference and decision making, the 

FOT-probability approach is based on empirical data and only empirical data or an idealization thereof 

defined as a limit of a finite-time single-data-record model, which is typically posited on the basis of 

the modeler’s knowledge of the physical system under study. This limit model can, in some instances 

or in principle, be derived from principles of physics. The operational viability of statistical inference 

and decision making based on FOT-probability is amply demonstrated in the seminal book [5] and 

amply supported by other books (e.g., [9],[10]) and numerous journal publications in the ensuing 38 

years since publication of [5] (cf. bibliographies and reference lists in [9],[11],[12] and more recently 

[13]-[15],[18]). In addition, it is briefly shown in Section III that there is an FOT-probability-based theory 

of Bayes Minimum-Risk Statisitcal Inference and Decision and of Maximum-Likelihood Parameter 
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Estimation and Hypothesis Testing that is dual to this part of the classical theory based on the 

stochastic process. 

In summary, if one chooses to do parametric statistical analysis, data modeling is by definition required 

and there seems to be no generally applicable or universal methodology using either stochastic 

processes or FOT-probability. So, the choice between stochastic process models and FOT-probability 

is perhaps almost equivocal for this purpose. Nevertheless, for the identified target application area, it 

is methodology for non-parametric statistics that is of prime interest.   

Non-parametric statistics: The target application area is a part of the field of non-parametric 

statistics. FOT-probability is understandably called empirical probability by the Author in reference to 

this field. Despite a significant body of knowledge developed for non-parametric statistics in time series 

analysis, there does not appear to be a general development of a theory of FOT-probability analogous 

to the theory of stochastic processes, which is pervasive. Even the topic named empirical probability 

theory in classical mathematical statistics uses stochastic process models to mimic the analysis of 

empirical time-average statistics but actually analyzes surrogate sample-path statistics from the 

abstract population as if they were real empirical data. The mathematical theory of statistics has simply 

not been able to break free of reliance on abstract stochastic processes for the purpose of any and all 

probabilistic analysis of statistics derived from real data. (We might consider the statistical methods 

collectively called bootstrapping to be an exception to this broad statement, and this is briefly returned 

to in Sec. VI) As illustrated here, the word probability today has a single meaning around the world: it 

is based on an assumed population, and it is totally abstract, being fully defined in terms of axioms 

unrelated to reality.  

The preceding remarks suggest: 

• The stochastic process, specifically for non-parametric probabilistic analysis of time-

average statistics from empirical single-record time-series data, shouldn’t even be in 

the running for the most competitive probabilistic tool to be used in the race toward 

knowledge acquisition that we call science or investigative engineering. 

Moreover: 

• For parametric statistics, the unnecessary stochastic process departure from realism 

impedes conceptualization of real-world problems in the broad application area 

identified herein and their potential solutions. Multiple quotations supporting this 

theme from past giants in the field of time series analysis are provided in the reference 

in Item 8 in Section VII. 

The seeking of a high-fidelity stochastic-process model of a real natural (not man-made) system or 

phenomenon and the translation back and forth between such an abstract model and reality that is 

required by science and (though to a lesser extent) engineering is difficult, subject to error, and 

inherently flawed [8],[14],[15],[18] as rationally explained in these first five sections.  

      VI.         PRESENT SITUATION AND A WAY FORWARD 

The common practice in time-series data processing of doing probabilistic analysis using the 

stochastic process and then, at the end, translating results involving expected values from the abstract 

model to real data by simply either deleting the expectation operation or replacing it with a finite time 
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average and then replacing the abstract sample path with real data is often unjustified because the 

ergodic hypothesis has not been validated for the model and is more generally unjustified because 

ergodicity links expected values only to time averages on abstract sample paths of the stochastic 

process, NOT to the real data the user would like to analyze.  

• There is nothing empirical about probabilistic analysis based on the stochastic 

process, which is a striking departure from analysis based on FOT-probability.  

  

• Given that the stochastic process tool is presently taught at essentially all colleges and 

universities offering probability instruction for science and engineering, to the 

complete and utter exclusion from relevant curricula of FOT-probability, the above 

indisputable facts dictate that consideration of a paradigm shift in both education and 

the practice of mathematical statistics in science and investigative engineering is 

merited.  

This does not mean wholesale replacement of instruction in stochastic processes, which have many 

valuable applications outside of the application area focused on in this article. It simply means 

augmentation of existing material being taught to create an awareness of an important, but presently 

ignored, conceptual framework and a basic understanding of what this alternative offers relative to 

present orthodoxy.   

• This corrective action is absolutely crucial for the benefit of empirical science and, 

considering that science without empiricism is not science at all, it is absolutely crucial 

for all science.  

Nevertheless, there are no panaceas in the real world. The two and (to my knowledge) only relative 

drawbacks of FOT-probability for the identified areas of study are (1) it offers no counterpart to the 

particularly abstract generally nonstationary stochastic process (unless there are copious amounts of 

data enabling independent FOT-probability analysis in different time regimes), and (2) the user of FOT-

probability must have a sufficiently long record of time series data in order to obtain a desired level of 

reliability.  

Regarding Item (1). The classical theory and method of empirical probability, which applies to 

populations, might be at least partially extendable and generalizable to provide an empirical 

counterpart to nonstationary stochastic processes. But more generally promising is the apparent fact 

that many of the arguments establishing superiority of FOT-probability theory and method relative to 

stochastic process theory and method apparently apply equally to a Fraction-of-Population analog 

called FOP-probability theory and method. This would then include natural science in the paradigm 

shift called for. To be clear, the FOP-probability theory and method referred to here is distinct from 

classical empirical probability, because, besides the statistics being based on finite population 

averages, so is the probabilistic model for evaluating the reliability of the statistics. This avoids the 

subjectivity of present-day probabilistic analysis of statistics in life sciences. In addition, there’s no 

need to make the very restrictive assumption that the time series are i.i.d sequences in some imagined 

probability space as in classical empirical probability. However, this substantially increases the 

computations needed, because, with no knowledge of stationarity, the FOP-probability for any event 

involving any finite set of time points must be recomputed for every time shift of interest of that set of 

points. It also should be emphasized here that, unlike past tentative and incomplete work on FOT-

probability, which was limited to stationary times series, the complete theory proved by the author 
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includes time series exhibiting cyclostationarity with single and multiple incommensurate periods of 

statisitcal cyclicity.   

Regarding Item (2). To avoid the issue of item (2) above, the analyst (a) must have enough data to 

compute useful (sufficiently reliable) statistics and (b) must have enough additional data to compute 

multiple samples (from subsequent segments of the time series) of these statistics from which FOT-

probability theory can be used to compute useful (sufficiently reliable) measures of reliability of the 

statistics. In practice, the methodology here is typically executed by partitioning the available time 

series record into subsegments, each subsegment of which is used to compute statistics, as illustrated 

in the example in Section II. Then time-average measurements of functions of these statistics are 

computed by averaging over the segment time index for the purpose of quantifying reliability, as also 

illustrated in the example. Details regarding this partitioning process on how to minimize the impact of 

limited time-series data are presented in Section III. In addition, an alternative that may have the 

potential benefit of reducing requirements on data-record length is methodology referred to as 

bootstrapping [19]. In the simplest of terms, applied to time-series analysis, bootstrapping amounts to 

replacing the deterministic partition of time series data discussed above by a random selection of 

subsets of time points, with replacement. Bootstrapping has the appearance of “getting something for 

nothing”, which is at odds with the maxim “there are no free lunches”. The example of the multi-

segment methodology given in Section II applies to stationary time series but can be generalized for 

cyclostationary time series for single and multiple incommensurate periods of cyclicity, cf. [5. Chaps. 

5,15], [13]  As a final remark, it should be mentioned here that in exactly the cases for which a time 

series record is not sufficiently long, the utility of ergodicity for stochastic processes is lost, because 

ergodicity’s asymptotic results are then even more irrelevant than explained in Section V w.r.t. the 

apparently ignored distinction between time averages of sample paths of the stochastic process and 

time averages of the time series data. 

The concerns here and remedies suggested also apply to FOP-probability when population size is 

limited. In life sciences where huge populations exist, this is not a problem in principle, but it is an 

economic issue, and there appears to be a tradeoff between more reliable 100% empirical studies and 

the economic cost of gathering data.     

Though corroboration of the likelihood that FOT-probability is actually in use in the practice of science, 

despite apparently being a relative rarity in research journal publications in science, would require an 

extensive formal study, it presently appears as though this practice is not receiving support through 

education in academia. As a remedy, one simple but valuable addition to curricula that includes 

stochastic processes is a simple supplement exposing students to the theory of FOT probability, and 

revelation of its strong analogy with, but still distinct advantages over (in appropriate applications), the 

theory of stochastic processes that are stationary or exhibit some form of cyclostationarity.   This would 

give them an option following graduation for choosing, in each application they face in the future, which 

of two conceptually distinct yet mathematically analogous competing theories to use. Similarly, for life 

sciences curricula where populations and nonstationarity are of critical importance, the FOP-

probability analog of FOT-probability theory should be developed and taught. The relatively mature 

theory of FOT-probability for cyclostationary time series provides a template for development of an 

analogous theory of FOP-probability. The differences between these two analogs are 1) FOP performs 

averages over the population index instead of time and it does this over all time shifts within a range 

of interest to capture nonstationarity, whereas for FOT and cyclostationarity, only time shifts throughout 

one period are needed.   
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      VII.         HISTORY 

A study of the history of mathematization of the concept of probability provides telling insight into how 

we got ourselves into the present predicament in which the FOT-probability option is apparently 

ignored [12]. It is said in the historical review of probability in [20] that the frequentist view, based on 

interpretation of probability as the relative frequency of occurrence of an event, has problems:  

• A mathematician’s explanation of why the stochastic process was adopted [20]: “It is 

of course impossible to actually perform an infinity of repetitions of a random 

experiment to determine the probability of an event. But if only a finite number of 

repetitions of the process are performed, different relative frequencies will appear in 

different series of trials. If these relative frequencies are to define the probability, the 

probability will be slightly different every time it is measured. But the real probability 

should be the same every time. If we acknowledge the fact that we only can measure a 

probability with some error of measurement attached, we still get into problems as the 

error of measurement can only be expressed as a probability, the very concept we are 

trying to define. This renders even the frequency definition circular.”  

From this Author’s perspective, the key concept of “the real probability” that drove mathematicians to 

eventually define probability axiomatically, thereby relegating the relative-frequency concept to a 

position of inferior status, was the source of so much dispute in the early 20th Century, as reviewed 

in [20, Sec. Frequentism]. Recognizing this, it should be asked: What justification is there for belief in 

“the real probability” of anything non-real, like the stochastic process?  

• This Author submits that the issue of ideal probability, touched on in [20], has not been 

adequately dealt with. It is argued here that in some instances events are defined so 

broadly that they do not qualify as real events, so seeking real probabilities is 

misguided, and in those cases for which events are clearly real, real probabilities often 

do exist.   

The connection here to the theme of this article is that FOT-probability is an uncommon type of relative 

frequency: it is the relative frequency of occurrence of an event of interest over time in a record of real 

time series data. It is not a relative frequency of occurrence of an event over a set of statistically 

independent trials of a hypothetical experiment, which is the relative frequency that was of primary 

interest to probabilists. Nevertheless, the concern that an FOT-probability measurement will not be the 

same if it is repeated over subsequent segments of the time series exists, as an analog of the problem 

that bothered probabilists in the past.  

• The Author simply sidesteps the concern that the relative-frequency definition of 

probability was seen in the past as circular, by proposing that available time series data 

be used, via FOT-probabilities, to probabilistically evaluate time-average statistics 

which can themselves be FOT-probabilities, as illustrated in the example in Section II. 

The fact that these probabilities are not free of variability, does not mean they are not 

real probabilities, as explained below. “The real probabilities” mathematicians envision 

can only exist mathematically, which is as unrealistic (totally non-empirical) as one can 

get. Moreover, for real events, properly defined empirical probability is indeed real as 

shown here.    
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In empirical work, reality concerning a phenomenon or input-output system being investigated consists 

of two things: 1) whatever pre-data-measurement concrete facts are known to be true about that which 

is being investigated and 2) whatever data in the form of observations/measurements of behavior 

made on that which is being investigated is available. For example, if one has no a-priori facts but 

does have a single record of time-series data, then that data IS the reality. Any event that does occur 

at any of multiple instants during the time span of the record is a real event and, if one selects time 

instants at which to look for this event at random, uniformly over the record, the fraction-of-time (FOT) 

that the event occurs is the real probability of that real event.  If one then records more data from the 

same phenomenon or system, the reality changes and so we expect the probability of a real event to 

change. Rather than considering new data to be a new reality ending up with a new real probability 

that differs from the first one computed, giving rise to concern about variability (as suggested in [20]), 

the new reality should be considered to be the concatenation of the two data records. One can then 

compute a new real probability and rest assured that, although it differs from the first real probability, 

it should be considered to be more reliable. Moreover, given still more data, a 100% empirical measure 

of reliability can be computed. Several mathematical properties of this reliability measure support this 

“should” statement. To mention just one, given the axiom that the FOT-probability of occurrence of the 

event converges as the data record length grows without bound, it can be shown that for any desired 

level of reliability measured in any of several allowable ways, there exists a data record that is long 

enough to achieve that level of reliability. The theory and method of limit FOT-probability is a 

counterpart (a dual) to the more abstract stochastic process model that past mathematicians chose 

as the basis for their definition of true probability of the sort that has zero variability.  The reason it is 

said here that the stochastic process is more abstract is because, although they both leave reality 

behind by taking a limit as a sample size approaches infinity, to obtain zero-variability probabilities, the 

stochastic process also axiomatically posits a population which has no counterpart in reality for the 

topic being addressed in this article. This is an egregious further conceptual departure from reality. 

Even more significant is the fact that the proposed finite-time FOT-probability does not depart from 

reality at all, because it does not take the aforementioned limit. (Since this entire article is focused on 

probability computed from empirical data, no further consideration is given here to the “concrete facts” 

referred to above in defining reality.) 

 

• The mathematicians’ concern about circularity was created by their pursuit of “the real 

probability”. Once we define what reality is and distinguish between real and unreal 

events, the issue vanishes, and the use of empirical probabilities to evaluate the 

reliability of other empirical probabilities can be seen to be sound, and the only 

limitation on how effective this is is determined by the amount of data available. This is 

discussed in Section VI, The Way Forward. 

 

• For completeness here, the reader is reminded that, given a mathematical model of a 

time series, the limit of the finite-time FOT-probability can be taken and this produces 

one example of the mathematician’s concept of “real probability”. As discussed above 

and in Section II, all random effects vanish in the limit of the FOT-probability. And this 

is achieved without hypothesizing an abstract infinite population of time series. This 

enables users of FOT-probability to engage in some of the types of mathematical 

analysis that the stochastic process is touted for, as discussed in Sec. III. 
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Before moving on in the discussion, the opportunity is seized here to illustrate the duality of orthodox 

probability and FOT-probability. The following calculation involving only fractions of time illustrates 

the conventional probability rule for a mixture of FOT-probabilities. We begin with the following 

definitions: m1 is the number of occurrences of event A within data record y1 which contains n1 time 

points, 
 

= the FOT-probability that the randomly selected 

time instant falls in the y1 segment, given the mixture of records y1 and y2 , the FOT- 

probability that event A occurs at a randomly selected time instant, given the single record y1 from 

the mixture,   the FOT-probability that the event A occurs at a randomly 

selected time instant, given the mixture. Given these definitions, we have         



 (m1 + m2) / (n1 + n2) 

= [m1 / n1] [n1 / (n1 + n2)] + [m2 / n2] [n2 / (n1 + n2)] 

. 

 

Although the theory and method of Bayes’ statistical inference can be used with limit FOT-

probabilities, as explained in Sec. III, it cannot be used with finite-time FOT-probability, because the 

FOT-PDFs of events of interest, given specific event outcomes, are not available from typical 

measurements, because this requires an unusual level of control over the phenomenon being 

investigated. Nevertheless, an alternative to the concept of Bayesian Learning is available and can 

easily be derived from the above expression. Using new but obvious notation, it can be shown that 

the FOT-probability of an event A, given K segments of time series data can be recursively 

computed from the FOT-probability of event A, given K-1 segments and an update term as follows: 

 

 

For applications in which the FOT-probability of an event A is expected to change due to actual 

changes in the phenomenon under investigation, as data continues to come along, the above 

recursion can be modified to give more relative weight to the most recent data. To achieve this, in the 

RHS of the above recursion, modify the 2nd factor in each of the two terms by replacing nK with FnK, 

where F is the factor by which you wish to increase the effective length of the most recent data 

segment, e.g. the 2nd factor in the second term of the recursion is replaced with FnK / (FnK + nK-1 + . . 

. + n1) and a similar replacement is done in the second factor of the first term. 
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As another example of the possibilities presented by FOT-probability, it is briefly mentioned here that 

one can transform a single-record stationary time series (or single- or multi-period cyclostationary 

time series) with finite memory into a near-Markov time series, by performing linear least-squared-

error prediction to subtract out dependence of present on past that goes back farther than one unit in 

time. The errors between the present value and the past values used in this procedure are obtained 

by sliding the segment of data spanning the present and M most recent data values backward one 

unit of time for each data set over which the squared linear prediction errors will be summed before 

minimization w.r.t. the coefficients in the linear combination of M-1 past values excluding the most 

recent past value, The desired transformed time series is the series of prediction errors.   

It seems that mathematicians’ emphasis on the superior mathematical viability (due entirely to 

Kolmogorov’s 1933 axioms [21], which abandoned all realism) of stochastic processes for formulating 

and proving theorems had an outsized impact on users of probability in science and engineering, 

especially in the identified target application area. There appears to have been negligible push-back 

on this shift away from earlier use in physics and engineering of the FOT-probability concept as 

reflected in Norbert Wiener’s 1930 treatise on Generalized Harmonic Analysis [22]. It is conceivable 

that Brillinger’s mid-1970s book on time series analysis [23] is the (or one of the) “smoking gun(s)” in 

the temporary but long-lasting (1960’s to present) death of the FOT-probability alternative because of 

the position he took, namely, to explicitly choose stochastic process theory over FOT-probability 

theory, while claiming the two theories (the limit FOT probability model and the stochastic process 

model) are equivalent for stationary processes. This equivalence is mathematically disproved in 

Appendix II and the differences are substantive. Several other classic books on stochastic processes 

as well might have provided considerable impetus for forgetting all about the FOT-probability concept, 

which is what happened. The authors of these books are mathematicians. Textbooks that followed in 

engineering and science appear to have simply followed suit, with primarily one salient exception: the 

Author’s mid-1980s textbook [5] and on the order of 50 subsequent solid research papers, book 

chapters, and books, all authored by the Author and his colleagues (recall the preceding reference in 

Sec. V to the advisability of not putting the cart before the horse). 

Although mathematics is its own master, historically much of mathematics has been driven by science. 

The opposite should not be happening: mathematics should not drive science except in those rare 

circumstances for which solid new insights into difficult practical problems suddenly arise from a stroke 

of mathematical genius. 

• THE PRESENT UBIQUITOUS USE OF THE STOCHASTIC PROCESS IN THE FIELD 

IDENTIFIED HEREIN HAS THE UNMISTAKABLE APPEARANCE OF MATHEMATICS 

DRIVING SCIENCE AND THE RESULT, IN THE AUTHOR’S OPINION, IS A DEGRADATION 

OF EMPIRICISM IN SCIENCE AND INVESTIGATIVE ENGINEERING, WHICH IS NOT A 

DESIRABLE OUTCOME. 

 

      VIII.         DEMONSTRATIONS 

Due to limited space, non-trivial demonstrations of the many benefits of FOT probability over 

population probability that are identified herein cannot be included. In place of such demonstrations, 

readers are referred to the recent discovery of a new long-term cycle in Sunspot series data based 

exclusively on FOT-probabilistic analysis [1],[18]. This is a topic that has been studied for at least two 

centuries.  
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• The recent discovery at this late date of something never before seen in the 200-year-

old Sunspot series suggests there may indeed be conceptual advantages of the FOT-

Probability theory and methodology. 

This is salient evidence, though certainly not proof, of potential pragmatic benefits of the essentially 

unknown FOT-probability over the orthodox alternative and various ad hoc methods. But, more 

generally: 

• The Author suggests that the absence of awareness of FOT-probability theory and 

consequent total dependence on population probability in the absence of populations 

could be responsible for subtle delusion or even deceit and, without deep probing, 

invisible and therefore insidious effects on thinking. The Author is not the first to 

express this concern [15].  

Reflecting on commentary throughout this article, it seems there has been an all-out acceptance of 

the population probability concept illogically in applications where there is no population, resulting in 

blindness to FOT-probability. As discussed in Sec. VII, mathematicians’ motivation for preferring 

population probability was their apparent belief that it was the only choice that produced what is called 

the true probability (a probability without variability); however, limit FOT-probability also offers this 

absence of variability. The complete takeover by the stochastic process has the appearance of subtle 

indoctrination, but who or what would be responsible for such indoctrination? The Author can offer only 

the conjecture that potentially unintentional influence of mathematicians in the 1960s -1970s era of 

stochastic-process book-writing may have indoctrinated readers because of the absence of any 

counterbalancing teachings in the alternative nascent FOT-probability theory. As an example of the 

blindness mentioned here, readers are referred to a published debate on this probability topic, which 

has been reproduced at the educational website [7, p.3] specifically because it explicitly illustrates this 

blindness and illogical behavior.  

To conclude this article and to complement the implication of the highly unexpected scientific discovery 

in the Sunspot series example given in Sec. I, the following nine examples are given:  

• A list of nine major breakthroughs in the two subfields identified below is presented 

and supporting documentation is cited: 
 

(1) parametric statistics as used in communication systems design and 

analysis, based on limit FOT-probability models, and  

 

(2) non-parametrical statistics as used for statistical inference algorithm design    

and implementation, based on finite-time FOT-probability calculations 

Seven of the following nine major breakthroughs are a direct result of the Author’s first two 

breakthroughs: introduction and single-handed comprehensive development of two major independent 

but complimentary wide-reaching theories: Fraction-of-Time Probability and Cyclostationarity, the first 

of which is hopefully about to motivate a major paradigm shift in the definition of probability for time 

series analysis in science and the second of which now permeates all fields of science and 

engineering. The joint exploitation of these two theories has directly led to breakthroughs 3 - 9: 

1) Full Development of basic Fraction-of-Time Probability for time series (including signals) 

exhibiting stationarity and pioneering multi-period cyclostationarity. This generalized N. 
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Wiener’s Generalized Harmonic Analysis theory: (1) from 2nd-order to nth-order, 2) from wide-

sense to strict-sense, and 3) from stationary time series to cyclostationary and almost 

cyclostationary time series—see Item 2) [5],[7, p.9.1]-[10]  

2) Full seminal development of basic Multi-Period Cyclostationarity theory (a comprehensive 

set of 20 independent theorems defining much of the theory of cyclostationarity), illustrated 

by a plethora of signal modeling examples and algorithms invention for statistical analysis 

and statistical inference and decision making--see Items 3) – 9) [5]-[7, p.9.1]-[10] 

3) Comprehensive communication signals modeling (cyclostationarity characteristics, especially 

spectral correlation density functions) including first derivation of the cumulant as the solution 

to a problem, which isn’t even probabilistic, and is the basis for breakthroughs 4 - 6) 

[5,chap.12], [24],[25]  

4) Separation of spectrally overlapping signals with revolutionary Frequency-Shift Filtering 

techniques based on the Author’s original theory of Cyclic Wiener Filtering, generalizing N. 

Wieners theory of non-causal Wiener Filtering from stationary signals to multi-period 

cyclostationary signals [5],[26] 

5) Classification of spectrally overlapping communication signals demonstrating innovative 

capability widely recognized as crucial to cognitive radio and signal interception for national 

security [27]  

6) Blind Communication Channel Equalization using only 2nd-order statistics—a new capability 

previously unrecognized because of use of stationary signal models [28], [29, Chap. 3] 

7) Nonlinear system identification for system input signals of opportunity or under the control of 

the experimentalist; using cyclostationarity to get over the hurdle for which N. Wiener’s MIT 

group did not find success in 20 years [5, p.11.7] 

8) Probability modeling in science specifically for time series analysis of time-average 

statistics—a major paradigm shift, in the making, toward true empiricism in science [30] 

9) Parameter estimation with radically new Method of Moments—first substantive breakthrough 

in MoM theory and methodology in over a century [31] 

The technical claims made in this article are backed up with the publications by Gardner and 

Napolitano and their coauthors in the reference list. 

• A reasonable conclusion to draw is that there is a need for a paradigm shift in education 

in the topic of probability and in the practice of probabilistic analysis of time series 

statistics in the field of mathematical statistics.  

 

Appendix I: Fraction-of-Population (FOP) Probability for Both Statistics and Their Probabilistic 

  Analysis 

In a completely analogous fashion, FOP-Probability can be defined for empirical populations of 

times-series data just as done for FOT-Probability for single empirical time series by simply 

averaging over the population member index for each of all time translations of interest instead of 

averaging over the time index. In general, this produces a nonstationary CDF. By partitioning the 

population member index set  into a superset of subsets, statistics can be measured over each 

of the subsets, and then probabilistic functions (e.g., for quantifying statistic reliability) can be 

computed by averaging over the index for the superset.  
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Given a finite set of time series  over a time interval W, with population 

sample index set , the joint empirical CDF for K time points computed from this data is defined by 

 

where the angle brackets here mean average over the sample index  instead of the time index t as 

in Sec. III. By doing this for each value of time translation t over some set of interest, a generally 

nonstationary CDF is obtained. Just as for the FOT-CDF, the FOP-CDF satisfies the Fundamental 

Theorem of Expectation [5]. Actually, for the FOT-CDF, it is a Fundamental Theorem of Time Averaging 

[5], and for the FOP-CDF, it is a Fundamental Theorem of Population Averaging (FTPA). 

The traditional probability functions, including joint moments and cumulants for multiple time points 

can be calculated directly from a population average, or indirectly from the CDF using the FTPA. 

 

Appendix II Proof of Inequivalence of the Kolmogorov Ergodic Stochastic Process Model and the 

FOT-Probability Model  

In order to prove that the Kolmogorov ergodic stationary stochastic process model is not equivalent to 

the FOT-probability model (contradicting Brillinger [23]), this appendix presents a stochastic process 

model that IS equivalent and then shows that this process is not the same as a standard Kolmogorov 

process with the same CDFs. This material is taken from [15].  

Definition of stationary FOT-stochastic process  

Def.S1: The Sample Space of the Stationary FOT-Stochastic Process is comprised of all the time 

translates of a single relatively measurable discrete- or continuous-time sample path (persistent real-

valued function of a real variable), 𝑥, subject to the constraint that replications are disallowed (no two 

sample paths can be identical):  

𝛺� = {{𝑥�−𝜔 ; � ∈ Z}; 𝜔 ∈ Z},                                     

𝛺𝑐 = {{𝑥(𝑡−𝜔); 𝑡 ∈ R}; 𝜔 ∈ R}   

Def.S2: The probability of any relatively measurable subset of elements from the sample space index 

set 𝑅 or 𝑍, called an event, is the value of the relative measure of that set.  

Def. S3: The FOT-CDF of any relatively  measurable discrete- or continuous-time function, 𝑓[𝑥](𝑡) or 

𝑓[𝑥](�), which is jointly relatively measurable, for 𝑚 real-valued time points {𝑡1,𝑡2, 𝑡3, …, 𝑡𝑚} or 𝑚 integer-

valued time points {�1,�2, �3, …, �𝑚}, respectively, of the Stationary FOT-Stochastic Process 𝑥(𝑡) or 𝑥� 

is the relative measure of the event set  

𝐸𝑐(𝑚) ≜ {𝜔 ∈ R; 𝑓[𝑥](𝑡1−𝜔) ≤ 𝜉1, 𝑓[𝑥](𝑡2−𝜔) ≤ 𝜉2, …, 𝑓[𝑥](𝑡𝑚−𝜔) ≤ 𝜉𝑚}  

or  

𝐸�(𝑚) ≜ {𝜔 ∈ Z; 𝑓[𝑥](�1−𝜔) ≤ 𝜉 1, 𝑓[𝑥](�2−𝜔) ≤ 𝜉2, …, 𝑓[𝑥](�𝑚−𝜔) ≤ 𝜉𝑚} 

for all real-valued m-tuples {𝜉1, 𝜉2, 𝜉3, …, 𝜉𝑚}.  
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It follows from Def.S3 that the1st-order FOT-CDF for a continuous time stationary FOT-stochastic 

process is given explicitly by the formula  

�𝑥(𝜉) ≜ 𝜇𝑅({𝑡 ∈ R∶ 𝑥(𝑡) ≤ 𝜉})  

         = (1/𝑈) 𝜇({𝑡 ∈ [ 𝑡0−𝑈∕2, 𝑡0+𝑈∕2]; 𝑥(𝑡) ≤ 𝜉})  

         = (1/𝑈)  u(𝜉−𝑥(𝑡)) d𝑡  

for all real 𝜉, and similarly for higher-order FOT-CDFs, where 𝜇𝑅 is the Relative Lebesgue Measure 

and 𝜇 is the Lebesgue Measure.  For discrete time, the FOT-CDF is given by  

�𝑥(𝜉) ≜ 𝜇𝑅 ({� ∈ Z; 𝑥� ≤ 𝜉}) 

         = [1/(2𝑁+1)] #({� ∈ [�0−𝑁, �0+𝑁]; 𝑥� ≤ 𝜉})  

         = [1/(2𝑁+1)]  u(𝜉−𝑥�)  

where # is the counting measure. As another example, for 𝑚 = 2, we have the 2nd-order FOT-CDF  

�𝑥(𝜉1,𝜉2) ≜ 𝜇𝑅({𝑡 ∈ R; 𝑥(𝑡+𝑡1) ≤ 𝜉1, 𝑥(𝑡+𝑡2) ≤ 𝜉2})  

                 = (1/𝑈) 𝜇({𝑡 ∈ [ 𝑡0−𝑈∕2, 𝑡0+𝑈∕2]; 𝑥 (𝑡+𝑡1) ≤ 𝜉1, 𝑥(𝑡+𝑡2) ≤ 𝜉2})  

                 = (1/𝑈)  u(𝜉1−𝑥(𝑡+𝑡1)) u(𝜉2−𝑥(𝑡+𝑡2)) d𝑡  

for all real 𝜉. Note: The constraint in Def.S1 that disallows replications in the sample space also 

disallows constant signals, which are a degenerate case of stationary signals. 

The probability of the entire sample space of the Stationary FOT-Stochastic Process is equal to 1, 

meaning every experimental outcome for this model is one of the members of the sample space. That 

is, for a discrete sample space 𝛺� (𝑁) with a finite number 𝑁 of translates, the probability of each 

translate is 1∕𝑁 and since these translates are mutually exclusive events, the probability of the entire 

set of 𝑁 translates is the sum over 𝑁 probabilities, each equal to1∕𝑁, which sum equals 1. In the limit, 

as the number of translates 𝑁 included in the sample space approaches infinity, we get the result that 

the probability of each sample path is 0 and the probability of the total sample space 𝛺� is 1. Similarly, 

for a continuous sample space, the probability of each sample path is 0, because the relative measure 

of a single point on the real line is 0, and the probability of the total sample space 𝛺𝑐 is 1, because the 

relative measure of the entire real line is 1.  

For this FOT-stochastic process, any one of the translates, {𝑥(𝑡−𝜔); 𝑡 ∈ R} for any particular 𝜔 ∈ R or 

{𝑥�−𝜔; � ∈ Z} for any particular 𝜔 ∈ Z, can be taken as the Sample Space Generator. In practice, the 

sample space generator would be taken to be the single observed signal, conceptually extended from 

the finite observation interval to the real line, or to the integers; and when a formulaic specification of 

the process is made, the sample space generator would be obtained  from the formula for any specified 
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set of random samples of the random functions in the formula. So, given a specification of one sample 

path, we have a specification of the entire sample space.  

Stationary FOT Ergodic Theorem: 

1. Every Stationary FOT-Stochastic Process is Strongly Ergodic, by construction, meaning the 

infinite time averages of relatively measurable functions of the process exist and are 

independent of the particular sample paths selected and are equal to the expected values of 

those functions obtained using the FOT-CDF or FOT-PDF.  

 

2. Every Finite-Ensemble Average of every function of a Stationary FOT-Stochastic Process is 

identical to a Finite-Time Average of that function.  

 

The validity of this theorem follows directly from the Definitions. It is noted here that ensemble 

averages are typically conceived of as being performed on randomly selected ensemble members, 

which do not occur in any ordered fashion. In contrast, time averages are typically performed on time-

ordered time samples or time translates. Item 2 in this theorem does not assume any ordering. 

However, when one approaches the question of convergence of time averages as the length of 

averaging time approaches infinity, time ordering is desirable and typically assumed (e.g., as in a 

Riemann integral), but no such ordering can be assumed for random selection of ensemble members. 

To avoid the technical details involved here (which are of no pragmatic interest), Item 2 addresses only 

finite averages and, like Item 1, states a fact that is obvious from the construction of the sample space.  

Relation to Wold’s Isomorphism  

Wold introduced an isomorphism in 1948 [32], which is referred to here in its extended form that 

accommodates continuous time processes, between (1) the sample space of a stochastic process, 

defined to consist of the collection of all time translates of a single time function, including that time 

function itself, and (2) this single time function. This isomorphism establishes a distance-preserving 

relationship between the stochastic process, with its definition of squared distance as the ensemble-

averaged squared difference between two processes, and a single sample-path of that stochastic 

process, with its definition of squared distance as the time-average of the squared difference between 

two sample-paths. This mapping between the metric space of a stochastic process and the metric 

space of a single sample path therefore preserves distance and is consequently an isomorphism. The 

above sample space is identical to that in Def. S1 for a Stationary FOT-Stochastic Process. By 

complementing this sample space with an FOT-Probability measure satisfying Defs. S2 and S3, we 

obtain a Stationary FOT-Stochastic Process. Wold did not take this step, and– according to the 

Author’s literature search– apparently did not pursue the conceptual path taken in the present article. 

Comparison of Kolmogorov and FOT-stochastic process models (the magic hand)  

To illustrate how simple the sample space of a stationary FOT-stochastic process is, compared with 

one of the simplest examples of the sample space of a Kolmogorov process, consider an infinite 

sequence of statistically independent finite-alphabet real-valued equally probable symbols, with 

alphabet size K. The Kolmogorov sample space for a finite sequence of length 𝑁 contains 𝐾𝑁 distinct 

sequences and the probability of each is (1∕𝐾)𝑁. The probability of the entire sample space is the sum 

of the probabilities of the 𝐾𝑁 mutually exclusive and exhaustive sample paths, each having probability 
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(1∕𝐾)𝑁, which sum equals 1. In the limit, as the sequence length approaches infinity, we get the result 

that the probability of each sample path is 0 and the probability of the total sample space is 1.  

This sample space includes as a strict subset the entire FOT sample space generated from any one 

of the Kolmogorov sample paths. The Kolmogorov probability of this FOT sample space is the limit, 

as 𝑁 approaches infinity, of 𝑁(1∕𝐾)𝑁. Therefore, the Kolmogorov probability of the entire FOT sample 

space is 0. This is a result of the fact that the sample space represents a single signal—a single infinite 

sequence of 𝐾−ary symbols, not all possible infinite sequences of 𝐾−ary symbols. The Kolmogorov 

sample space apparently contains not only the FOT sample space of all translates of one infinite 

sequence but also contains the FOT sample spaces of all translates of every possible infinite sequence 

of 𝐾−ary symbols. Despite the huge difference in the sizes of these two sample spaces, as 𝑁 

approaches infinity, it is interesting to note that the FOT probability of a subsegment comprised of a 

specific sequence of length 𝑁 occurring over the lifetime of the function is (1∕𝐾)𝑁, and this is the same 

as the probability of selecting a sample path from the corresponding Kolmogorov stochastic process 

that possesses a particular subsegment of length 𝑁 comprised of this specific sequence. Because the 

time position in a stationary time series or a stationary stochastic process is of no probabilistic 

consequence, the difference in sizes of these sample spaces appears to be of no consequence unless 

one is interested in studying populations of time series. As a reminder, the Birkhoff ergodic theorem 

guarantees that the time average of every sample path in this immense sample space equals w.p.1 

the expected value and this equals w.p.1 every ensemble average. This mysterious result is not 

necessary in practice; it is not a prerequisite for having a probability theory for time-series analysis. 

The much simpler FOT-stochastic process will do for types of applications of interest in this article, for 

which populations of signals are not of primary interest, and this means that the entire stochastic 

process concept can be discarded for these types of applications and replaced with a single signal 

and its FOT-probability model. Sample spaces are then irrelevant. The cost of abandoning the 

Kolmogorov stochastic process model is that the FOT-Probability measure is in general not sigma-

additive, and the corresponding FOT-expectation operation is not in general sigma-linear. However, 

the utility of these sigma properties exists only when performing calculations involving infinitely many 

subsets of the sample space or sums of infinitely many functions of the process. Moreover, to benefit 

from these properties, one must verify that a specified probability measure does indeed exhibit these 

assumed properties. This is rarely done in practice, except when well-known probability measures, 

like the Gaussian, which have already been verified, are adopted. But there are no models for 

manmade communications signals in use that are Gaussian and the same is apparently true for 

models of naturally occurring biomedical signals, and signals of many other origins. If there is not a 

large number of independent samples of random variables added together to form a random variable 

to be modeled, there is generally no reason to expect that random variable to be Gaussian. 

Another way to compare these two models of stochastic processes is as follows. Consider, as an 

example, a Bernoulli sequence with parameter p = 0.3. This is a sequence of statistically independent 

binary random variables with values of 0 and 1 having probabilities of 0.3 and 0.7, respectively. A 

sample path for the Kolmogorov model is denoted by 𝑥(�,𝜔), where � is integer-valued and 𝜔 also 

needs only take on a countable infinity of values, and can therefore be taken to be integer valued. The 

values this function of two integer variables can take on are 0 and 1. The specification of the actual 

infinitely large 2-dim array of 0’s and 1’s is such that every possible sequence of 0’s and 1’s is included 

once and only once. So, the specification of the sample space is simply exhaustive. But there is a 

specification of a probability measure for this function of 𝜔 for subsets of values of �. The measure 
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tells us the limit, as the number of randomly selected values of 𝜔 approaches infinity, of the relative 

frequency of sets of 0’s and 1’s at these subsets of discrete time points that will occur as outcomes. 

This probability measure is like a magic hand that guides the selection of experimental outcomes so 

that at each time point 1’s are selected in 70% of the experimental outcomes and 0’s are selected in 

30% of the outcomes. And, for example, the pair of adjacent outcomes of 0 followed by 1 are selected 

in (0.3)(0.7) = 21% of the outcomes. There is an inherent abstractness here, which I call a magic hand. 

It cannot in general be made concrete or given a concrete interpretation. And it is not a property of the 

sample space. It is simply a specified rule regarding the randomly selected outcomes of an experiment. 

It should be clarified here that the strong law of large numbers establishes that averages over 

ensembles of random samples converge to expected values w.p.1 not because of replication in the 

sample space (which is not allowed), but rather because of the magic hand. Replications of entire 

sample paths occurring with non-zero probability are disallowed in the Kolmogorov model, as they are 

in the FOT model; however, for any finite set of time samples, the same finite set of sample path values 

can occur in infinitely many distinct sample paths all of which differ in at least some of the values at 

other time points. But the numbers of these partial replicas are determined by nothing more than 

combinatorics. In contrast, the relative frequency of occurrence in random samples of sets of process 

values at subsets of time points is determined by only the magic hand. This fact is often not recognized 

in the literature. For example, even the classic book by Middleton [33, Section 1.3, pp. 26–27] includes 

invalid attempts at explaining the convergence of ensemble averages to expected values in terms of 

replications of sample paths in the sample space. Similarly, for the sample space defining the FOT-

stochastic process (e.g., continuous time), replications like {𝑥(𝑡−𝜔1); 𝑡 ∈ R} = {𝑥(𝑡−𝜔2); 𝑡 ∈ R}, 𝜔1 ≠ 𝜔2, 

are disallowed (Def. S1) because they do not produce what we think of as random functions since 

they imply 𝑥(𝑡) is simply periodic with period = | |𝜔1 − 𝜔2 | | . In contrast to the Kolmogorov sample 

space for the Bernoulli process, a sample path for the corresponding FOT-stochastic process is given 

by (with some abuse of notation) {𝑥(�,𝜔); �,𝜔 ∈ Z} = {𝑥(�−𝜔); �,𝜔 ∈ Z} and this function 𝑥(�) takes on 

values of 0 and 1. Given a single sample path 𝑥(�) on the integers, we have a full but non-exhaustive 

specification of 𝑥(�,𝜔) throughout the entire sample space (2 dim array). Because of this, there is no 

need for a magic hand. We can derive the probability measure by simply calculating (in principle, at 

least) the limit of the relative frequencies of 1’s in 𝑥(�). Any statistical dependence of these binary 

variables in the sequence also can (in principle, at least) be calculated from joint FOT-probabilities. 

Work on designing sequences that exhibit specified relative frequencies can be found in the literature. 

The above discussion illustrates that the details and level of abstraction of the Kolmogorov stochastic 

process model are often not observed in applied work in statistical signal processing. Consequently, 

there is little pragmatic justification for continuing to hang onto the baggage (abstraction) that comes 

with this standard model when populations of signals are not of primary concern, when we have the 

much simpler and more concrete alternative, the FOT-Probability model for single signals. 

In [15], an analog of the above creation of an FOT stationary stochastic process model is presented 

for an FOT cyclostationary stochastic process model, and a model for an FOT multi-cycle 

cyclostationary process (for incommensurate cycle frequencies) is defined in terms of these first two 

models. 
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