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Abstract 

Hidden periodicities in science data have long been a popular topic of investiga-
tion. The popularity stems from the fact that detecting and characterizing periodici-
ties can provide a means for extracting information from science data—information 
that might not otherwise be accessible. In other words, periodicities in data can be 
exploited for the purposes of statistical inference and decision making. The long history 
of this topic is briefly reviewed with heavy reference to a historical essay on the topic 
by H.O.A. Wold, written more than half a century ago, following which the treatise 
focuses on a paradigm shifting advance in theory and methodology for character-
izing hidden periodicities that was initiated by the second author in the mid-1980s 
and further advanced by both authors since then, including a plethora of algorithms 
for performing the needed computations in applications. The data models this theory 
is based on are generally called cyclostationary but include variations that are labeled 
with modifiers like wide-sense, strict sense, n-th order for n = 1, 2, 3,..., almost, poly, and 
irregular. The theory is probabilistic, but is intentionally not based on stochastic pro-
cesses which, it is argued, are inappropriate for many, if not most, applications. The 
basis used is Fraction-of-Time (FOT) Probability. The concept, theory, and methodology 
of FOT Probability is itself a major paradigm shift, also initiated by the second Author 
more than half a century ago, and it is an integral part of the (preferred) non-stochastic 
theory of cyclostationarity. Since the birth of this topic, both authors have continued 
to advance these paradigm shifts, including further development of theory, associ-
ated methodology, and computational algorithms. The most advanced of the con-
cepts described (viz., irregular poly-cyclostationarity) is illustrated with an application 
of the associated algorithms to science data consisting of time series of Sunspot 
numbers containing approximately 75,000 daily measurements representing a period 
of about 200 years. The results include the first methodical characterization of the irreg-
ularity of the poly-periodicity hidden in the data.
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1 � Introduction and historical perspective
The following introduction to the topic of this essay was written by Herman O. A.  Wold 
more than half a century ago, as the opening paragraph in his survey contribution to the 
topic “Cycles” in the International Encyclopedia of the Social Sciences (1968) [122].

“Cycles, waves, pulsations, rhythmic phenomena, regularity in (investment) return, 
periodicity—these notions reflect a broad category of natural, human, and social phe-
nomena where cycles are the dominating feature. The daily and yearly cycles in sun-
light, temperature, and other geophysical phenomena are among the simplest and most 
obvious instances. Regular periodicity provides a basis for prediction and for extracting 
other useful information about the observed phenomena. Nautical almanacs with their 
tidal forecasts are a typical example. Medical examples are pulse rate as an indicator of 
cardiovascular status and the electrocardiograph as a basis for analysis of the condition 
of the heart. The study of cyclic phenomena dates from prehistoric times, and so does 
the experience that the area has dangerous pitfalls. From the dawn of Chinese history 
comes the story that the astronomers Hi and Ho lost their heads because they failed to 
forecast a solar eclipse (perhaps 2137 B.C.). In 1929, after some twelve years of promis-
ing existence, the Harvard Business Barometer (or Business Index) disappeared because 
it failed to predict the precipitous drop in the New York stock market.”

The historical essay presented at the University of California, Davis, educational web-
site [42, page 4.1] puts into perspective the breakthrough made in the mid-1980  s in 
modeling and statistical inference for time-series data exhibiting cyclic behavior, often 
referred to as hidden periodicities. Up until this breakthrough, statistical models for 
cycles—as a complement to nonstatistical cycles modeled, for example, by differential 
equations—had been studied analytically using crude mathematical models for more 
than a century but had not moved beyond the following two models: 1) the sum of one 
or more periodic time series and a featureless (randomly fluctuating, erratic, unpredict-
able, stationary) times series, often referred to as noise, which sum is amenable to more 
than just temporally local prediction, and 2) the response of a linear time-invariant reso-
nant dynamical system, mathematically modeled as a convolution or a corresponding 
differential equation, driven by a featureless time series, which response is amenable to 
only local prediction, because the apparent cycles are not true cycles. In a hypothesis 
testing setting, the null hypothesis (the alternative to models 1) or 2)) is an unpredictable 
nonstationary time series that may appear from time to time to exhibit cyclicity but that, 
upon closer inspection, is found to exhibit no true cycles and no substantive predictabil-
ity. However, model 2) can be considered to be included in the null hypothesis since the 
disturbed harmonics produced by this model do not represent true cycles, and predict-
ability is relatively limited. For an illustrative discussion of the general problem of cycles 
from a historical perspective, the reader is referred to Appendices 1-3 in the above-cited 
historical essay, which consist of excerpts from Wold’s article, “Cycles” [122].

The first method that emerged for analysis of data according to model 1), at the turn 
of the nineteenth century, is the periodogram (the squared magnitude of the Fourier 
transform of a finite-length times series of data, normalized by the length of the data 
segment) [33, 35, 105], and this method was followed by a variety of what were termed 
high-resolution and super-resolution model fitting methods beginning around mid-20th 
Century [17–19, 62, 63, 100, 116]. The periodogram was proven to be the set of sufficient 
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statistics for maximum likelihood (ML) estimation of the period of a cycle due to a sin-
gle sinewave in additive white Gaussian noise (AWGN), and the amplitude and phase of 
the Fourier component at the detected period produce ML estimates of a sinusoid with 
that period. The complexity of the generalization to ML estimation for multiple sinu-
soids in AWGN, especially those with cycle periods that are not substantially different 
from each other, led to a wide variety of alternative model fitting method, which are sur-
veyed in [39, Chap. 9], where Gardner introduces the use of the fraction-of-time (FOT) 
probability model to circumvent the unnecessary abstraction of the stochastic process 
model (cf. [44]) which dominated the literature on this topic essentially to the extent 
of complete exclusion of the FOT probability model (the focus in this paper) once the 
stochastic process had been introduced. Data following model 2) were referred to as dis-
turbed harmonics [124] and were analyzed primarily by methods developed specifically 
for autoregressive (AR) models and AR-moving average (ARMA) models [12, 32, 53, 73, 
117, 118]. See [2] for a comparison of these methods. These models were initially implic-
itly based on the FOT model (i.e., on time averages of lag products, not probabilistic 
expected values) but soon transitioned to the stochastic process model.

Coarse chronological outline of the development of key concepts in the study of cycles:

•	 2000 BC Interest in the General Notion of Cycles (see excerpt from Wold [122] in 
the second paragraph of the present essay)

•	 1700 s AD Hidden Periodicities (Euler, Lagrange [68, 69]; see [39, p. 13])
•	 1898 Periodogram (Schuster [105])
•	 1914 Irregular Fluctuations (Einstein [33])
•	 1927 Disturbed Harmonics (Yule [124]; see [39, p. 13])
•	 1930 Generalized Harmonic Analysis (Wiener [120])
•	 1958 Power spectra measurement (Blackman and Tukey [13])
•	 1975–1978 Precursor to Regular (Almost) Cyclostationarity (Gardner; see [36, 46])
•	 1985–1987 Regular (Almost) Cyclostationarity (first in-depth treatises: Gardner; [37, 

Chap. 12], [39, Part II])
•	 1998–2012 Generalization of Cyclostationarity (Napolitano [81])
•	 2015–2019 Irregular Cyclostationarity (see Gardner and Napolitano [43, 83, 87, 84, 

Chap. 14])

In 1985 and 1987, two analytical books by Gardner [37, 39] appeared and introduced 
the first comprehensive theoretical investigations of two new classes of models which 
he termed 3) cyclostationary time series exhibiting a single periodicity and its gener-
alization to 4) almost cyclostationary time series exhibiting multiple incommensurate 
periodicities, that is, multiple incommensurate periods of statistical cyclicity. Book [37] 
introduced these models in terms of stochastic processes and briefly explained their 
duals defined in terms of time averages instead of expected values and the book [39] 
maintained close ties to empirical data by developing for the first time a comprehensive 
theory based on times averages alone or, equivalently, Fraction-of-Time (FOT) probabil-
ities. The term statistical cyclicity means that precise cycles appear only in carefully pre-
scribed time averages performed on nonlinear transformations of the data, generally not 
in the raw data itself, which may or may not exhibit imprecise cycles. For the stochastic 
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process model, these averages are expected values of functions of the data, which can 
be approximated with averages over statistical samples from a population of data sets. 
For the alternative non-stochastic model, these averages are ideally infinitely-long time 
averages of functions of the data, which can be approximated by finite-time averages. 
The two models are mathematical duals, and, in addition, they are essentially equivalent 
for a very special subclass of stochastic processes that satisfy the ergodic hypothesis [39, 
Chap. 8].

The original models 1) and 2) were first described prior to the advent of the concept 
of a stochastic process and later were replaced with stochastic-process alternatives. The 
two new models 3) and 4), which generalize models 1) and 2), were first treated compre-
hensively almost simultaneously in both forms, stochastic and non-stochastic, in [37], 
and the non-stochastic alternative was greatly expanded on in [39], because of its par-
simony and more direct relevance to most applications—those for which only a single 
time series of measurements is available instead of a set of multiple statistical samples of 
time series from a population which is the situation originally motivating the stochastic 
process model. There were a few isolated journal papers prior to (and cited in) [37, 39, 
47] which briefly treated the stochastic process model, but there had been no attempt to 
develop a comprehensive theory of these stochastic processes, and not even a mention of 
the alternative theory of non-stochastic models for non-population time series first pro-
posed in [37, 39] (cf. [44, 60, 61, 72, 88]) let alone non-stochastic models for periodically 
and almost periodically time varying higher-than second-order moments, cumulants, 
and probability density functions. A few papers and books [7, 8, 55, 70, 99] follow up the 
non-stochastic approach for generalized harmonic analysis originally adopted by Wiener 
[76, 120] with reference to a stationary (i.e., not periodically or almost-periodically time 
variant) statistical model for signals. The almost-periodically time-variant model is con-
sidered for mechanical applications in [1]. Cyclostationary and almost-cyclostationary 
processes have also been referred to as periodically and almost periodically correlated 
processes, respectively [50, 51, 56].

The fundamental concept underlying (almost) cyclostationarity does not require the 
concept or mathematical model of a population of time series and a corresponding sto-
chastic process. Rather (almost) cyclostationarity can be defined directly in terms a sin-
gle instance of a time series by introducing time-series models consisting of (almost) 
periodically time-varying FOT probability density functions defined independently of 
the probability space notion upon which the stochastic process is defined. The earliest 
work on the underlying measure theory foundation for FOT probability is presented in 
[72], and further discussion is presented in [29, 30, 44, 88] on the key mathematical dif-
ferences between FOT probability, which is constructed from a single time series, and 
Kolmogorov’s abstract axiomatically defined probability theory [65], which is defined in 
terms of what is called a probability space. Periodically (and almost periodically) time-
varying moments and cumulants can be characterized in terms of FOT probability. The 
breadth of this class of models and the phenomena to which they apply dwarfs the earlier 
models of cycles of type 1) referred to above. In fact, the model 1) is the most elemen-
tary example of a cyclostationary time series—so elementary that it does not need the 
mathematical machinery of FOT probability to analyze. More specifically, in the model 
of type 1) a true cycle corresponds to a periodic mean and a residual (the centered time 
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series) that is purely stationary (defined in this paper) and, in the model of type 2), an 
apparent but not true cycle corresponds to damped oscillation in the lag parameter of 
the autocorrelation function of the process. In cyclostationary (or almost-cyclostation-
ary) processes, any order moment or cumulant can be periodic (or almost periodic with 
multiple incommensurate periods). For example, a cyclostationary process or time series 
can have a constant (time-invariant) mean and constant variance, but a periodic covari-
ance producing cycles in coherence time; or it can have first- and second-order moments 
all of which are constant, but higher-order moments or cumulants that are periodic. In 
general, (almost) cyclostationary processes have (almost) periodic joint probability den-
sity functions. Gardner’s more general FOT probability model of cycles does not rely on 
a hypothetical deterministic model (a periodic function or a convolution) mixed with 
or driven by a featureless noise. Rather, it constructs the model from time averages of 
functions of the time series. This model can consist of FOT probability density func-
tions, joint moments of multiple time samples with any time separations, corresponding 
joint cumulants, etc. Nevertheless, the FOT probability model can be derived from a 
mathematical model of deterministic dynamics driven by featureless noise, in terms of 
the FOT model of such noise, which is typically chosen to be a series of statistically inde-
pendent identically distributed (in the FOT probability sense) variables. In this case, the 
statistical cyclicity arises from periodic or almost-periodic time variation of the dynami-
cal system being driven by stationary noise.

It is worthwhile to underline that the advantage of the FOT probability framework is 
mainly conceptual and/or methodological, when a population of signals does not exist. 
In some cases, calculations and proofs are similar to their counterparts in the stochastic 
process approach. However, examples of dichotomies between properties of a stochastic 
process and those of its sample paths are illustrated in [88], were properties that are valid 
for stochastic processes are shown to be not valid for their sample paths. Several tech-
nicalities and calculations/proofs in the FOT probability framework can be found in [39, 
45, 72, Part II], [81, Sec. 6.5], [29, 30, 84, Secs. 2.6, 4.11], [88, Appendix].

Implementation of the time-series analysis methods referred to in this paper is today 
invariably based on digital signal processing technology, which is derived from the dis-
crete-time probability theory of cyclostationarity. Both authors have carried out their 
development work for both discrete- and continuous-time theory. But this treatise pre-
sents the continuous-time theory because of its closer ties with the physics underly-
ing the science giving rise to the data subjected to the signal processing methods for 
studying hidden periodicities. The discrete theory is highly analogous and is not treated 
herein for the sake of brevity and avoidance of redundancy.

Before proceeding to the body of the summary of the theory of cyclostationarity, the 
method of classification of cyclostationary time series is explained. This exposes the 
immense degree of generality of this theory of cyclicity in time-series data.

The time-series model 1) can be partitioned into subclasses, which reflect distinct 
mathematical properties and issues that arise in performing analysis. Using the Fourier-
series representation for a sum of periodic signals, these subclasses can be categorized in 
terms of their spectral content (spectrum), which is characterized in terms of the ordered 
countable sequence of Fourier frequencies, well known in the theory of Fourier analy-
sis [14, 21, 125]: Class 1a) is a single nonzero frequency, Class 1b) is a finite number of 
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commensurate (harmonically related) frequencies, and Class 1c) is a countably infinite 
number of commensurate frequencies. These are all periodic functions. By adding peri-
odic functions with incommensurate periods, we obtain almost-periodic functions that 
are not periodic [11, 23]. The spectrum becomes the ordered union of the sets of Fou-
rier frequencies for the individual periodic functions. By considering numbers of incom-
mensurate periods that are, say, two, or greater than two but finite, or countably infinite, 
we obtain a hierarchy of quite a large number of almost-periodic functions. For those 
subclasses that contain between 2 and at most some finite number greater than 2 incom-
mensurate periods, the functions are poly-periodic.

By applying this basis for classification to statistical functions derived from a time 
series according to the methods discussed in the following sections of this paper, when 
such functions are comprised of sums of periodic FOT moments, or cumulants, or prob-
ability distributions, we obtain a hierarchy of models for cyclostationary and almost 
cyclostationary times series, as discussed below.

It should be clarified that because of the additive noise in Model 1), none of the time 
series from this model are periodic or poly-periodic, or almost periodic. But they are 
said to exhibit periodicity, and this exhibited periodicity can be measured in terms of 
the periodic, poly-periodic, or almost-periodic mean function calculated from the time 
series.

More generally, when the more general statistical functions, such as FOT moments, 
cumulants, and probability distributions are periodic, or poly-periodic, or almost 
periodic, we say the time series are cyclostationary, or poly-cyclostationary, or almost 
cyclostationary. The frequencies in the Fourier spectrum of the time-varying statisti-
cal functions are called the cycle frequencies. In addition, when any formal subset of the 
spectrum of cycle frequencies is chosen for a model, and the resultant statistical func-
tions are not all identically zero for nonzero cycle frequencies, the time series is said to 
exhibit cyclostationarity or poly-cyclostationarity or almost cyclostationarity. Therefore, 
a time series can, for example, exhibit cyclostationarity without being cyclostationary. A 
cyclostationary statistical function for such a model is only one additive periodic com-
ponent of the almost cyclostationary statistical function. More discussion of the hierar-
chy of cyclostationarity is provided in [41].

Most of the existing literature on cyclostationarity, poly-cyclostationarity, and almost 
cyclostationarity focuses on periodicity, poly-periodicity, and almost periodicity of sec-
ond- and higher-order moments and cumulants of time series. This paper reviews these 
results, but emphasis is given to the periodic, poly-periodic, and almost-periodic cumu-
lative distribution function (CDF) and probability density function (PDF) of time series 
[39, Chap.  15], [84, Chap.  2] that only recently have been applied for signal detection 
[31].

The paper is organized as follows: First-order hidden periodicities are characterized 
in Sect. 2. Second-order cyclostationarity is treated in Sect. 3, and extension to higher-
order cyclostationarity is treated in Sect. 4. Models and methods for dealing with irregu-
lar cyclicities are treated in Sect. 5. As an example of application, hidden periodicities 
present in the well-known Sunspot number time series are analyzed in Sect. 6. Conclu-
sions are drawn in Sect. 7.
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2 � First‑order hidden periodicity
2.1 � Decomposition into almost‑periodic component and residual term

Every signal z(t) such that the sinusoidally weighted infinite time average

exists for every η ∈ R (independent of t0 ) can be expressed as the sum of a (possibly 
zero) almost-periodic (AP) component zap(t) and a residual term zr(t) not containing 
any finite-strength sine wave component. That is,

where

The almost-periodic term is given by the superposition of complex sine waves

where E (1) is a countable set of possibly incommensurate frequencies and the Fourier 
coefficients zη are given by

In particular, if E (1) contains frequencies that are all integer multiples of a fundamen-
tal one, say η0 = 1/T0 , then zap(t) is a periodic function with period T0 . If zap(t) is the 
superposition of a finite number of periodic functions with incommensurate periods, 
then it is dubbed poly-periodic. Under the condition

the convergence in (2.4) is uniform and the function zap(t) is referred to as uniformly 
almost periodic [11]. Generalized forms of almost periodicity can be defined consid-
ering weaker forms of convergence for the Fourier series (2.4) [11, Chap.  2], [23, 81, 
Secs. 1.2.2−1.2.5], [84, Sec. B.4].

Let E{α}{·} denote the almost-periodic component extraction operator. That is, the 
operator that extracts all the additive finite-strength sine-wave components of its argu-
ment [45]. It results

The power spectral density (PSD) of the signal z(t), defined in a generalized sense, con-
tains spectral lines (Dirac deltas) at frequencies η ∈ E (1) and z(t) is said to exhibit first-
order periodicities. If the almost-periodic component is weak relative to the residual 

(2.1)
〈
z(t) e−j2πηt

〉

t
� lim

T→∞
1

T

∫ t0+T/2

t0−T/2
z(t) e−j2πηt dt

(2.2)z(t) = zap(t) + zr(t)

(2.3)
〈
zr(t) e

−j2πηt
〉

t
= 0 ∀η ∈ R .

(2.4)zap(t) =
∑

η∈E(1)

zη e
j2πηt

(2.5)zη �
〈
zap(t) e

−j2πηt
〉

t
=

〈
z(t) e−j2πηt

〉

t
.

(2.6)
∑

η∈E(1)

|zη| < ∞

(2.7)E{α}{z(t)} = zap(t) .
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term, then the first-order periodicities might not be evident and the signal is said to con-
tain hidden periodicities. However, because of the associated spectral lines at frequen-
cies η ∈ E (1) , the hidden periodicities can be detected through techniques of spectral 
analysis.

In general, signals may contain more subtle kinds of hidden periodicities. Spectral 
lines might not be present in the PSD but could be generated, that is, converted from 
higher-order periodicities into first-order periodicities, by transforming the signal with a 
bounded-input bounded-output (BIBO) stable time-invariant nonlinear transformation. 
That is, the signal z(t) in (2.2) can be such a kind of transformation of a finite average-
power original signal x(t)

When a transformation that generates a sinewave is homogeneous quadratic, the sig-
nals are said to exhibit second-order cyclostationarity [38, 39, Part II], (Sec.  3). When 
a higher-than-second-order homogeneous transformation generates spectral lines, then 
the signal is said to exhibit higher-order cyclostationarity [49, 112], (Sec. 4).

Let us assume that the time series z(t) contains an additive periodic component with 
period T0 . Such a component can be extracted by synchronized averaging [37, Chap. 12], 
[39, Sec. 10.B.2], [84, Sec. B.5]:

This is simply the discrete average over all nT0-translates, {z(t − nT0) : n ∈ Z}.
Note that two different notations are used in the superscript of the periodic or almost-

periodic component extraction operator: If a periodic component is extracted, then the 
period is indicated in the superscript (see (2.9)). If the almost-periodic component is 
extracted, then the generic {α} is indicated in the superscript (see (2.7)).

2.2 � Almost‑periodic FOT probability

Only real-valued signals are treated in this paper for the sake of simplicity. In this paper, 
the properties of the first-order CDF are analyzed in detail. A first-order characteriza-
tion of a complex-valued almost cyclostationary signal must be made by considering the 
second-order joint CDF of its real and imaginary parts making the presentation unnec-
essarily more complicated.

A characterization of the real-valued signal x(t) can be obtained by considering, for 
every fixed ξ ∈ R , the nonlinear transformation z(t) = u(ξ − x(t)) , where u(·) is the 
unit-step function, that is, u(ξ) = 1 for ξ � 0 and u(ξ) = 0 for ξ < 0 . We have the fol-
lowing decomposition

In (2.10), Ŵξ is a countable set of possibly incommensurate frequencies, the Fourier coef-
ficients Fγ

x (ξ) are given by

(2.8)
〈
|x(t)|2

〉

t
< ∞ .

(2.9)ET0{z(t)} = lim
N→∞

1

2N + 1

N∑

n=−N

z(t − nT0) .

(2.10)u(ξ − x(t)) =
∑

γ∈Ŵξ

F
γ
x (ξ) ej2πγ t + v(t; ξ) .
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provided that the time average exists ∀γ ∈ R , and

The almost-periodic component in (2.10), when not identically zero, not only reveals the 
presence of hidden periodicities in the signal x(t), but also provides a probabilistic char-
acterization of the signal x(t). In fact, it can be shown that the almost-periodic function 
of t,

for every fixed t, as a function of ξ , is a valid CDF except for the right-continuity prop-
erty. That is, the function ξ  → Fx(t; ξ) is nondecreasing and takes on values only in the 
interval [0, 1] [45, 84, Sec. 2.3.1]. The Fourier coefficients Fγ

x (ξ) are referred to as cyclic 
CDFs.

From (2.10) and (2.13), it follows that

Therefore, by analogy with the stochastic counterpart of (2.14), we have that the almost-
periodic component extraction operator E{α}{·} is the expectation operator in almost-
periodic FOT probability theory with respect to the distribution (2.13).

If the set

is countable, then the sum in (2.10) can be taken over Ŵ(1) [81, Sec. 2.2.1], [84, Sec. 2.3.1].
From this point forward, we shall consider the case for which Ŵ(1) is countable.
If Ŵ(1) contains incommensurate frequencies, then x(t) is said to be first-order 

almost cyclostationary in the strict sense; if the frequencies are all integer multiples of 
a same fundamental frequency, then x(t) is said to be first-order cyclostationary in the 
strict sense; if Ŵ(1) contains only the frequency γ = 0 , then x(t) is said to be first-order 
stationary in the strict sense.

Let T1, . . . ,TP be the incommensurate periods of the additive periodic components 
of u(ξ − x(t)) . Thus, the CDF is poly-periodic and the following decomposition holds 
[39, Chap. 15]

where each

(2.11)F
γ
x (ξ) =

〈
u(ξ − x(t)) e−j2πγ t

〉

t

(2.12)
〈
v(t; ξ) e−j2πγ t

〉

t
≡ 0 ∀γ ∈ R .

(2.13)Fx(t; ξ) �
∑

γ∈Ŵξ

F
γ
x (ξ) ej2πγ t

(2.14)Fx(t; ξ) = E{α}{u(ξ − x(t))} .

(2.15)Ŵ(1) �
⋃

ξ∈R

Ŵξ

(2.16)Fx(t; ξ) = F0
x (ξ) +

P∑

p=1

[
F
Tp
x (t; ξ) − F0

x (ξ)

]

(2.17)F
Tp
x (t; ξ) � ETp{u(ξ − x(t))} p = 1, . . . ,P
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is a valid periodic CDF with period Tp.
An almost-periodically time-variant probability density function (PDF) can be 

defined as the limit (provided that it exists) as �ξ goes to zero of the ratio of the FOT 
probability that x(t) is contained within an interval of length �ξ about the point ξ to 
�ξ . That is, if the function Fx(t; ξ) is differentiable with respect to ξ , the PDF is given 
by:

 where the Fourier coefficients, referred to as cyclic PDFs, are given by:

The cyclic CDFs and PDFs with γ  = 0 are complex valued in general. And because of 
this they are not cumulative probability distributions and probability density functions. 
The following properties of the cyclic CDFs and PDFs hold. 

1)	 Fγ
x (−∞) = 0 ∀γ ∈ R

2)	 Fγ
x (+∞) =

{
1 γ = 0
0 γ �= 0

3)	|Fγ
x (ξ)| � F0

x (ξ)

4)	 For ξ2 > ξ1 , |Fγ
x (ξ2) − F

γ
x (ξ1)| � F0

x (ξ2) − F0
x (ξ1)

5)	
∫

R

f
γ
x (ξ) dξ =

{
1 γ = 0
0 γ �= 0

6)	
∣∣∣∣
∫ ξ2

ξ1

f
γ
x (ξ) dξ

∣∣∣∣ �

∫ ξ2

ξ1

f 0x (ξ) dξ

where property 5 follows from 1 and 2 and 6 follows from 4, provided that the PDF 
exists.

For the signal x(t), we have the decomposition

and it results that 

(2.18a)fx(t; ξ) �
d

dξ
Fx(t; ξ)

(2.18b)=
∑

γ∈Ŵ(1)

f
γ
x (ξ) ej2πγ t

(2.19)f
γ
x (ξ) = d

dξ
F

γ
x (ξ) .

(2.20)x(t) = xap(t) + xr(t)

(2.21a)E{α}{x(t)} = xap(t)

(2.21b)=
∫

R

ξ dFx(t; ξ)
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 with E (1) ⊆ Ŵ(1) and 

 See [44] for a generalization of this result when the almost-periodic component extrac-
tion operator is replaced by a generic orthogonal projection operator.

The Fourier coefficients Fγ
x (ξ) and xη can be estimated by replacing in (2.11) and (2.22a) 

the infinite time average by finite time averages taken on the observation interval. In [31], 
kernel-based estimators are proposed for f γ

x (ξ) and Fγ
x (ξ) . These estimators generalize 

to almost-periodically time-variant CDFs and PDFs the estimators for the time-invariant 
CDFs and PDFs originally proposed at discrete time in [96, 104], and then considered at 
continuous time in [20].

2.3 � Example 1: Sine wave with additive noise

Let us consider a sine wave

embedded in additive zero-mean strictly-sense stationary Gaussian noise n(t)

with

The sine wave is a deterministic signal in the FOT sense. Thus, its probability density 
function is

and it is FOT independent of any other signal [45, 88]. Therefore, 

(2.21c)=
∑

η∈E(1)

xη e
j2πηt

(2.22a)xη =
〈
x(t) e−j2πηt

〉

t

(2.22b)=
∫

R

ξ dFη
x (ξ) .

(2.23)c(t) = A0 cos(2π f0t + φ0)

(2.24)x(t) = c(t) + n(t)

(2.25)fn(t; ξ) = fn(ξ) = 1√
2πσn

e−ξ2/(2σ 2
n )

(2.26)fc(t; ξ) = δ(ξ − c(t)) = δ(ξ − A0 cos(2π f0t + φ0))

(2.27a)fx(t; ξ) = fc(t; ξ) ⊗ fn(ξ)

(2.27b)= δ(ξ − A0 cos(2π f0t + φ0)) ⊗ 1√
2πσn

e−ξ2/(2σ 2
n )

(2.27c)= 1√
2πσn

e−(ξ−A0 cos(2π f0t+φ0))
2/(2σ 2

n )
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 which is Gaussian with a sinusoidal mean, where ⊗ denotes convolution. The Fourier 
coefficients f γ

x (ξ) for γ = kf0 , k ∈ Z , of this periodic PDF are given by (see Appendix A)

In (2.28), the Bessel function of the first kind of order n with imaginary argument Jn(jx) 
can be replaced by jn In(x) [92, Eq. 10.27.6], where In(x) is the modified Bessel function 
of the first kind of order n with real argument x.

Since n(t) has zero mean, then it does not contain any finite-strength additive sine-wave 
component. Therefore, from (2.24) it follows that the almost-periodic FOT expected value 
of x(t) is given by:

In the stochastic approach, the time-invariant PDF is derived in [103] and the frequency 
estimation problem is addressed in [102]. The FOT cyclic PDFs for a single sine wave are 
derived in [108].

In the following, an illustrative numerical experiment is carried out. N = 218 samples of 
the signal (2.24) are taken with sampling frequency fs = 1/Ts . The signal n(t) is stationary 
colored Gaussian noise obtained filtering white Gaussian noise with a linear time-invariant 
(LTI) filter with harmonic response H(f ) = (1 + j2π(f /2B))−1 , with B = 0.005fs . The sine 
wave c(t) has f0 = 0.0251fs , φ0 = 0 , and A0 is such that SNR = –10 dB (Fig. 1 (Top)) or SNR 
= 10 dB (Fig. 1 (Bottom)). Only the first 3000 samples are reported in Fig. 1.

The magnitude of the estimate of (Top) the cyclic CDF and (Bottom) the cyclic PDF, as 
functions of the cycle frequency γ and the parameter ξ , are reported in Fig. 2 for SNR = –10 
dB and in Fig. 3 for SNR = 10 dB.

In Fig. 2 (SNR = –10 dB), the slice for γ = 0 is practically coincident with a Normal CDF 
(Top) and PDF (Bottom). In Fig. 3 (SNR = 10 dB), the slice for γ = 0 is a smoothed version 
of the stationary CDF (Top) and PDF (Bottom) of a sinusoidal function [88, Eq. (42), Fig. 6].

2.4 � Example 2: Sine wave with multiplicative noise

Let us consider the product waveform

where n(t) and c(t) are the same as those in Example 1 (Sec. 2.3).
Since c(t) is periodic, it is a deterministic signal (in the FOT probability sense), and hence, 

it is independent of every other signal [45, 88]. The PDF of the product of two FOT inde-
pendent functions can be expressed by the classical formula [3, Chap. 2, Problem 14] 

(2.28)

f
kf0
x (ξ) �

〈
fx(t; ξ) e−j2πkf0t

〉

t

= 1√
2πσn

e−ξ2/(2σ 2
n ) e−A2

0/(4σ
2
n ) ejkφ0

∞∑

m=−∞
j(k−m) Jk−2m(−jξA0/σ

2
n ) Jm(jA2

0/(4σ
2
n )) .

(2.29)E{α}{x(t)} = c(t) = A0 cos(2π f0t + φ0) .

(2.30)x(t) = n(t) c(t)

(2.31a)fx(t; ξ) =
∫

R

fc(t; s) fn(ξ/s)
1

|s| ds



Page 13 of 58Napolitano and Gardner ﻿EURASIP Journal on Advances in Signal Processing         (2025) 2025:13 	

Since | cos(2π f0t + φ0)| and cos2(2π f0t + φ0) are both periodic with period 1/(2f0) , 
then fx(t; ξ) is periodic with period 1/(2f0) . Since fx(t; ξ) is an even function of ξ , 
then the signal x(t) has zero mean:

That is, fx(t; ξ) is a zero-mean Gaussian PDF with periodically time-variant variance.
The obtained results are in agreement with those of the example in [88, Sec. VI.B]. 

Note that for ξ  = 0 and 2π f0t → π/2 + kπ − φ0 , we have fx(t; ξ) → 0 . For ξ = 0 and 
2π f0t = π/2 + kπ − φ0 , one has the impulsive PDF δ(ξ) obtained by (2.31c) in the 
limit as the variance approaches zero. This behavior corresponds to the jump in the 
degenerate CDF u(ξ) (see [88, Fig. 9]).

In the following, an illustrative numerical experiment is carried out. The first 3000 
samples of x(t) are reported in Fig. 4. The signals n(t) and c(t) are the same as those of 
Sect. 2.3.

(2.31b)=
∫

R

δ(s − A0 cos(2π f0t + φ0))
1√
2πσn

e−(ξ/s)2/(2σ 2
n ) 1

|s| ds

(2.31c)= 1√
2πσn|A0 cos(2π f0t + φ0)|

e−ξ2/(2σ 2
nA

2
0 cos

2(2π f0t+φ0))

(2.32)E{α}{x(t)} =
∫

R

ξ fx(t; ξ) dξ = 0 .

Fig. 1  Sine wave in additive colored Gaussian noise. (Top) SNR = –10 dB; (Bottom) SNR = 10 dB
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Fig. 2  Sine wave in additive colored Gaussian noise (SNR = –10 dB). Magnitude of the estimate of (Top) the 
cyclic CDF and (Bottom) the cyclic PDF, as functions of the cycle frequency γ and the parameter ξ
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It could be said that the periodicity in Example 2 is more well hidden than that in 
Example 1, because a nonlinear transformation of that data is required to produce 
a finite-strength additive periodic component in the data. In subsequent sections, 
examples of increasingly well hidden periodicities are given. It is seen that the higher 
the order of the nonlinearity required to reveal periodicity, the more well hidden 
the periodicity is. In practice, the higher the order required, the longer the required 

Fig. 3  Sine wave in additive colored Gaussian noise (SNR = 10 dB). Magnitude of the estimate of (Top) the 
cyclic CDF and (Bottom) the cyclic PDF, as functions of the cycle frequency γ and the parameter ξ
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integration time in the computation of the Fourier integral needed to extract an 
almost-periodic component or just a single sine wave.

In Fig. 5, the magnitude of the estimate of (Top) the cyclic CDF and (Bottom) the 
cyclic PDF, as functions of the cycle frequency γ and the parameter ξ , are reported. 
For every fixed t, the PDF in (2.31c) is a Gaussian PDF. In contrast, the stationary 
PDF corresponding to the slice for γ = 0 in Fig.  5 is non Gaussian. Such a result is 
discussed in [88, Sec. IV.B] to motivate the advantage of using the FOT approach for 
signal analysis with respect to classical stochastic approach.

3 � Second‑order cyclostationarity
In this section, the second-order characterization of cyclostationary and almost-
cyclostationary time series in the FOT probability framework is presented [38, 39, 45, 
Part II], [84, Chap. 2].

3.1 � FOT characterization

A second-order characterization of the real-valued signal x(t) can be obtained 
by considering, for every pair (ξ1, ξ2) ∈ R

2 , the nonlinear transformation 
z(t) = u(ξ1 − x(t + τ1)) u(ξ2 − x(t + τ2)) . By reasoning as in the first-order case, it can 
be shown that the almost-periodic function 

 for every t is a valid second-order joint CDF in the variables (ξ1, ξ2) , except for the right-
continuity property with respect to each variable ξ1 and ξ2 . In (3.1b), Ŵ(2) is a countable 
set of possibly incommensurate cycle frequencies and the Fourier coefficients

(3.1a)Fx(t, τ1, τ2; ξ1, ξ2) � E{α}{u(ξ1 − x(t + τ1)) u(ξ2 − x(t + τ2))}

(3.1b)=
∑

γ∈Ŵ(2)

F
γ
x (τ1, τ2; ξ1, ξ2) e

j2πγ t

Fig. 4  Sine wave in multiplicative colored Gaussian noise
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are referred to as second-order cyclic CDFs.
From this joint CDF, a valid almost-periodically time-variant autocorrelation function 

can be constructed, which can be shown to be equal to the almost-periodic component of 
the second-order lag product waveform

(3.2)F
γ
x (τ1, τ2; ξ1, ξ2) �

〈
u(ξ1 − x(t + τ1)) u(ξ2 − x(t + τ2)) e

−j2πγ t
〉

t

Fig. 5  Sine wave with multiplicative colored Gaussian noise. Magnitude of the estimate of (Top) the cyclic 
CDF and (Bottom) the cyclic PDF, as functions of the cycle frequency γ and the parameter ξ
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Let x(t) be a finite average-power signal (see (2.8)) and let us consider, for every fixed 
τ , the decomposition of the lag-product waveform yτ (t) � x(t + τ ) x(t) into an almost-
periodic component and a residual term not containing any finite-strength sine-wave 
component

In (3.4), Aτ is a countable set of possibly incommensurate frequencies, referred to as 
second-order cycle frequencies, the Fourier coefficients

are referred to as cyclic autocorrelation functions, and

The cyclic autocorrelation function (3.5) at cycle frequency α can be expressed in terms 
of the cyclic CDF at the same cycle frequency as

which is in agreement with (3.3).
The countability of the set Aτ is an immediate consequence of the finite-power assump-

tion (2.8) [16, Secs. 1.2, 2.1], [121]. If the set

is countable, then the sum in (3.4) can be over the set A and the signal x(t) is said to 
be second-order almost-cyclostationary [38, 39, Part II]. If the set A contains only the 
integer multiples of a fundamental frequency, say α0 = 1/T0 , then the almost-periodic 
component reduces to a periodic function with period T0 and the signal is referred to as 
second-order cyclostationary. If A is the union of a finite number of sets {k/Tp, k ∈ Z} 
with incommensurate periods Tp , then the almost-periodic component is poly-periodic 
and the signal is called second-order poly-cyclostationary. If the set A is uncountable, 
then the signal x(t) is said to be second-order generalized almost-cyclostationary (GACS) 
[57, 81, Chap. 2]. See also [79].

Let us consider in the following, unless otherwise specified, the case of ACS time series. 
That is, A defined in (3.8) is countable.

It can be easily shown that the almost-periodic autocorrelation function is definite non 
negative. In fact, for every function h(τ ) ∈ L1(R) it results

(3.3)E{α}{x(t + τ1) x(t + τ2)} =
∫

R2
ξ1 ξ2 dFx(t, τ1, τ2; ξ1, ξ2) .

(3.4)x(t + τ ) x(t) =
∑

α∈Aτ

Rα
x (τ ) ej2παt + ℓx(t, τ ) .

(3.5)Rα
x (τ ) =

〈
x(t + τ ) x(t) e−j2παt

〉

t

(3.6)
〈
ℓx(t, τ ) e−j2παt

〉

t
≡ 0 ∀α ∈ R .

(3.7)Rα
x (τ ) =

∫

R2
ξ1 ξ2 dF

α
x (τ , 0; ξ1, ξ2)

(3.8)A �
⋃

τ∈R

Aτ
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and, consequently,

In (3.10), the right-hand term is nonnegative since the almost-periodic component of 
a nonnegative function is nonnegative [84, Lemma 2.18] and the order of integral and 
almost-periodic component extraction operator can be inverted according to [84, 
Theorem 2.32].

Finally, note that a first-order characterization of a complex-valued almost cyclosta-
tionary signal can be made considering the second-order joint CDF of its real and 
imaginary parts. Similarly, the second-order characterization is made by considering 
the fourth-order joint CDF of the real and imaginary parts of the signal and its time-
shifted version [16, 84, Secs. 1.3, A.2]. In such a case, both cyclic autocorrelation func-
tion (where the second term in (3.5) is conjugated) and conjugate cyclic autocorrelation 
function (where the second term in (3.5) is not conjugated) must be considered for a 
complete characterization of the second-order cyclostationarity of the complex-valued 
signal [112]. The exploitation of both functions finds application, for example, in the 
minimum mean-squared error (MMSE) linear almost-periodically time-variant filtering 
(cyclic Wiener filtering) of the complex envelope of communications signals [40].

3.2 � Second‑order spectral line generation

Let us consider the decomposition (2.2) for the signal x(t)

where, according to (2.2) and (2.7),

and the residual term xr(t) does not contain any finite-strength additive sine-wave com-
ponents and possibly has finite power.

The second-order lag-product waveform is given by

In (3.13), since the product of AP functions is an AP function [11, Chap. I, Par. I], [84, 
Theorem B.9], then the term xap(t + τ1) xap(t + τ2) is an AP function of t. Since xr(t) 
does not contain any finite-strength additive sine-wave components, then the terms 
xr(t + τ1) xap(t + τ2) and xap(t + τ1) xr(t + τ2) do not contain any finite-strength addi-
tive sine-wave components. The term xr(t + τ1) xr(t + τ2) can contain additive finite-
strength sine-wave components.

(3.9)
∫

R2
h(τ1) h(τ2) x(t + τ1) x(t + τ2) dτ1dτ2 =

∣∣∣∣
∫

R

h(τ ) x(t + τ ) dτ

∣∣∣∣
2

� 0

(3.10)

∫

R2

h(τ1)h(τ2)E
{α}{x(t + τ1)x(t + τ2)}dτ1dτ2 = E

{α}

{∫

R2

h(τ1)h(τ2)x(t + τ1)x(t + τ2)dτ1dτ2

}
� 0.

(3.11)x(t) = xap(t) + xr(t)

(3.12)E{α}{x(t)} = xap(t)

(3.13)
x(t + τ1) x(t + τ2) = [xap(t + τ1) + xr(t + τ1)][xap(t + τ2) + xr(t + τ2)]

= xap(t + τ1) xap(t + τ2) + xr(t + τ1) xap(t + τ2)

+ xap(t + τ1) xr(t + τ2) + xr(t + τ1) xr(t + τ2) .
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Any almost-periodic component contained in xr(t + τ1) xr(t + τ2) cannot contain 
a product of sine waves, since neither factor contains any sine waves. For this rea-
son, the sine waves of the (generalized) Fourier series expansion of such an almost-
periodic component are called pure second-order sine waves and the corresponding 
frequencies pure second-order cycle frequencies. In contrast, the finite-strength sine 
waves in xap(t + τ1) xap(t + τ2) are due to only the products of first-order finite-
strength sine waves and, hence, are called impure second-order sine waves and the 
corresponding frequencies impure second-order cycle frequencies [49] (which are 
called beat frequencies). Note that a second-order sine wave at a given cycle fre-
quency α may contain a portion which is pure and another portion which is impure. 
The pure second-order sine waves are extracted by the autocovariance function: 

 where for (3.14b) and (3.14c), equation (3.13) has been accounted for, and, in (3.14d), 
B ⊆ A denotes the set of pure second-order cycle frequencies and the Fourier coeffi-
cients Cβ

x (τ ) are referred to as cyclic autocovariance functions.
If x(t) does not contain any additive finite-strength sine-wave component, that is, 

xap(t) ≡ 0 in (3.11), then the possible AP component in the lag product waveform 
x(t + τ1) x(t + τ2) is due to the product of only the time-shifted versions xr(t + τ1) 
and xr(t + τ2) of the residual term. In this case, we have that periodicities that may be 
hidden at first order are generated in the second-order lag-product waveform, or not. 
If not, they may be generated in higher-order lag-products as explained in Sect. 4.

Note that, in the case of communication signals, a sine wave or a periodic signal 
(e.g., a pulse train) is modulated by random data. For this reason, in previous works 
[49, 84, Secs.  2.3.1.6, 4.2.3] that focus on communication applications, the term 
“regenerated” is adopted instead of “generated” for sine waves or periodic signals 
(spectral lines) obtained by nonlinear transformations of the data. More generally, as 
for example in climate data, there is no underlying sine wave or periodic signal that is 
modulated. In this case, the term “generated” is more appropriate than “regenerated”. 
The term “generated” is clearly more appropriate for data with irregular cyclicities, 
like the ECG or other biological signals (Sec.  5) or the Sunspot number time series 
(Sec. 6).

Let us consider the decomposition (2.2) when z(t) is the second-order lag-product 
waveform x(t + τ1) x(t + τ2) : 

(3.14a)E{α}
{[

x(t + τ1) − E{α}{x(t + τ1)}
][
x(t + τ2) − E{α}{x(t + τ2)}

]}

(3.14b)= E{α}
{
x(t + τ1) x(t + τ2)

}
− E{α}{x(t + τ1)}E{α}{x(t + τ2)}

(3.14c)= E{α}
{
xr(t + τ1) xr(t + τ2)

}

(3.14d)=
∑

β∈B

Cβ
x (τ1 − τ2) e

j2πβ(t+τ2)
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 where ℓx(t, τ1, τ2) does not contain any finite-strength additive sine-wave component. 
In (3.15b), the almost-periodic term is the (generalized) Fourier series expansion of the 
sum of the first and fourth term in (3.13), and the residual term ℓx(t, τ1, τ2) is equal to 
the sum of the second and third term in (3.13).

If α is an impure second-order cycle frequency, then the cyclic autocorrelation function 
Rα
x (τ ) , as a function of τ , oscillates and does not decay to zero as |τ | → ∞ [49, 81, Sec. 1.4]. 

In contrast, for finite or practically finite memory time series, Cβ
x (τ ) ∈ L1(R) , ∀β ∈ B and 

therefore the cyclic autocovariance does decay to zero as |τ | → ∞ [49, 81, Sec. 1.4.1], [84, 
Sec. 4.2.3.1].

For ACS time series, any homogeneous quadratic time-invariant (QTI) transformation 
of the signal x(t) has the form

where k(τ1, τ2) is the kernel of the QTI transformation. That is, finite-strength additive 
sine-wave components can be generated by homogeneous QTI transformations [39, 41, 
45]. In contrast, for stationary time series ( A containing the only element α = 0 ), no 
spectral line at nonzero frequency can be generated in the lag-product or by QTI trans-
formations. In [39, Sec. 10.B.4], the kernel k(τ1, τ2) of the optimum QTI transformation 
is derived such that the power in the generated spectral line at a specific frequency α0 is 
maximized. The maximization procedure leads to a kernel whose double Fourier trans-
form is proportional to the conjugate of the signal cyclic spectrum at cycle frequency α0.

More generally, a time series x(t) is said to exhibit higher-order cyclostationarity if 
finite-strength additive sine-wave components can be generated by homogeneous non-
linear time-invariant transformations of x(t) of order greater than two [49, 112], (Sec. 4). 
In such a case, almost-periodically time-variant higher-order moment and cumulant 
functions can be defined by the almost-periodic component extraction operator [49, 57, 
112]. For communications, ACS signals, cycle frequencies of second- and higher-order 
statistical functions are related to parameters such as sine-wave carrier frequency, pulse 
rate, symbol rate, frame rate, sampling frequency. Therefore, spectral line generation by 
second- or higher-order time-invariant transformations leads to signals suitable for syn-
chronization purposes [39].

In [9, pp. 497-502], conditions are derived such that linear combinations of powers of 
pseudo-random functions can be decomposed into the sum of a periodic function and a 
pseudo-random function.

(3.15a)x(t + τ1) x(t + τ2) = E{α}{x(t + τ1) x(t + τ2)} + ℓx(t, τ1, τ2)

(3.15b)=
∑

α∈A

Rα
x (τ1 − τ2) e

j2πα(t+τ2) + ℓx(t, τ1, τ2)

(3.16)

y(t) �

∫

R2
k(τ1, τ2) x(t + τ1) x(t + τ2) dτ1 dτ2

=
∑

α∈A

∫

R2
k(τ1, τ2)R

α
x (τ1 − τ2) e

j2πατ2 dτ1 dτ2 e
j2παt

+
∫

R2
k(τ1, τ2) ℓx(t, τ1, τ2) dτ1 dτ2
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3.3 � Spectral correlation

In the case of A countable, in [39, Chap. 11] it is shown that the presence of a finite-
strength additive sine-wave component at cycle frequency α in the second-order lag-
product waveform (3.4) is equivalent to the existence of correlation between spectral 
components of the signal x(t) whose frequency separation is equal to α . That is, denoted 
by

the spectral component of x(t) at frequency f with finite bandwidth �f  , the function

is not identically zero if the signal x(t) exhibits cyclostationarity at cycle frequency α . The 
function Sα

x (f ) is referred to as the cyclic spectrum at cycle frequency α or the spectral 
correlation density function. In fact, it represents the temporal correlation (with zero lag) 
between the two spectral components X1/�f (t, f ) and X1/�f (t, f − α) when the averag-
ing time T becomes infinite and the bandwidth �f  becomes infinitesimal. For α = 0 , the 
cyclic spectrum is coincident with the PSD.

The cyclic spectrum is linked to the cyclic autocorrelation function by the Fourier 
transform relationship

originally introduced in [39], which is referred to as the Gardner relation [84, 
Sec. 2.3.1.10]. It is also dubbed cyclic Wiener relation since for α = 0 it reduces to the 
Wiener relation that links the time-average autocorrelation function with the PSD [120].

The cyclic spectrum of the residual term

is referred to as second-order cyclic polyspectrum of x(t) and is denoted by Pβ
x (f ) . It is 

linked to the cyclic autocovariance function by the Fourier transform relationship

For finite or practically finite memory signals, Cβ
x (τ ) ∈ L1(R) (Sec. 3.2). Thus, its Fou-

rier transform Pβ
x (f ) exists in the ordinary sense. In particular, it does not contain Dirac 

impulses. In contrast, if α is an impure second-order sine wave, then Rα
x (τ ) contains 

sinusoidal terms in τ . Consequently, its Fourier transform is defined in a generalized 
sense and contains Dirac impulses [49, 84, Sec. 1.4].

3.4 � Statistical function measurements

In this section, a brief overview of the estimators of cyclic statistical functions is pre-
sented. For extensive treatments, see [39, Chaps. 2, 13], [84, Sec. 5.6].

(3.17)X1/�f (t, f ) �

∫ t+1/(2�f )

t−1/(2�f )
x(s) e−j2π fs ds

(3.18)Sα
x (f ) � lim

�f →0
lim

T→∞
1

T

∫ T/2

−T/2
�f X1/�f (t, f )X

∗
1/�f (t, f − α) dt

(3.19)Sα
x (f ) =

∫

R

Rα
x (τ ) e−j2π f τ dτ

(3.20)xr(t) = x(t) − E{α}{x(t)}

(3.21)Pβ
x (f ) =

∫

R

Cβ
x (τ ) e−j2π f τ dτ .
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Let [t0, t0 + T ] be the observation interval of the time series x(t). The cyclic autocor-
relation function can be estimated by the cyclic correlogram

When t0 ranges in a time interval of length Z, the cyclic correlogram is a mean-square 
consistent and asymptotically complex normal (as T → ∞ and Z → ∞ with Z/T → ∞ ) 
estimator of the cyclic autocorrelation function [30]. The cyclic spectrum can be consist-
ently estimated by the frequency-smoothed cyclic periodogram

where the finite-time Fourier transform XT (t0, �) is defined according to (3.17) and W(f) 
is a unit-area frequency-smoothing window. In the right-hand sides of (3.22) and (3.23), 
the dependence on t0 can be omitted if this does not create ambiguity. The frequency-
smoothed cyclic periodogram can be shown to have asymptotically the same perfor-
mance as that of the time-smoothed cyclic periodogram [39, Sec. 11.C]

when the data-record length T approaches infinity and the spectral resolution �f  
approaches zero. For α = 0 , the time- and frequency-smoothed cyclic periodograms 
reduce to the classical estimators of the power spectral density [4, 5, 13, 15, 34, 52, 95, 
119]. For the advantages of using other-than-rectangular data-tapering and time- or fre-
quency-smoothing windows, see [54, 93] for power spectral densities and [39, Chaps. 2, 
13] for both power and cyclic spectral densities.

Estimators for the second-order cyclic polyspectrum and the cyclic covariance when 
the first-order cycle frequencies are unknown are proposed in [89] and discussed in [84, 
Sec. 5.2.5]. Estimators for the cyclic CDF and PDF are presented in [31].

3.5 � Example 1 (cont’d): Sine wave with additive noise

The second-order lag product of the signal (2.24) is

where n(t + τ ) c(t) = ℓnc(t, τ ) and c(t + τ ) n(t) = ℓcn(t, τ ) do not contain any finite-
strength additive sine-wave component and similarly for ℓn(t, τ ) in the decomposition 
n(t + τ ) n(t) = Rn(τ ) + ℓn(t, τ ).

The almost-periodically time-variant autocorrelation is given by:

(3.22)R(T )
x (α, τ ; t0) �

1

T

∫ t0+T

t0

x(t + τ ) x(t) e−j2παt dt .

(3.23)S
(T ,�f )
x (α, f ; t0) =

∫

R

1

T
XT (t0, �)X∗

T (t0, � − α)
1

�f
W

(
� − f

�f

)
d�

(3.24)G
(�f ,T )
x (α, f ; t0) = 1

T

∫ t0+T/2

t0−T/2
X1/�f (t, f )X

∗
1/�f (t, f − α) dt

(3.25)

x(t + τ ) x(t) = [c(t + τ ) + n(t + τ )] [c(t) + n(t)]

= c(t + τ ) c(t) + n(t + τ ) c(t) + c(t + τ ) n(t) + n(t + τ ) n(t)

= A2
0 cos(2π f0(t + τ ) + φ0) cos(2π f0t + φ0)

+ ℓnc(t, τ ) + ℓcn(t, τ ) + Rn(τ ) + ℓn(t, τ )

= A2
0

2
[cos(2π2f0t + 2π f0τ + 2φ0) + cos(2π f0τ )]

+ ℓnc(t, τ ) + ℓcn(t, τ ) + Rn(τ ) + ℓn(t, τ )
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and the autocovariance is given by:

(3.26)
E{α}{x(t + τ ) x(t)} = Rn(τ ) + A2

0

2
cos(2π f0τ ) + A2

0

2
cos(2π2f0t + 2π f0τ + 2φ0)

(3.27)

E
{α}

{[
x(t + τ ) − E

{α}{x(t + τ )}
][
x(t) − E

{α}{x(t)}
]}

= E
{α}{[x(t + τ ) − c(t + τ )][x(t) − c(t)]}

= E
{α}{n(t + τ )n(t)} = Rn(τ )

Fig. 6  Sine wave in additive colored Gaussian noise (SNR = –10 dB). (Top) Magnitude of the estimate of the 
cyclic autocorrelation as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of 
the estimate of the cyclic spectrum as a function of the cycle frequency α and the spectral frequency f 
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Comparison of (3.26) and (3.27) reveals that while the autocorrelation function of the 
signal (2.24) is a periodic function of time, its autocovariance function does not depend 
on time. Therefore, for the signal (2.24), the second-order cyclostationarity, that is, the 
presence of finite-strength additive sine-wave components in the second-order lag-
product, is due to only the products of the first-order sine waves present in x(t). When 
such sine waves are canceled in computing the autocovariance, their effect in the sec-
ond-order lag product vanishes. All the nonzero second-order cycle frequencies are 
impure second-order cycle frequencies.

In Fig. 6, (Top) the magnitude of the cyclic correlogram (3.22) as a function of α and 
τ and (Bottom) the magnitude of the frequency-smoothed cyclic periodogram (3.23) as 
a function of α and f are reported for the case SNR = –10 dB. The slice for α = 0 in 
Fig. 6 (Top) corresponds to the first two terms in (3.26). A sine wave superimposed to an 
exponentially decaying shape can be recognized. Due to the low value of SNR, the peak-
to-peak oscillation of the sine wave is small if compared with the maximum value of 
the exponentially decaying term and cyclic features at cycle frequencies α = ±2f0 have a 
small strength compared to that at α = 0 . Accordingly, four spikes whose magnitude is 
small compared to that of the low-pass component of the PSD are centered in the four 
points (0,±f0) and (±2f0, 0) in the (α, f ) plane (Fig. 6 (Bottom)). The shape of the spikes is 
equal to the shape of the magnitude of the frequency smoothing window.

In Fig. 7, (Top) the magnitude of the estimate of the cyclic autocovariance as a func-
tion of α and τ and (Bottom) the magnitude of the estimate of the second-order cyclic 
polyspectrum as a function of α and f are reported for the case SNR = –10 dB. Since 
all the nonzero second-order cycle frequencies are impure, no significant cyclic features 
can be recognized for α  = 0 in Fig. 7 (left and right). In addition, according to (3.27), the 
cyclic autocovariance at α = 0 is constituted by only the exponentially decaying term 
and there is no added sinusoidal term.

In Fig. 8, (Top) the magnitude of the cyclic correlogram (3.22) as a function of α and 
τ and (Bottom) the magnitude of the frequency-smoothed cyclic periodogram (3.23) as 
a function of α and f are reported for the case SNR = 10 dB. In such a case, the strength 
of the sine wave is much bigger than that of the stationary noise. Therefore, the sinusoi-
dal terms in (3.26) are predominant. As already observed, all the sine waves in the lag 
product waveform are impure. When the additive sine wave is removed in computing 
the covariance, the impure sine waves are removed and one obtains the cyclic autoco-
variance and cyclic second-order polyspectrum estimates in Fig. 9 (left and right) that 
are coincident with those in Fig. 7 (left and right). There are no cyclic features for α  = 0 
since there is no pure second-order cyclostationarity.

The substantial odd-order harmonic content in the cyclic CDF and PDF (Sec. 2.3) is a 
result of the step discontinuity in the event indicator function of the sine wave plus noise 
whose sine-wave components are calculated. In contrast, the presence of only low-order 
harmonic content in the cyclic autocorrelation and cyclic spectrum reflects the smooth-
ness of the nonlinear transformation of the data, the lag product, whose harmonic con-
tent is calculated.

3.6 � Example 2 (cont’d): Sine wave with multiplicative noise

The second-order lag product of the signal (2.30) is:
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and its almost-periodically time-variant autocorrelation is given by:

(3.28)

x(t + τ ) x(t) = c(t + τ ) c(t) n(t + τ ) n(t)

= A2
0 cos(2π f0(t + τ ) + φ0) cos(2π f0t + φ0) [Rn(τ ) + ℓn(t, τ )]

= A2
0

2
Rn(τ ) [cos(2π2f0t + 2π f0τ + 2φ0) + cos(2π f0τ )]

+ A2
0

2
ℓn(t, τ ) [cos(2π2f0t + 2π f0τ + 2φ0) + cos(2π f0τ )]

Fig. 7  Sine wave in additive colored Gaussian noise (SNR = –10 dB). (Top) Magnitude of the estimate of the 
cyclic autocovariance as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of 
the estimate of the second-order cyclic polyspectrum as a function of the cycle frequency α and the spectral 
frequency f 
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Since E{α}{x(t)} = 0 , the almost-periodically time-variant autocovariance is coincident 
with the almost-periodically time-variant autocorrelation. Consequently, unlike the case 
of signal (2.24), for the signal (2.30), the second-order cyclostationarity, that is, the pres-
ence of finite-strength additive sine-wave components in the second-order lag-prod-
uct, is not due to products of the first-order sine waves present in x(t) and is entirely 

(3.29)E{α}{x(t + τ ) x(t)} = A2
0

2
Rn(τ ) [cos(2π2f0t + 2π f0τ + 2φ0) + cos(2π f0τ )] .

Fig. 8  Sine wave in additive colored Gaussian noise (SNR = 10 dB). (Top) Magnitude of the estimate of the 
cyclic autocorrelation as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of 
the estimate of the cyclic spectrum as a function of the cycle frequency α and the spectral frequency f 



Page 28 of 58Napolitano and Gardner ﻿EURASIP Journal on Advances in Signal Processing         (2025) 2025:13 

generated by the lag-product of the zero-mean residual term. That is, all the second-
order sine waves are pure second-order sine waves.

In Fig. 10, (Top) the magnitude of the estimate of the cyclic correlogram as a function 
of α and τ and (Bottom) the magnitude of the frequency-smoothed cyclic periodogram 
as a function of α and f are reported. Since all the second-order sine waves are pure, 
the estimates of the cyclic autocovariance and the second-order cyclic polyspectrum 
(Figs. 11) are coincident with those of the cyclic autocorrelation and the cyclic spectrum 
(Fig. 10), respectively. The slight difference is due to the bias introduced by the median 

Fig. 9  Sine wave in additive colored Gaussian noise (SNR = 10 dB). (Top) Magnitude of the estimate of the 
cyclic autocovariance as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of 
the estimate of the second-order cyclic polyspectrum as a function of the cycle frequency α and the spectral 
frequency f 
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filtering adopted for the cyclic polyspectrum estimation [89, 84, Sec.  5.2.5]. Since the 
colored Gaussian noise has practically finite memory, all the cyclic autocorrelations of 
x(t) decay to zero for large |τ | and the cyclic spectra do not contain impulses.

As in Example 1, the cyclic CDF contains more harmonics than the cyclic autocorrela-
tion and cyclic spectrum since the lag product is a nonlinear transformation of the data 
that is smoother than the event indicator function.

Fig. 10  Sine wave with multiplicative colored Gaussian noise. (Top) Magnitude of the estimate of the cyclic 
autocorrelation as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of the 
estimate of the cyclic spectrum as a function of the cycle frequency α and the spectral frequency f 
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3.7 � Example 3: The cyclic spectrum is richer than the PSD

Let us consider a band-pass wide-sense stationary signal generated by filtering white 
Gaussian noise w(t) by a band-pass LTI system (Fig. 12):

where hbp(t) is the impulse-response function of the band-pass LTI filter with harmonic 
response Hbp(f ) = [H(f − f0) + H(f + f0)]/2 , with H(f) and f0 the same as in Example 
2 (Sec. 2.4).

(3.30)x(t) = w(t) ⊗ hbp(t)

Fig. 11  Sine wave with multiplicative colored Gaussian noise. (Top) Magnitude of the estimate of the cyclic 
autocovariance as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of the 
estimate of the second-order cyclic polyspectrum as a function of the cycle frequency α and the spectral 
frequency f 
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The signal (3.30) and that in Example 2 have very similar temporal behavior (compare 
Figs. 4 and 12) and practically the same time-averaged autocorrelation function and PSD 
(Fig.  13). The two estimated PSDs differ only around f = 0 where, however, the PSD 
level is more than 20 dB below the main peak level.

From the analysis of the temporal behavior and the estimates of the time-averaged 
autocorrelation function and PSD, one could infer that these two signals have the same 
statistical characteristics. These signals, however, are generated by two completely dif-
ferent mechanisms. The signal in Example 2 is generated by a linear periodically time-
variant filtering (the modulation operation at frequency f0 ) of a wide-sense stationary 
colored noise n(t). Thus, it is second-order cyclostationary with nonzero cycle frequen-
cies α = ±2f0 . In contrast, the signal (3.30) is obtained by LTI filtering a wide-sense sta-
tionary signal and, hence, it is in turn wide-sense stationary. The PSD analysis does not 
enlighten such a difference and does not allow one to discover, for the signal of Exam-
ple 2, the existence of a periodic phenomenon in its generation. That is, the PSD analy-
sis does not allow one to discover the hidden periodicity. In contrast, the estimates of 
the cyclic autocorrelation in the (α, τ ) plane and the cyclic spectrum in the (α, f ) plane 
clearly show the difference between the two signals. The sine wave with multiplica-
tive noise (Example 2) is cyclostationary and significant cyclic features are present at 
α = ±2f0 (Fig. 10). The signal (3.30) is wide-sense stationary and significant features are 
present only at α = 0 (Fig. 14).

The parallel straight lines extending between the lower left and upper right quadrants 
in some of the bottom figures with figure numbers ranging from 6 to 14 and most pre-
dominantly in Figs. 7, 8, and 9 are artifacts of the spectral estimation method and are 
emphasized by the median filtering of the frequency-smoothed cyclic periodogram 
adopted to estimate the second-order cyclic polyspectrum [89].

3.8 � Example 4: Pure and impure second‑order sine waves

3.8.1 � Case a

Let us consider the signal

(3.31)x(t) = n(t) cos(2π f0t + φ0) + A1 cos(2π f0t + φ1) .

Fig. 12  Band-pass wide-sense stationary Gaussian signal
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Fig. 13  Sine wave with multiplicative noise (solid line) versus band-pass wide-sense stationary Gaussian 
signal (dotted line). (Top) Estimate of the autocorrelation function as a function of the lag parameter τ . 
(Bottom) Estimate of the PSD as a function of the spectral frequency f 
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Sine waves at cycle frequencies ±2f0 present in the second-order lag product have a por-
tion which is a pure second-order sine wave and another portion which is an impure 
second-order sine wave. Such a situation is found in some vibroacoustic signals in 
mechanics [58, 59] and in the underlying cyclostationary signal in the electrocardiogram 
(ECG) signal [86].

3.8.2 � Case b

Let us consider the signal

Fig. 14  Band-pass wide-sense stationary Gaussian noise. (Top) Magnitude of the estimate of the cyclic 
autocorrelation as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of the 
estimate of the cyclic spectrum as a function of the cycle frequency α and the spectral frequency f 
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where f0 and f1 are incommensurate.
The second-order lag-product waveform contains finite-strength additive sine waves 

with frequencies α ∈ {±2f0,±2f1} . Sine waves at frequencies α = ±2f0 are pure second-
order sine waves. Frequencies α/2 are not present at first-order and frequencies α  are 
present in the Fourier series expansion of both autocorrelation and autocovariance. Sine 
waves at frequencies α = ±2f1 are impure second-order cycle frequencies. Frequencies 
α/2  are present at first-order and frequencies α are present in the Fourier series expan-
sion of the autocorrelation but not of the autocovariance.

4 � Higher‑order cyclostationarity
There are time series for which the hidden periodicity cannot be regenerated by a second-
order nonlinear transformation but rather, by a higher-than-second-order transformation. 
For example, in communications, by a quadratic nonlinearity no cycle frequencies related to 
the baud rate can be generated for a pulse-amplitude-modulated (PAM) signal with band-
width equal to the Nyquist rate and no cycle frequencies related to the carrier frequency 
can be generated for a balanced quadrature-phase-shift-keyed (QPSK) signal. For such sig-
nals, cycle frequencies can be generated by adopting a fourth-order nonlinear transforma-
tion of the signal [49]. Furthermore, there are signals that exhibit the same second-order 
cyclic statistical functions but that can be distinguished on the basis of their higher-order 
cyclostationarity properties [111]. In order to exploit the benefits of the spectral line gen-
eration also for this class of signals, the second-order theory of cyclostationary time-series 
has been extended to higher-orders in [49, 112]. See also [80, 84, Chap. 4].

4.1 � Higher‑order spectral line generation

The Nth-order temporal moment function is defined as the almost-periodic component 
of the Nth-order lag product waveform, which is the product of N time-shifted versions 
of a time series. The Fourier coefficients of its (generalized) Fourier series expansion are 
referred to as the Nth-order cyclic temporal moment functions. As first shown in [48] and 
then, in more detail, in [49], the Nth-order cyclic temporal cumulant function at cycle fre-
quency α of a time series provides a mathematical characterization of the notion of a pure 
Nth-order sine wave. It is the higher-order generalization of the definition given at second 
order in Sec. 3.2 and illustrated in the Examples of Secs. 3.5 and 3.8. The pure Nth-order 
sine wave is that part of the sine wave at frequency α present in the Nth-order lag product 
waveform that remains after removal of all parts that result from products of sine waves 
in lower order lag products obtained by factoring the Nth-order product. In contrast, the 
impure Nth-order sine wave is the entire sine wave with frequency α that is contained in the 
Nth-order lag product. Its amplitude and phase are the magnitude and phase of the Nth-
order cyclic temporal moment function

(3.32)x(t) = n(t) cos(2π f0t + φ0) + A1 cos(2π f1t + φ1)

(4.1)Rα
x (τ ) �

〈 N∏

i=1

x(t + τi) e
−j2παt

〉

t
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where x denotes the vector of N time-shifted versions of x(t), that is, 
x � [x(t + τ1), . . . , x(t + τN )]T , and τ � [τ1, . . . , τN ]T.

The temporal moments and cumulants of x are linked by the formulas [49]

where P is the set of distinct partitions of {1, ...,N } , each constituted by the subsets 
{µi, i = 1, ..., p} , |µi| is the number of elements in µi , xµi is the |µi|-dimensional vector 
whose components are those of x having indices in µi . Equations (4.2) and (4.3) are the 
FOT counterparts of the Leonov and Shiryaev formulas [71] for stochastic moments and 
cumulants. That is, (4.2) and (4.3) are the same as the Leonov and Shiryaev formulas 
obtained by replacing the ensemble average with the almost-periodic component extrac-
tion operator. In (4.2) and (4.3), Rxµi

(t, τµi) and Cxµi
(t, τµi) are the temporal moment 

and cumulant functions, respectively, of the time-shifted time series xℓ(t + τℓ) with 
ℓ ∈ µi.

Estimators of higher-order cyclic statistical functions are presented and discussed in 
[112, 84, Sec. 5.7]. Results in the stochastic approach are presented in [25–27]. Estima-
tion in the presence of non-Gaussian noise is addressed in [126].

The extension to complex-valued signals of the above definitions of temporal moment 
and cumulant functions is obtained by considering an optional complex conjugation for 
each of the complex-valued time-shifted signals x(t + τi) [112, 84, Chap. 4]. Thus, 2N−1 
different conjugation configurations can be considered. In general, at a given order, com-
munication signals exhibit different cyclostationarity properties for different conjugation 
configurations. The strength of the cyclic features at second- and higher-orders for the 
several conjugation configurations constitutes a kind of finger print of the modulation 
format and can be suitably exploited for modulation format classification [111].

4.2 � Example 5: Spectral‑line generation by fourth‑order nonlinearity

Let us consider a pulse-amplitude-modulated (PAM) signal xPAM(t) with binary white 
modulating sequence, full duty-cycle rectangular pulse, and bit period T0 . Let x(t) be 
a version of such a PAM signal filtered by a strictly band-limited low-pass filter with 
monolateral bandwidth equal to 0.45 α0 , where α0 = 1/T0 is the smallest (in magnitude) 
nonzero cycle frequency of the PAM signal [39, Sec. 12.D], [84, Sec. 7.3].

For a linear time-invariant (LTI) system with input and output signals xPAM(t) and x(t), 
respectively, the input/output relationship in terms of cyclic spectra is [39, Sec. 11.D], 
[84, Sec. 3.2.2]

where H(f) is the harmonic-response function of the filter.

(4.2)Cx(t, τ ) =
∑

P

[
(−1)p−1(p − 1)!

p∏

i=1

Rxµi
(t, τµi)

]

(4.3)Rx(t, τ ) =
∑

P

[
p∏

i=1

Cxµi
(t, τµi)

]

(4.4)Sα
x (f ) = Sα

xPAM
(f )H(f )H∗(f − α)
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Fig. 15  Filtered PAM signal. (Top) Magnitude of the estimate of the cyclic autocorrelation as a function of 
the cycle frequency α and the lag parameter τ . (Bottom) Magnitude of the estimate of a slice of the the 
fourth-order cyclic temporal moment function as a function of the cycle frequency α and the lag parameter 
τ1
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Since the bilateral bandwidth of the considered filter is less than the smallest (in mag-
nitude) nonzero cycle frequency of the input signal xPAM(t) , the supports of H(f) and 
its frequency-shifted version H∗(f − α) in (4.4) do not overlap for α  = 0 . That is, the 
output signal x(t) does not exhibit second-order cyclostationarity (Fig. 15 (Top)). In con-
trast, the hidden periodicity can be generated by considering the fourth-order lag prod-
uct. That is, the signal x(t) exhibits fourth-order cyclostationarity (Fig. 15 (Bottom)).

5 � Irregular cyclicity
In contrast to the examples given up to this point, there are other ways that periodicity 
can become hidden in a time series. That is, instead of, or in addition to, the mixing of 
random fluctuations with periodicity, there are situations in which time variation of a 
quantity is non-periodic because otherwise periodic behavior has been subjected to time 
warping. Yet, it is possible in some situations to perform de-warping, thereby uncover-
ing otherwise hidden periodicity.

Let

be a time-warped version of the ACS signal x(t), where ψ(t) is an invertible time-warp-
ing function with inverse ϕ(t) = ψ−1(t) . Starting from the decomposition (3.4) for the 
lag product of the underlying ACS signal x(t), one obtains the following decomposition 
for the lag product of y(t) 

The ACS signal x(t) presents hidden periodicities that can be generated by appropriate 
nonlinear transformations (Secs. 2, 3, 4). However, the time-warping transforms regular 
paces into irregular ones. The analysis and characterization of time-warped ACS time 
series is made in [43, 83, 87]. Other approaches are proposed in [74, 75]. Models with 
irregular cyclicities have been considered for the electrocardiogram (ECG) signal [86], 
the electroencephalogram (EEG) signal [94], signals of mechanical machinery [113], 
astrophysics signals [28], signals reflected by accelerating targets [77, 78], underwa-
ter communication signals [110], and heavy-tailed data [90]. The modifications of the 
almost-cyclostationarity properties of the transmitted signal due to relative motion (with 
general motion law) between transmitter and receiver are analyzed in [81, Chap. 7].

5.1 � Cyclostationarity restoral

Let us assume that x(t) exhibits cyclostationarity with at least one cycle frequency α0 . 
In [43], estimates ψ̂ or ϕ̂ = ψ̂−1 of ψ or ψ−1 are determined such that, for the recovered 
signal xϕ(t) = y(ϕ̂(t)) , the amplitude of the complex sine wave at frequency α0 contained 
in the second-order lag-product xϕ(t + τ ) x(∗)

ϕ (t) is maximized.
Let {ck(t)}k=1,...,K  be a set of (not necessarily orthonormal) functions. Two procedures 

are proposed in [43]:

(5.1)y(t) = x(ψ(t))

(5.2a)y(t + τ ) y(t) = x(ψ(t + τ)) x(ψ(t))

(5.2b)=
∑

α∈A

Rα
x (ψ(t + τ ) − ψ(t))ej2παψ(t) + ℓx(ψ(t),ψ(t + τ ) − ψ(t)).
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Procedure a) Consider the expansion

where c(t) = [c1(t), . . . , cK (t)]T and a = [a1, . . . , aK ]T and maximize with respect to a 
the objective function

with R̂α0
xϕ

(τ ; a) an estimate of the cyclic autocorrelation of the de-warped signal 
xϕ(t) = y(aT

c(t))

Procedure b) Consider the expansion

where b = [b1, . . . , bK ]T and maximize with respect to b the objective function

with 

where (5.8a) is obtained from (5.5a) by the variable change u = ϕ̂(t) and

In (5.8b) and (5.9), the dot denotes first-order derivative.
The value of the vector a or b that maximizes the corresponding objective function is 

taken as an estimate of the coefficient vector for the expansion of ϕ̂(t) = ψ̂−1(t) or ψ̂(t) . 
The maximization can be performed by a gradient-ascent algorithm, with starting points 
throughout a sufficiently fine grid. The Barzilai–Borwein step size sequence [6] is used 
since it provides fast convergence for many kinds of objective functions. In both cases a) 
and b), the gradient of the objective function must be computed whose expressions are 
provided in [43]. Several important design parameters are discussed in [43].

(5.3)ϕ̂(t) = ψ̂−1(t) = a
T
c(t)

(5.4)Ja(a) =
∣∣∣R̂α0

xϕ
(τ ; a)

∣∣∣
2

(5.5a)R̂α0
xϕ

(τ ; a) �
1

T

∫ t0+T

t0

xϕ(t + τ )x(∗)
ϕ (t)e−j2πα0tdt

(5.5b)= 1

T

∫ t0+T

t0

y(aT
c(t + τ)) y(∗)(aT

c(t)) e−j2πα0t dt

(5.6)ψ̂(t) = b
T
c(t)

(5.7)Jb(b) =
∣∣∣R̂α0

xϕ
(τ ;b)

∣∣∣
2

(5.8a)R̂α0
xϕ

(τ ;b) = 1

T

∫ ϕ̂(t0+T )

ϕ̂(t0)
y(u + �τ

ϕ[ϕ̂−1(u)]) y(∗)(u) e−j2πα0ϕ̂
−1(u)

.

ϕ̂−1(u) du

(5.8b)≃ 1

T

∫ t0+T

t0

y(u + τ/bT
.
c(u)) y(∗)(u) e−j2πα0b

T
c(u)

b
T
.
c(u) du

(5.9)
�τ

ϕ[ϕ̂−1(u)] �ϕ̂[ϕ̂−1(u) + τ ] − ϕ̂[ϕ̂−1(u)]

≃ τ [1/
.

ϕ̂−1(u)] = τ/bT
.
c(u)
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5.2 � Warping function compensation and estimation by angle demodulation

Let us consider the warping function

with ǫ(t) slowly varying, that is,

In such a case, it can be shown [83] that the lag product is closely approximated by:

That is, y(t) is a modulated cyclical (MC) signal [82, 94, Sec.  6.2.2] with “modulating 
function” mα

x (t) ≡ mα(t) = ej2παǫ(t) (independent of x(t)).
Two methods are proposed in [83] for estimating the function ǫ(t).
The first one considers the expansion

where e = [e1, . . . , eK ]T and provides estimates of the coefficients ek by maximizing with 
respect to e the objective function

where

and T  is a set of values of τ where Rα0
x (τ ) is significantly nonzero. The maximization can 

be performed by a gradient ascent algorithm, similarly to the approach in Sec. 5.1. The 
estimated coefficients are such that the additive-phase factor ej2πα0ǫ(t) ej2πα0t in the first 
term of the lag-product of y(t) (5.12) is compensated in (5.14) by using (5.15).

For the second method [83, 84, Sec. 14.3.3], let us define

with hW (t) the impulse-response function of a low-pass filter with monolateral band-
width W such that

where B(α) is the monolateral bandwidth of w(t) = ej2παǫ(t) . Thus, for the frequency-
shifted waveform y(t + τ ) y(t) e−j2πα0t , which—by (5.12)—contains spectral content of 
width B(α) centered at frequency α − α0 for all cycle frequencies α exhibited by x(t), only 
the spectral content centered at 0 would be passed by the low-pass filter. This implies 

(5.10)ψ(t) = t + ǫ(t)

(5.11)sup
t

∣∣ .
ǫ(t)

∣∣ ≪ 1 .

(5.12)y(t + τ ) y(t) ≃
∑

α∈A

ej2παǫ(t) Rα
x (τ ) ej2παt + ℓx(t + ǫ(t), τ + ǫ(t + τ ) − ǫ(t)) .

(5.13)ǫ̂(t) = e
T
c(t)

(5.14)Je(e) �

∫

T

∣∣R̂(T )
y (α0, τ ; e)

∣∣2 dτ

(5.15)R̂(T )
y (α0, τ ; e) �

1

T

∫ T/2

−T/2
y(t + τ ) y(t) e−j2πα0t e−j2πα0e

T
c(t)dt

(5.16)z(α0,W )(t, τ ) �
[
y(t + τ ) y(t) e−j2πα0t

]
⊗ hW (t)

(5.17)
B(α0) < W < inf

α ∈ A

α �= α0

(
|α − α0| − B(α)

)
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that for sufficiently narrow bandwidth W (i.e., sufficiently long integration time), sub-
ject to the left inequality in (5.17), the filtered waveform (5.16) also would contain only 
the spectral content centered at 0: z(α0,W )(t, τ ) ≃ R

α0
x (τ ) ej2πα0ǫ(t) . Therefore, ǫ(t) can be 

estimated by:

to within the unknown constant arguw[Rα0
x (τ )]/(2πα0) , where arguw denotes the 

unwrapped phase. Therefore, under the above-stated conditions on ǫ(t) , this warping 
function can be estimated to within an unknown constant, representing a fixed time 
delay, without the need for any optimization. This method is also extended in [83] to 
the case where only a rough estimate of α0 is available and also amplitude modulation is 
present.

Note that since angle-modulated sine waves have spectral support covering the 
entire spectral domain, the filtering procedure in (5.16) only approximately extracts 
the single angle-modulated sine wave Rα0

x (τ ) ej2πα0ǫ(t) . In fact, a portion of the spec-
tral content of such a desired term is filtered out and tails of the spectral contents of 
the other modulated sine waves pass through the filter. Consequently, the estimate 
ǫ̂(t) is biased. The bias is negligible provided that the power spectra of the angle-mod-
ulated sine waves in (5.12) are concentrated on non-overlapping frequency intervals. 
Such a condition is verified in several real data sets that fit model (5.12), namely the 
electrocardiogram [86], the acoustic signal emitted by an aircraft [85], and the Sun-
spot number time series (Sec. 6).

In [83], a Priestley spectral representation [101] for the signal is adopted and an esti-
mation algorithm for the amplitude-modulation function is also derived and an ampli-
tude-modulation compensation and time de-warping procedure is presented to recover 
the underlying cyclostationary signal x(t).

5.3 � De‑warping

Once the warping function ψ(t) or its inverse is estimated, the time-warped signal y(t) 
can be de-warped in order to obtain an estimate x̂(t) of the underlying polycyclostation-
ary signal x(t). If this de-warping is sufficiently accurate, it renders x̂(t) amenable to well-
known signal processing techniques that are unique for polycyclostationary signals (e.g., 
frequency-shift (FRESH) filtering).

If the estimate ψ̂−1(t) is obtained by the Procedure a) of Sec. 5.1, then the estimate of 
x(t) is immediately obtained as:

which would have already been calculated in (5.5b). In contrast, if the estimate ψ̂(t) is 
available by the Procedure b) of Sec. 5.1 or by one of the two methods of Sec. 5.2, the 
estimate ψ̂−1(t) should be obtained by inverting ψ̂.

A general procedure for calculating ψ̂−1 is described in [43]. In the case of 
ψ(t) = t + ǫ(t) , with ǫ(t) slowly varying (see (5.11)), in [83, 84, Sec. 14.3.4], it is shown 
that ψ−1(t) ≃ t − ǫ(t) and a useful estimate of x(t) is

(5.18)ǫ̂(t) = arguw

[
z(α0,W )(t, τ )

]
/(2πα0)

(5.19)x̂(t) = y(ψ̂−1(t))
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provided that the estimation error is sufficiently small in the sense that 
supt |ǫ̂(t) − ǫ(t − ǫ̂(t)| ≪ 1/B where B is the bandwidth of x(t). This condition reduces 
to

when (5.11) holds. The samples of y(t − ǫ̂(t)) are obtained from those of y(t) and ǫ̂(t) by 
an interpolation formula as explained in [83].

6 � The Sunspot number time series
The Wolf number Sunspot index, or Sunspot number in short, counts the average 
number of Sunspots and groups of Sunspots during specific time intervals [123]. This 
is a typical example where the stochastic process model for signals is inappropriate. 
To our knowledge, the Sun is the only star of essential the same mass, geometrical 
size, particle content, quantitative plasma characteristics, spatial distribution of plan-
ets revolving around it, statistically identical electromagnetic planetary characteris-
tics, and the same galaxy of which this solar system is a member. So, to assume that an 
infinitely large ensemble of statistically identical Suns exists takes us outside of real-
istic astrophysics and is therefore a poor starting point for the study of the physical 
phenomenon we call Sunspots. That is, there is one unique Sun producing one unique 
Sunspot-number time series (SNTS), which is of interest on Earth. Such a time series 
describes the solar activity that disturbs radio communications, the orbits of satel-
lites, and power grids. Considering an ensemble of SNTS’, generated by a hypothetical 
ensemble of Suns, is meaningless.

The time series of Sunspot number is known to exhibit approximate periodicity. 
In the brief study of this time series provided here, the details of the irregularity in 
the periodicity are exposed by fitting an irregular almost-cyclostationary model to 
the data, using the method presented in Sect. 5. The way of calculating the Sunspot 
number is not unique [22]. In the following analysis, Sunspot data are taken from the 
World Data Center SILSO, Royal Observatory of Belgium, Brussels [109].

Several previous studies have shown that the SNTS presents irregular cyclicities 
[106, 107]. In particular, a periodicity with approximate period of 26–30 days and a 
periodicity with approximate period of 11 years can be observed [66, 115]. The SNTS 
has been analyzed using several techniques. In [24], the singular spectrum analysis is 
adopted to analyze the quasi-periodic components of the SNTS. In [10], it is observed 
that classical Fourier techniques are not useful for the analysis since the SNTS is rec-
ognized to be a substantially nonstationary process and the minimum cross-entropy 
method is exploited to improve the maximum entropy spectrum. In [114], the spec-
trogram is adopted for time–frequency analysis. Several works infer the presence of 
periodicity from the PSD analysis or exploiting several kinds of time-dependent spec-
tra or wavelet analysis [64, 67, 98].

As shown in Sect. 3.7 (Example 3), PSD analysis alone does not enable discovery of 
hidden periodicities in the data generation mechanism of the time series, whereas 

(5.20)x̂(t) = y(t − ǫ̂(t)),

(5.21)sup
t

|ǫ(t) − ǫ̂(t)| ≪ 1/B
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cyclostationarity analysis is designed to reveal such characteristics. Prior to this essay, 
no cyclostationarity analysis has been conducted on the SNTS. The analysis techniques 
presented in Sec. 5 are shown here in this section to be ideally suited to the SNTS.

In the following, by two different experiments, it is shown that from the second-
order lag product of the SNTS two amplitude- and angle-modulated additive sine-
wave components can be extracted. The periods of the non-modulated sinusoids 
agree with those already observed [10, 24, 66, 114, 115]. Moreover, the time-warping 
functions in the model provide a mathematical description of the irregularity of the 
cyclicities observed in the time series, something not previously attempted.

6.1 � 27.3‑Day irregular period

In the first experiment reported here, the daily total Sunspot number in the years 
1818–2023 (sampling period = Ts = 1/fs = 1 day) is considered (Fig.  16 (Top)). For 
this time series, denoted by y(t), the discrete-time counterpart of the cyclic correlo-
gram (3.22) is computed as a function of the lag parameter τ and the cycle frequency 
α for a data-record length T = NTs with N = 75361 . As a measure of the strength of a 
cyclic component at a cycle frequency α , the integrated squared magnitude of the lag-
indexed complex sine waves

Fig. 16  (Top) daily total Sunspot number in the years 1818–2023. (Bottom) estimated time-warping function 
( ̃α0 ≃ 0.0365 fs , W = 0.003 fs , Ts = 1/fs = 1 day)
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where T = (−512Ts, 512Ts) is reported in Fig. 17 (Top) as a function of α . From Fig. 17 
(Top), it appears that cyclic features are spread around a candidate cycle frequency 
0.0365 fs . The rough estimate α̃0 ≃ 0.0365 fs and a low-pass filter bandwidth W = 0.003 fs 
are adopted for the estimation procedure described in Sec.  5.2. The estimated 

(6.1)�
(T )
y (α) =

∫

T

∣∣∣R(T )
y (α, τ )

∣∣∣
2
dτ

Fig. 17  Strength of the cyclic correlogram as a function of the cycle frequency α . (Top) time series y(t) of the 
daily total Sunspot number in the years 1818–2023. (Bottom) de-warped time series x(t)
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Fig. 18  De-warped time series x(t) of the daily total Sunspot number in the years 1818–2023. (Top) 
Magnitude of the cyclic correlogram as a function of the cycle frequency α and the lag parameter τ . (Bottom) 
Magnitude of the estimate of the cyclic autocovariance as a function of α and τ
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time-warping function is reported in Fig.  16 (Bottom). The de-warping procedure of 
Sec.  5.3 (as modified in [83] to also compensate amplitude modulation) is adopted to 
recover the underlying cyclostationary signal x(t). Its cyclic correlogram, as a function of 
(α, τ ) is computed (Fig. 18 (Top)) and its strength, defined according to (6.1), is reported 
in Fig. 17 (Bottom). The presence of two sharp peaks at α = ±α̂0 = ±0.0366 fs is evident. 
It confirms the cyclostationary nature of x(t) and the validity of the conjectured pres-
ence of at least a time-warped sine wave in the second-order lag-product of the SNTS. 
Moreover, from the plot of the magnitude of the cyclic correlogram in Fig.  18 (Top), 
it is clear that periodic components (in the variable τ ) in the cyclic autocorrelation at 
cycle frequencies α = ±α̂0 = ±0.0366 fs are present. These periodic components in the 
cyclic autocorrelation are due to an additive periodic term in the underlying cyclosta-
tionary time series x(t) (see Sec. 3.5). If the effects of this additive periodic term in x(t) 
are removed from the second-order lag product, one obtains the pure second-order sin-
ewaves whose amplitudes and phases are the magnitude and phase of the cyclic auto-
covariance function. In Fig.  18 (Bottom), the magnitude of the estimate of the cyclic 
autocovariance is reported.

The Sun, in its outer regions at least, is constituted by plasma and, as a result, the 
Sun’s outer regions do not rotate with the same angular speed at every latitude. The 
poles of the Sun complete a rotation in about 33 days, while the area just above the 
equator completes a rotation in about 25 days [66]. The detected period 1/α̂0 ≃ 27.3 
days corresponds to an average rotation period of the Sun around its axis.

6.2 � 11‑Year irregular period

In the second experiment, a zoom around small cycle frequencies is considered in order 
to analyze the approximate 11-year periodicity of solar cycles. Solar cycles vary from just 
under 10 to just over 12 years.

The strength of the cyclic correlogram (6.1) zoomed in the cycle-frequency interval 
(−0.0006 fs, 0.0006 fs) is reported in Fig. 19 (Top).

A new time-warping function is estimated by adopting in the procedure of Sec. 5.2 the 
parameters α̃0 ≃ 0.00024906 fs and W = 0.00010 fs . The result is shown in Fig. 20.

The strength of the cyclic correlogram of the de-warped time series is reported in Fig. 19 
(Bottom). Peaks corresponding to cycle frequencies are significantly sharper than those 
in Fig.  19 (Top). Their width is of the order of 1/(NTs) = 1/(75361Ts) ≃ 1.32 10−5 fs 
which is the cycle-frequency resolution for an observation-interval length T = NTs [39, 
Sec. 11.B], [84, Sec. 5.2.1].

The first peaks of nonzero cycle frequencies are at α = ±α̂0 ≃ ±0.0002496 fs which 
correspond to a period T0 = Ts/0.0002496 ≃ 4006.4 days ≃ 10.97 years. Such a detected 
period is in agreement with the values already found in [10, 24, 66, 114, 115].

In Fig. 21 (Top), the magnitude of the cyclic correlogram as a function of the cycle fre-
quency α and the lag parameter τ is reported for the de-warped signal x(t). Also in this 
case x(t) is given by the superposition of a periodic and a zero-mean term. The magni-
tude of the estimated cyclic autocovariance is reported in Fig. 21 (Bottom).

The approximate period estimated in the second experiment can also be observed by 
considering the monthly mean total Sunspot number in the years 1749–2023 (sampling 
period = Ts = 1 month) (Fig. 22 (Top)). This time series has been adopted in previous 
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works [24, 10, 66, 114, 115] to detect the 11-year periodicity. The estimated time-warp-
ing function is reported in Fig. 22 (Bottom).

In Fig. 23, the strength of the cyclic correlogram as a function of the cycle frequency 
α is reported (Top) for the time series y(t) of the monthly mean total Sunspot number 
in the years 1749–2023 and (Bottom) for the de-warped time series x(t). In Fig. 23 (Bot-
tom), the first peaks of nonzero cycle frequencies are at α = ±α̂0 ≃ ±0.00757 fs which 

Fig. 19  Strength of the zoom in α ∈ (−0.0006 fs , 0.0006 fs) of the cyclic correlogram as a function of the 
cycle frequency α . (Top) time series y(t) of the daily total Sunspot number in the years 1818–2023. (Bottom) 
de-warped time series x(t)
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correspond to a period T0 = Ts/0.00757 ≃ 132.10 months ≃ 11.01 years, which is in 
agreement with the previous result.

In Fig. 24, for the de-warped time series x(t), (Top) the magnitude of the cyclic corre-
logram as a function of α and τ and (Bottom) the magnitude of the estimate of the cyclic 
autocovariance as a function of α and τ are reported. The periodic term in τ in the cyclic 
correlogram is a consequence of an additive periodic term in the time series x(t).

6.3 � 120‑200‑Year irregular periods

In Figs.  16 (Bottom), 20, and 22 (Bottom), the estimated time-warping function is 
reported as a function of time (days or months). In all figures, a single cycle of 120-200 
years of a (noisy or disturbed) periodic function can be recognized. The period cannot 
be accurately estimated since the daily total Sunspot number is observed for 205 years 
and the monthly total Sunspot number for 274 years. However, a crude estimate can 
be obtained by measuring the distance between the main peaks in the oscillating func-
tions. In Fig. 16 (Bottom), the cycle is approximately 5 · 104 days, which corresponds to 
137 years. In Fig. 20, the cycle is approximately 6.5 · 104 days, which corresponds to 178 
years. In Fig. 22 (Bottom), the cycle is approximately 2400 months, which corresponds 
to 200 years.

Long (super-secular) cycles have not been studied using direct SNTS observations, but 
by means of indirect proxies such as cosmogenic isotopes [115, Sec.  3]. Cycles whose 
length is comparable with those observed in Figs. 16 (Bottom), 20, and 22 (Bottom), are 
the Gleissberg cycle which is variable in length from 70 to 130 years and the de Vries or 
Suess cycle with a period of 205–210 years [115, Sec. 4.1].

7 � Conclusion
Hidden periodicities present in science data have been characterized using the fraction-
of-time probability framework, which provides a probabilistic model constructed from 
a single time series. This approach is an alternative to the stochastic-process approach: 
It does not need to invoke the existence of an ensemble of realizations, that is, of an 
abstract sample space. Measurement series, such as x(t + τ ) x(t) , obtained from a given 
time series x(t), are decomposed into the sum of an almost-periodic component and a 

Fig. 20  Daily total Sunspot number in the years 1818–2023. Estimated time-warping function 
( ̃α0 ≃ 0.00024906 fs , W = 0.00010 fs , Ts = 1/fs = 1 day)



Page 48 of 58Napolitano and Gardner ﻿EURASIP Journal on Advances in Signal Processing         (2025) 2025:13 

Fig. 21  De-warped time series of the daily total Sunspot number in the years 1818–2023. (Top) Magnitude 
of the cyclic correlogram as a function of the cycle frequency α and the lag parameter τ . (Bottom) Magnitude 
of the estimate of the cyclic autocovariance as a function of α and τ . Zoom in α ∈ (−0.0006 fs , 0.0006 fs)
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residual term not containing any finite-strength additive sine-wave components. The 
almost-periodic component extraction operator, that is, the operator that extracts all the 
finite-strength additive sine-wave components of its argument, is recognized to be an 
expectation operator. Thus, by applying such an operator to nonlinear transformations 
of a time series and its time-shifted versions, all classical multivariate statistical func-
tions such as cumulative distribution, autocorrelation, autocovariance, moments, and 
cumulants are constructed. These statistical functions are the building blocks of the frac-
tion-of-time theory of cyclostationarity. A time series is dubbed second-order cyclosta-
tionary, poly-cyclostationary, or almost-cyclostationary if its autocorrelation function is 
periodic, poly-periodic, or almost-periodic, respectively. A similar classification can be 
made for all other multivariate statistical functions. The Nth-order cumulative distribu-
tion characterizes all hidden Nth-order periodicities in the time series.

Pure second-order sine waves are defined to be those (portions of ) finite-strength 
sine waves present in the second-order lag product that are not generated by products 
of first-order sine waves, that is, sine waves of the additive almost-periodic component 
present in the time series. In contrast, sine waves in the second-order lag product that 
contain portions due to products of first-order sine waves are referred to as impure sec-
ond-order sine waves. Pure second-order sine waves characterize periodicities that are 
hidden in the data, that is, that do not give rise to spectral lines in the Fourier transform 

Fig. 22  (Top) monthly mean total Sunspot number in the years 1749–2023. (Bottom) estimated 
time-warping function. ( ̃α0 ≃ 0.00753 fs , W = 0.0030 fs , Ts = 1/fs = 1 month)
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of the data. However, they can be generated by a quadratic homogeneous transformation 
of the data.

As an indication of the suitability of the FOT probability theory of cyclostationarity to 
the study of hidden periodicities, it is noteworthy that the applied concept of pure Nth-
order sine waves gave rise to the definition of the Nth-order cyclic cumulant. This may 
be the first time in the cumulant’s century-plus history that it has been recognized to be 
the solution to a practical empirical problem.

Fig. 23  Strength of the cyclic correlogram as a function of the cycle frequency α . (Top) time series y(t) of the 
monthly mean total Sunspot number in the years 1749–2023. (Bottom) de-warped time series x(t)
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As illustrative examples, a sine wave in additive noise and a sine wave in multiplicative 
noise are considered. A substantial odd-order harmonic content in the cyclic cumulative 
distribution, for the case of additive noise, which is not present in the cyclic autocorre-
lation, is evidenced. It is a consequence of the step discontinuity in the event indicator 

Fig. 24  De-warped time series of the monthly mean total Sunspot number in the years 1749–2023. (Top) 
Magnitude of the cyclic correlogram as a function of the cycle frequency α and the lag parameter τ . (Bottom) 
Magnitude of the estimate of the cyclic autocovariance as a function of α and τ
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function in contrast to the smoothness of the quadratic transformation of the data in the 
lag product which contains only the second harmonic.

The recently introduced model of time-warped almost-cyclostationary signals is 
reviewed. It provides a rigorous and accurate model for describing phenomena with 
irregular cyclicities, that is, phenomena for which the period(s) are time varying. Esti-
mation procedures are presented to restore the regular cyclostationarity by recovering 
the underlying almost-cyclostationary signal from the original data.

The Sunspot number time series is analyzed. It is shown that at least two hidden irreg-
ular periodicities can be identified and modeled as amplitude-modulated time-warped 
cyclostationary signals. The obtained results are in agreement with several existing 
results. In particular, the 27.3-day and 11-year irregular periods are detected by estimat-
ing the nonzero cycle frequencies of the underlying cyclostationary signals obtained by 
properly de-warping the original Sunspot number time series. This is the first time that 
a cyclostationary analysis has been made for this time series, and that amplitude-mod-
ulated and time-warped sine waves are extracted from the second-order lag product of 
the data.

From a historical perspective, we have in this paper reviewed a major paradigm shift 
that occurred over the preceding 40 years in the field of statistical time series analysis for 
the specific purpose of detecting and characterizing periodicities (often called cycles) 
in otherwise randomly fluctuating data. The fraction-of-time probability theory of 
cyclostationary time series is shown to be a well suited and very effective tool for detect-
ing and analyzing periodicities that are hidden in time-series data by virtue of mixing 
with random fluctuations and/or distortion due to time warping. The Sunspot number 
time-series example presented here is one of many published examples from a variety of 
applications of the fact that the theory of Non-Population Probability of single functions 
of time is methodologically superior to the standard Population-Probability Theory of 
ensembles of time functions (stochastic processes) when the time functions are properly 
modeled as stationary, or cyclostationary, or almost cyclostationary. This is the natural 
conclusion to the development throughout recorded history of theory and methodol-
ogy for investigating cyclic phenomena, as last reviewed by H. O. A. Wold over half a 
century ago, and the Sunspot series example might well represent the first major break-
through in methodology for analyzing Sunspot series since Sir Arthur Schuster’s original 
application of the periodogram 125 years ago.

The authors propose that progress on hidden periodicities was hindered for many 
years by a misguided replacement of the budding non-stochastic theory of time-
series analysis in the mid-twentieth century with the Kolmogorov theory of stochas-
tic processes for which population data is essential or, at the very least, should not be 
physically impossible. Readers can find a comprehensive treatise on this theme at the 
educational website [42]. It is conceivable that adoption of the FOT probability theory 
of cyclostationarity will facilitate progress in the investigation of periodicities in natural 
phenomena and that adoption of non-population probability more generally for station-
ary time series as well as time series exhibiting cyclostationarity of one type or another 
will facilitate data analysis and statistical inference throughout the field of time-series 
analysis. As an illustrative example, the field of Signals Intelligence, and Communica-
tions Intelligence in particular, was revolutionized by Gardner’s initial 1987 revelation of 
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his non-population theory of cyclostationarity and his demonstration of its applicability 
to Signal Interception (cf., [42, pp. 6 and 12]). More recently, the nascent movement in 
Econometrics referred to as Ergodicity Economics is in essence a return from popula-
tion-probability models and methods to their non-population probability counterpart 
[97]. The editorial introducing the issue of Nature Physics, [91], containing this article 
is in complete alignment with the editorial remarks on the wisdom of a return to non-
population probability the Authors have included throughout many of the publications 
cited in this summary article. And this is in complete alignment with the remarks from 
the editor of the Journal of Sound and Vibration cited in the article [44]. Evidence in sup-
port of Gardner’s 1987 proposal for a paradigm shift in time-series analysis is mounting 
and suggests that the shift is solidly underway now.

Appendix A: Derivation of (2.28)
The Fourier coefficients of the periodic PDF (2.27c) can be found as follows:

where the identity cos2(θ) = (1 + cos(2θ))/2 is used.
It results that [92, Eq. 10.12.1]

where Jn(z) is the Bessel function of first kind with index n [92, Eq. 10.9.2]

Equation (A.2) with t = jejθ leads to

By substituting z = −jξA0//σ
2
n  and θ = 2π f0t + φ0 into (A.4), one has

and by substituting z = jA2
0/(4σ

2
n ) and θ = 2π f0t + φ0 into (A.4), one has

Thus, substituting (A.5) and (A.6) into (A.1) one obtains

(A.1)

fx(t; ξ) = 1√
2πσn

e−ξ2/(2σ 2
n ) e−A2

0/(4σ
2
n ) eξA0 cos(2π f0t+φ0)/σ

2
n e−A2

0 cos(2π2f0t+2φ0)/(4σ
2
n )

(A.2)e
1
2 z(t−t−1) =
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tn Jn(z)

(A.3)Jn(z) = j−n

π

∫ π

0
ejz cos θ cos(nθ) dθ .

(A.4)ejz cos θ =
∞∑

n=−∞
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jnθ .
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2
n =
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2
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2
0/(4σ

2
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The Fourier coefficients f γ
x (ξ) for γ = kf0 , k ∈ Z , are given by:

from which (2.28) immediately follows.
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