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Abstract

This article is devoted to a historical reconstruction of the most important contributions leading

to methods of nonlinear time-invariant system identification based on the Volterra system model,

the hurdles faced in this work, and the solutions provided by extension and generalization of this

methodology from stationary to cyclostationary system inputs, specifically for applications in which

system input test signals are under the control of the experimentalist.

I. INTRODUCTION

Within the general field of nonlinear modeling involving the use of Volterra system

models, the purpose of this article is to describe those contributions for which the

cyclostationarity properties of the input and output signals are exploited to advantage for

achieving the modeling task. In order to enable the reader to appreciate the value of exploiting

cyclostationarity, the presentation begins with an in-depth general reconstruction of key

previous contributions, dating back to 1950, to the field including both thematic contributions

and their historical interconnections.
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A. History of the Development of Modeling of Nonlinear Time-Invariant Systems in Engi-

neering

This subsection is mainly historical in its nature, but it is believed that it is important

to have a general view of how approaches to nonlinear modeling evolved over time to

fully appreciate the step forward made with the recognition of the advantages offered by

cyclostationarity exploitation. In the period of Volterra’s life between the year 1882 (when

he still was a student of mathematics with the famous Italian mathematician Ulisse Dini)

and the year 1887 (when, still very young, he was appointed to the position of full professor

in one of the most important Italian Universities), he made three important contributions to

the field of functional analysis published in an article [1] written in Italian:

• The first contribution lies in recognizing the need for extending the ordinary concept of

function on the basis of the relevance for science of such an extended mathematical tool:

“in many issues of Physics and Mathematics, and in the integration of partial differential

equations, the need arises to consider quantities that depend on all the values that one or

more functions of one variable assume in given intervals”1. Volterra does not introduce

a new name for this novel concept, but he does remark on the novelty of this concept:

“As it is easy to comprehend, the extension of the concept of function, which we are

talking of here, differs essentially from the ordinary one of function of function2.”), and

he remarks that his extension stems directly from the same Dirichlet’s abstract definition

1 Here translated in english from [1]
2 Meaning composition of two functions
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of function. Hadamard later coined the term functional to express this concept, though

he gave Volterra ample written and public recognition for its introduction.

• The second contribution lies in a first study of the property of continuity and differen-

tiability of such extended functions, an issue that is at the basis of the mathematical

properties of functionals and that, however, in [1] is required for the third contribution.

• The third contribution lies in a first and important attempt to provide a general analytical

relation between what we today call the input of a system and its output; this attempt

is based on the use of the Taylor series expansion and provides what is today a well-

known input-output relation. This third contribution has been attributed to Volterra by

naming this input-output relation after him.

In the Engineering literature, when Volterra’s contributions are discussed, a second

contribution [2] is often included. It consists of a multidimensional extension of the concept

introduced in his first contribution [1] with reference to the case in which the input signal

is two-dimensional or three-dimensional, an extension that Volterra derives on the basis of a

geometrical view of the physical phenomena where two- and three-dimensional signals are

seen as lines of the plane and of the space.

Following his first contribution, Volterra devoted much of his research to the use of

his series expansion for expressing the solutions of some systems of integro-differential

equations, which comprise his contribution to what is today called system representation.

This contribution consisted of determining the properties of the system of integro-differential
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equations whose solution can be expressed by his series. The results of his successive

extensions of the conditions under which the Volterra series can be used are reported in

a paper [3] dated 1910, written in French, and in a collection of seminars [4], dated 1925,

written in Spanish and translated into English [5] a few years later in 1930, and republished

[6] in the USA in 1948. Along this line of research, an important contribution was made by

the French mathematician Frechet who expanded the mathematical conditions under which

the Volterra representation is valid. This extension was important because Volterra relied on

the validity of the Taylor expansion while Frechet used the convergence of polynomials to

any nonlinear function in a compact set.

Because of this line of research, many European mathematicians were aware of the

possibility of using the Volterra series to express the solutions of systems of general integro-

differential equations when the Second World War broke out and had many consequences

regarding scientific research.

The history of nonlinear Volterra modeling is strongly related to that which is today called

system theory in Engineering, which is addressed next. For a long time, the word system

was used to express the system of equations that describe physical phenomena. With the

passage of time, the term physical system also came to be utilized, especially in Physics,

when the system of differential equations is used to create a mathematical model of a real

mechanism. In engineering applications, the terms circuit, machine, and device came to be

used instead to specify the particular physical object.
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Once the impact of World War II on scientific research in Europe receded, collaboration

among scientists from multiple countries in Europe developed and ultimately led to the

abstract conceptualization of various complex engineering objects as systems governed by a

unified representation as it is conceived of today in Engineering study. But this was not an

easy transition and did not really settle in and encompass the thinking in both Europe and

the USA until the early 1960s, 80 years beyond Volterra’s introduction of his fundamentally

important system model.

To gain insight into the kinds of difficulties that had to be circumvented, the philosophical

contribution [7] of the renowned American mathematician, Norbert Wiener, is recommended

for reading. This contribution played a seminal role in extending engineering systems theory

and method to the study of biological systems. Written jointly with two American scientists,

it starts by firmly expressing the need for a unified view of diverse phenomena by providing

an abstract description of what is now known as a black-box system description: “Given

any object, relatively abstracted from its surroundings for study, the behavioristic approach

consists in the examination of the output of the object and of the relations of this output to

the input. By output is meant any change produced in the surroundings by the object. By

input, conversely, is meant any event external to the object that modifies this object in any

manner.” They use the expression “behavioristic study of natural events” to express their

preference for what is today known as the input-output system description, as illustrated

with the quotation “the behavioristic method of study omits the specific structure and
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the intrinsic organization of the object”. They distinguish the proposed approach from the

traditional approach for which an entity is studied for the purpose of determining its “intrinsic

organization”, “structure”, and “properties”, and for which “the relations between the object

and the surroundings are relatively incidental”. The traditional approach came to be called

functional analysis and the traditional description of systems of equations, came to be called

the input-state-output description of a system. This brief discussion explains the original

reluctance to use the non-popular term system for naming the novel input-output concept.

In Wiener’s view, the existing Volterra contributions were included inside a general

approach that tries to obtain a description of the entity by describing its internal organization

and by resorting to its structure and to the properties of its parts. His important contribution to

the development of science and engineering lies in circumventing this approach by providing

a new method for describing the given object; however, by circumventing the previous

approach, he also ignored those parts of the existing literature that could have helped him

in developing a general input-output system description, as explained below.

The reason that Norbert Wiener, in his 1943 paper, could challenge the traditional approach

to reconstructing the behavior of an object lies in a crucial innovation, which he had

introduced, that led to an alternative approach for determining a mathematical description of

a given device. This alternative approach first appears in a wartime technical report [8], dated

1942, where he states that two important contributions are given. The first contribution is a

first rediscovery of the Volterra contribution: with reference to a specific input-output relation
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in a specific nonlinear device (the considered device is an RLC circuit whose resistance is

described by a zero-memory quadratic characteristic), he derives its input-output relation

which lies within the general Volterra framework. This first contribution is not particularly

important because it is a rediscovery of a known concept but, more importantly, because it is

a much more limited achievement than that which came before: whereas Volterra and Frechet

had shown that the Volterra input-output relation could be used to represent a generality of

physical systems and they had made contributions for years increasing the generality of the

class of systems that admit this representation, Wiener shows only that the representation

holds for a specific electrical device.

In contrast, that which he refers to as the second contribution of the report is a

major breakthrough in the history of science and engineering. Prior to Wiener’s work,

mathematicians attempting to expand the class of integro-differential equations for which

the Volterra system description of the solution is valid had to assume the parameters in

the integro-differential equations being investigated were all known. But Wiener gave little

attention to this. Instead, he departed significantly from prior work by focusing on particular

inputs of the system that can facilitate determination of the input-output relation of a

completely unknown system. He wrote [8]: “So far we have said nothing about v(t) [the

input signal], but we are now ready to make use of the fact that v(t) is a random voltage. This

will constitute the second step of the paper and will be accomplished by taking the averages

of the random voltages in accordance with known formulas. In these formulas the average is
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taken with respect to the parameter α which in going from 0 to 1 runs through all Brownian

motions.” After deriving the formulas that express the average of v1(t) [the system output]

and v21(t), and after stating that it is possible to evaluate higher-order moments of v1(t) as

well, he wrote: “An average of much importance is that of v1(t)v1(t+σ): this average is called

the auto-correlation coefficient, and its Fourier transform gives the frequency distribution of

the square of the voltage. ... The method above, of first solving for the voltage across part

of the circuit in terms of the entire voltage, and then getting statistical averages, is clearly

quite general”.

The method conceived by Wiener and first reported in [8] gave birth to the discipline

called system identification. Wiener immediately understood the importance of constructing

signal processing devices that could implement the time averages on which his approach to

system identification relied as well as the importance of obtaining identification formulas

that could be implemented with the available signal processing devices. However, only later

did Wiener’s group become aware of the importance of the relationship between system

representation and system identification. This impeded progress in Wiener’s research group

for nearly 20 years until long-existing results on Volterra representations were discovered and

integrated into Wiener’s approach, which was based on time averages of inputs and outputs.

With reference to the practical aspects of constructing signal processing devices useful for

implementing the time averages, Wiener was committed to providing concrete contributions.

With substantial contributions from a previous Ph.D. student of Wiener’s, Y.W. Lee, who



9

returned to MIT in 1946, a new instrument was constructed that was able to implement the

statistical averages required by Wiener’s method. According to the description later given

by Wiener himself in [9]: “We have called this instrument the autocorrelator. Many people

at M.I.T., and Lee in particular, have reduced the design of autocorrelators to a surprising

degree of perfection”. Wiener compares it to the Michelson’s interferometer: “Michelson

invented an instrument called the interferometer, which was the most delicate machine ever

invented for the study of the spectrum of light, and which enabled him to carry out such a

seemingly impossible task as the determination of the angles subtended at the earth by some

of the fixed stars. . . The analogy between the interferometer and the autocorrelator is deep

and significant, and the earlier work of Michelson has given us a whole language for the

reading of the results presented by such machines.” The results obtained are a major step in

human capability for modeling physical phenomena and are described by Wiener as follows:

“When the crude original records of brain waves are transformed by the autocorrelator, we

obtain a picture of remarkable clarity and significance, quite unlike the illegible confusion

of the crude records which have gone into the machine.” And, still in the year 1956, when

he writes his autobiography, he is aware that many steps ahead need to be taken: “We are

at the very beginning of our work in this field, but we have great hopes of what it will offer

for the future.”

Starting in 1946, and continuing for about two decades, a number of PhD students, under

the supervision of Lee, contributed first to the creation of a new instrument for performing
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time averages of products of signals, then to its use for nonlinear system identification. In the

meantime, already in his 1948 book [10], Wiener closes the gap between (1) his relatively

abstract 1942 formulas, which use the statistical expectation over the parameter α describing

the system input, and (2) the practical alternative of using only time averages over a single

time series. He achieves this by taking advantage of the ergodic properties of the specific

input signal that he uses at the system input. With this advance, he creates a solid basis

for what becomes the ubiquitous system identification procedure of using time averages,

but only for the specific type of input signal that he proposed. The first application of this

method of system identification is reported in the 1950 publications [11], [12] where Lee’s

hardware for calculating the needed correlations is used.

During the 1960s and beyond, following Wiener’s work, his mathematical model charac-

terized in terms of the parameter alpha (describing Brownian motion, a random process that

he had studied for decades) for his input signal is left behind, and replaced with the Russian

Mathematician’s, A. N. Kolmogorov’s, model of a stochastic process and G. D. Birkhoff’s

Ergodic Theorem, and it becomes common practice in communications engineering to use

other random input signals for linear system identification and to invoke the ergodic theorem

to justify the use of time averages instead of the expected values used in the underlying

theory for calculating auto- and cross-correlation functions. At that same time, chapters in

two books appeared [13], [14] and showed that the abstraction of the Kolmogorov Stochastic

Process model and the Birkhoff Ergodic Theorem were unnecessary, because there existed a
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probabilistic theory based entirely on time averages that was dual to the more abstract theory

of ergodic stationary stochastic processes and was entirely adequate for system identification

based on cross correlation measurements. However, there was much enthusiasm about the

mathematical rigor of Kolmogorov’s Stochastic Process Models, and these two important

chapters quickly faded into the background. It was not until the mid-1980s that a book-

length comprehensive theory of statistical signal processing, especially spectral analysis,

by Gardner [15] (see also [16]) was developed and shown to provide a basis for more

concrete theories of statistical signal processing in general, based on time averages. This

theory included not only stationary random signals but also a relatively new class of signals

referred to as cyclostationary. This new theory provided a basis for a huge jump forward in

system identification capability. This topic is returned to in the sequel.

In the 1950s, Wiener’s group at M.I.T. began considering the extension of system

identification from linear to nonlinear systems. In a series of papers, they initiate an approach

to the identification of nonlinear systems. The earliest contribution appears to be the technical

report by Ikehara [17] dated December 1951, which is mainly devoted to showing that the

replacement of the statistical average (expected value) with the time average is possible also

in nonlinear system identification. Prior to this contribution, the use of the term system is

minimal within Wiener’s group. Ikehara states “ on the assumption that the current-voltage

function of the nonlinear element and the system transfer function are given . . .” and “the

current response of the system to a unit voltage impulse . . .”, but five years later the term
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system is fully used throughout the technical report [18] based on the 1956 PhD thesis by

Bose (later published in similar form as [19]). Similarly, Wiener in his 1958 book [20] starts

using this term, opening the way for its common usage in engineering thereafter. In these

two documents, [19] and [20], a general form of input-output relation that is much more

powerful than that used in Wiener’s 1942 technical report is constructed. However, it is not

the Volterra relation, and no study is carried out to determine conditions under which it can

represent a nonlinear system, although its similarity with the Volterra relation suggests that

it is sufficiently general. Volterra and Frechet are not mentioned in these two documents,

suggesting that Wiener was not aware of these earlier contributions.

The first work from the M.I.T. group that mentions Volterra’s contributions is Brilliant’s

technical report [21] dated March 1958, which is based on his Ph.D. thesis. However, the

contribution by Volterra that Brilliant cites is the paper [3], which is written in French while

neither Volterra’s original contribution [1] nor his English contribution [5], [6] were cited.

The fact that Brilliant’s contribution was mainly devoted to determining the condition(s) for

which the Volterra’s representation is valid suggests that he was aware of the limitations

of the Wiener representation, particularly its strict requirement that the input signal have a

Gaussian probability distribution. Finally, in the 1959 M.I.T. technical report [22] by George,

Volterra’s derivation of his nonlinear system model is recognized, and his paper written in

English [5] is cited. The core of the identification formula, later more fully developed by the

M.I.T. group, is already present in George’s report; moreover, now-standard results in modern
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descriptions of nonlinear systems are given. But in the 1960 Ph.D. thesis of Zames [23],

which contains one of the first modern descriptions of nonlinear systems, an identification

formula for Volterra system identification is still not provided. Similarly, the 1961 PhD Thesis

by Schetzen does not mention the Volterra system representation. However, in a technical

report dated August 1963, the group of Lee and Schetzen at M.I.T. recognizes the need to

adapt the existing identification methods (proposed in the previous year for estimating the

class of systems, called Wiener systems) in order to make them viable within the Volterra

system framework. This recognition of the superior basis in terms of system characterization,

developed in decades of earlier research on the Volterra model, led to the name Volterra-

Wiener system, which first appeared in print in [24] and was later used by Schetzen in [25]

and Rugh [26].

Outside the research group at M.I.T., use of the Volterra model during the 1950s

came primarily from European researchers whose work focused on nonlinear system

representation, not on identification. Published work recognizing Volterra’s contribution

include Barrett [27], [28], [29], [30] and Smets [31]. The end of the pioneering period

of research on nonlinear systems is defined by the landmark 1962 paper by Zadeh [32]

who clearly establishes the formalization of what a system is and what the problem of

system identification is, separate from the problems of system characterization and system

classification. This paper clearly identifies the relative merits of the various past contributions,

leading to a clear statement of what is known about both the solved and unsolved problems at
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that time. A major contribution of Zadeh was to show that system identification needs to be

carried out with reference to a system class for which the problem of system characterization

has already been completed, and he identifies specifically the Volterra model. The natural

result of this clear statement of the state of the art led thereafter to the conversion of

the identification formula developed for the Wiener model to a formula for the Volterra

model. Following Zadeh’s contribution, the Volterra system gained general acceptance as a

useful tool for nonlinear system representation and progress was made toward determining

methods for its identification, and in particular identification methods based on the averages

(correlations) of its input and output signals.

II. BASIC DEFINITIONS REGARDING VOLTERRA SYSTEMS

In order to continue our discussion regarding the history of Volterra system identification

methods and to insert the contributions deriving from the processing of cyclostationary

signals, we first need to introduce some technical definitions and general concepts; this

section is introduced to just describe them.

A. Volterra nonlinear input-output representation

For a time-invariant Volterra system, the input-output relation can be expressed as

y(t) = h0 +

∫

R

h1(τ)x(t− τ)dτ +

∫

R2

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2 + . . . =

= h0 +

∞∑

n=1

Hn[x(t)] (1)

This expression constitutes a generalization to functionals of the general Taylor expression

for ordinary functions, first introduced by Volterra.
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As a recognition to Volterra’s contributions, this representation has taken the name of

Volterra series representation and the functions hn(τ1, . . . , τn) are called Volterra kernels of

the system. Moreover, the general term

Hn[x(t)] =

∫

Rn

hn(τ1, . . . , τn)x(t− τ1) . . . x(t− τn)dτ1 . . . dτn (2)

is called the Volterra operation of order n. The Fourier transformations of the Volterra kernels

Hn(f1, . . . , fn) are called the Volterra transfer functions.

The term h0 represents the output of the system resulting from the null input (x(t) ≡ 0).

The equation (2) can be considered an n-dimensional convolution integral. For n = 1 we

obtain the linear component of the system response

H1[x(t)] =

∫

R

h1(τ)x(t− τ)dτ1 (3)

where h1(τ) represents the impulsive response of the linear component of the overall system.

For n = 2 (2) represents the quadratic component (or second-order component) of the system

representation

H2[x(t)] =

∫

R2

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2 (4)

where h2(τ1, τ2) is the second-order Volterra kernel that represents the impulsive response

(in two dimensions) of the quadratic component of the overall system and, analogously, for

successive values of n.

Analogously to a linear system that is completely characterized by its impulsive response,

a nonlinear system that can be represented by the Volterra series is completely characterized

by its Volterra kernels.
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The Volterra kernels are usually assumed to be symmetric functions of their variables, i.e.,

each of the n! possible permutations among the variables τ1, . . . , τn leaves hn(τ1, . . . , τn)

unchanged; for example, in the case n = 2, this means that h2(τ1, τ2) = h2(τ2, τ1).

Alternatively, in order to reduce the number of terms in the representation, the Volterra

kernel can be assumed to be triangular3. When no assumption is introduced (neither

symmetry nor triangularity), an infinite number of equivalent representations exist. For this

reason, one of these two assumptions is usually introduced.

B. Discrete-time systems

The input-output relation (1), when discrete-time systems are considered, becomes:

y(n) = h0 +
∑

j1

h1(j1)x(n− j1) +
∑

j1,j2

h2(j1, j2)x(n− j1)x(n− j2) + . . . =

= h0 +
∞∑

i=1

Hi[x(n)] (5)

with

Hi[x(n)] =
∑

j1,...,ji

hi(j1, . . . , ji)x(n− j1) . . . x(n− ji). (6)

If only the first N sums in (5) are not identically zero, then we call this a finite-order Volterra

model. In this case the problem of approximating the behavior of the system by means of

3 Given n distinct values τ1, τ2, . . . , τn the symmetric functions assume the

same value in any permutation of the point (τ1, τ2, . . . , τn) while the triangular

functions are nonnull only in just one of such permutations, typically just in

that specific point (among the n! permutations) with increasing or decreasing

ordering of the values of the components. The definition is analogously

extended to the case in which the components τi for i = 1, 2, . . . , n are non

distinct.
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a Volterra series expansion is simpler. When the discrete-time system has finite memory

L, then the input belongs to a finite closed subset of RL, then, from the Stone-Weierstrass

theorem it follows that every continuous system (i.e., one for which small input variations

imply small output variations) can be expressed [33] in a finite-order Volterra discrete-time

expansion (with finite-dimension input-signal space), also in the case for which we adopt

the most rigorous approximation criterion, that of uniform approximation. Infinite-memory

systems results similar to those obtained in [34] with reference to continuous systems do

not seem to be present in the literature.

If the discrete-time model is obtained from uniform time-sampling of continuous-time

signals, not much attention has been dedicated to the proper sampling procedure, i.e., to

the conditions that guarantee the existence of a discrete-time system representation that

correctly relates the sampled versions of the input and output signals. For example, it is

often not noted that, for a low-pass input signal and finite-order analog Volterra system, the

higher the system order is, the larger the output-signal bandwidth becomes and, therefore,

a larger sampling frequency is needed to guarantee the existence of a discrete-time Volterra

system representation. It is interesting to note that the complexity of the representation in

Volterra series increases with the quality of required approximation, in the sense that a

larger number of terms of the Volterra kernels are needed. When the sampling interval is

reduced, the memory of the discrete-time representation correspondingly increases; however,

the consequent oversampling of the Volterra kernels may enable a reduction in the number
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of significant terms in the Volterra input-output representation.

C. Alternative representations in comparison with the Volterra series

Thanks to its direct and natural interpretation as an extension of the Taylor series to

functionals, the Volterra series was the first model adopted for mathematically representing

the behavior of nonlinear physical systems. However, other approaches for nonlinear system

representation have been introduced such as empirical approximation, descriptive function,

input-state-output representation; in particular, some authors [35], [36], [37], [38] have shown

the relation between bilinear models and Volterra systems.

Other series expansions, different from the Volterra series, have been introduced for

representing the nonlinear input-output system relation such as those of Cameron-Martin

[39], Fourier, Taylor-Cauchy [40], and Wiener [20], [41], [42]. In particular, the Wiener

series is often used in identification methods when the input signal is Gaussian. Methods

that can operate with a different series expansion can be also used to identify the Volterra

kernels; in particular, the relation between the kernels of the Wiener series and those of the

Volterra series are well known.

Some interesting descriptions of a nonlinear system resort to the interconnections of

dynamical linear systems (L) and zero-memory nonlinearities (N). The most popular type

of system in this class is the cascade system: a linear system with memory followed by a

nonlinear zero-memory element in cascade with another linear system with memory (denoted

by LNL), also sometimes called the general model. A subclass of this type, that of the LN
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kind, takes the name of Wiener model (the name is due to the use of such a model in his first

1942 contribution [8]); another of the type NL is called Hammerstein model. The cascaded

block model can be useful when the order of the Volterra system, which is needed in order

to achieve a reasonable approximation, is too large to be managed in practice. However, it

can be seen as prior information regarding the Volterra model, which should be used by the

identification procedure in order to improve its quality.

The Uryson model, introduced in [43], consists of many Hammerstein models in parallel;

also more general models, more complex than these, have been introduced. Among them,

the large set of neural networks have gained much interest in the scientific literature after

the first experiment carried out by Rosenblatt on the LN Wiener model. The experiments

by Rosenblatt dated 1964, in the years when the Volterra model was gaining its position as

the main approach to nonlinear modeling, showed that it is not so important to specify the

nonlinearity but a great representation capability is obtained in the LN cascade by setting

the nonlinearity fixed to a sharp sigmoidal characteristics and adapting the coefficients of

the linear part.

Such representation capability is verified by showing that the nonlinear system behavior

reconstructed through a proper processing of a subset of the available input-output signals

is close to the ideal and unknown nonlinear system also when operating on the remaining

part of the measured input-output signals, without an analytical verification of the formal

correspondence between the ideal system and the reconstructed one. In such an approach,
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the search for the coefficient values of the linear part resorted to the inductive criterion of

empirical error minimization, where the adjective “empirical” refers to the use of a given

set of measured data and “error minimization” means for which the parameters of the linear

part are adaptively modified in order to minimize an error function that expresses the quality

of the approximation of the current system on the available input-output data.

Actually, the error function could be expressed by resorting to input-output signal averages

and carrying out its minimization by using the result of such a processing, though the adaptive

algorithms do not pass for the time averages. The advantage of the considered approach lies

in its capability of obtaining acceptable results also when the number ℓ of available data is

much smaller than that necessary to guarantee the convergence of the time averages. On the

other hand such methods are not able to provide acceptable performance when the value of

the output signal-to-noise ratio SNRy is too small.

A line of research, much of which was contributed by Wiener, had indicated that the LN

model (where N is a fixed sigmoidal zero-memory nonlinearity and L is a linear processing

structure) can represent the behavior of the brain neuron. This motivated the name perceptron

attributed to the Rosenblatt model and the introduction of nonlinear models, usually named

neural networks, where linear systems with memory and nonlinear zero-memory subsystems

are interconnected in layered structures that resemble the brain structure and makes the

dependence of the output signals on the system parameters highly nonlinear.

More than twenty years passed from the time of the Rosenblatt experiments before (in
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the year 1986) a new algorithm for adaptive reconstruction from the available data, of the

parameters of the considered layered nonlinear system was proposed. The proposed algorithm

is able to determine a local minimum of the cost function but its performance is heavily

dependent on many important parameters. A procedure for assigning them specific values in

terms of the given data is not available. Many experiments have demonstrated the modeling

capability of this approach but the empirical dependence of the modeling procedure on many

parameters whose specification depends on a trial-and-error procedure constitutes a strong

limit on the utility of the procedure.

The difference between the classical identification method and the neural networks

approach remains so large that the comparison of the relative merits of the two approaches

often remains only qualitatively stated in that a general setting with which they can be

quantitatively compared is missing. Neural networks remain important in scenarios where

the construction of a mathematical model from data is important also in implicit form, i.e., if

the determined model, though involved and unreadable, is sufficiently accurate and the output

corresponding to a given input can be obtained by software calculations in a reasonable time.

The procedure is coherent with available data but it can be designed only after a long set of

trials, and without a specific guarantee that it will continue to show coherence with data when

its behavior is verified on new data. The procedure is particularly useful in a scenario with

many input signals and small amount of available data, and, therefore, when sufficient time

is available in order to continue to test the constructed model and improve its refinement.
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When a good implicit model is available in terms of a neural network model, it may

be interesting to derive an equivalent Volterra model but, however, the diffuse utilization of

sigmoidal zero-memory nonlinear systems with the neural model makes it impossible to find

a low-order Volterra model, so such equivalent models have not been investigated.

The highly nonlinear dependence of the system output on the model parameters in the

neural networks approach limits the capability of the theoretical analysis and implies the

need to resort to trial-and-error approaches. For this reason, a few years after 1986, when

such theoretical difficulties became clear, an important property of the Volterra model was

recognized. This property is the linear dependence of the output signal on the model

parameters. Instead of using the specific Volterra nonlinear expansion, it started to be

considered the possibility to use a two stage structure, named generalized linear models,

where in the first stage there is a fixed nonlinear processing of the input signal generating

a certain number of different intermediate signals and in the second stage there is a linear

processing of such intermediate signals. The possible choices of the first stage include the

Volterra products but we can consider also other choices more suited for modeling sharp

nonlinearities.

The trial-and-error approach often dominates the choice of the first stage but some attempts

have been made to introduce a slow (i.e., dependent on the processing of large amount of

data) adaptation of the first stage. This is probably the most interesting attempt to compensate

for Volterra limitations in synthetically modeling systems with sharp nonlinear behavior.
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The most important choice for the first stage of the generalized linear models is the kernel

model where the number of signal outputs of the first stage is as large as the number ℓ of

available data, i.e., such a number is chosen to be high in order to increase the modeling

capability in the presence of limited data. In any case this approach has often been used

when the amount of available data is small and the available measurements indicate the

output SNR is high.

We are not aware of successful use of the generalized linear model in a scenario

characterized by a large amount of data and noisy input measurements. In fact, as for

the identification procedures proposed, the perceptron and the neural networks and those

proposed for the generalized linear models are not able to provide acceptable performance

when the output signal measurements are noisy.

D. General Issues in System Identification

For the general system identification problem, the following kinds of identification methods

need to be considered:

• Full control of the system input: in this case the signal at the system input can be

chosen by the system-identification-instrument designer under consideration of the avail-

able identification methods for the input-signal candidates being considered; alternative

methods should be compared on the basis of their predicted or measured performance,

depending on which of these approaches is possible for the given system and the

selected input. Two subcases need to be distinguished for consideration: real-valued
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input signals and complex-valued input signals (e.g., complex low-pass representation

of real bandpass signals); the case of real signals is dominant because physical systems

(in contrast to mathematically prescribed systems) cannot be driven by complex-valued

input signals. However, advantages do accrue when complex input signals are possible.

• No control of the system input: in this case, the designer does not have the possibility of

choosing the input signal and must perform system identification using the given input.

However, it can be assumed that the input signal has some known characteristics but it

cannot be forgotten that the values of the input signal are the result of a measurement

process.

With reference to the output-signal measurements in both of these cases, and with reference

to the input-signal measurements in the second case above, it should generally be assumed

that a disturbance signal, such as measurement error, affects the available measurements. The

acronym SNRy is used here to denote the output signal-to-noise ratio (ratio of average signal

power to average noise power) for both above cases and for the second case the acronym

SNRx is used. In addition, it is useful to designate a notation for the number of time samples

of the input signal that are available for system identification, because comparisons among

candidate methods need to take the value of this parameter that is used for each method

into account. It is also helpful to designate a notation for the maximum memory length

of the Volterra model. The symbol L is used here. Another important parameter needed

in system identification is the maximum polynomial order N to be considered for use in
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the Volterra model, which is typically taken to be the smallest order that is sufficient to

accurately represent the system to be identified. Although the Volterra model can be used

with a very large order to maximize the representation capability of the given system, in

practice the model order used needs to be limited so as to control computational complexity

and the impact of calculation errors. The values for the couple (N,L) for the Volterra model

must be selected in accordance with some assumed knowledge of, or measurements on, the

system to be identified. Although this is an important challenge in practice, it suffices for

the purposes of this review article to focus on describing system identifications methods

and simply identifying the known promises and limitations of these methods for purposes

of making general comparisons among the methods.

III. STANDARD METHODS FOR VOLTERRA SYSTEM IDENTIFICATION

The identification of the Volterra kernels {hi(τ1, . . . , τi)}i=1,...,N , where N denotes the

selected order of the Volterra system model, is a very difficult problem both because it is

difficult to separate the contributions on the output of the various nonlinear kernels and

because a large number of computations are required by the various identification methods.

The most robust approach to Volterra system identification left from the Wiener group is

the following identification formula

hN(τ1, . . . , τN) =
1

N ! AN
〈y(t)x(t− τ1) . . . x(t− τN )〉 τi 6= τj for i 6= j (7)

where N (assumed finite and already known) is the maximum order term in the polynomial

representation of the system to be identified and the symbol 〈·〉 denotes the time average,
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which for a continuous signal x(t) can be written as

〈x(t)〉 = lim
T→+∞

1

2T

∫ T

−T

x(t)dt (8)

The method is not explicitly stated in the form reported in (7) since also in his later

contributions, Schetzen emphasizes the importance of carrying out the identification approach

with reference to the class of Wiener systems, but its derivation is rather straightforward from

the overall contribution in [41]. An important consequence of its being rooted in the Wiener

approach to nonlinear modeling is that the authors do not notice that the two assumptions

they introduce are not both necessary. The first necessary assumption is that the input signal

x(t) is white (and the quantity A in (7) is the constant value of its power spectral density)

while the second assumption is that the density of the input signal is Gaussian. The same care

taken in demonstrating the correspondence between the statistical mean and the time average

shows that they believe that it is a critical assumption but they do not introduce any concern

with reference to the practical issue of the possibly non-Gaussian density of the true input
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signal, which should have merited4 much more attention if it were a critical assumption.

However, it is easy to verify that the identification formula (7) holds for any fraction-of-

time density of a strict-sense white input signal whose odd-order moments are null (i.e.,

〈x2n+1(t)〉 = 0 for n ≥ 0). It is, however, important to recognize that, for continuous time,

the only known forms of strict-sense white noise are Gaussian, white Poisson impulse noise,

and a sum of these, whereas for a discrete time process, any amplitude distribution of an

independent identically distributed sequence of random variables is a valid strict-sense white

process.

The Wiener method implicitly assumes that the input signal is stationary; the great care

taken with its design and with the proofs concerning the use of the time averages has a

by-product consequence that x(t) must be assumed to be stationary. This assumption is

maintained (often implicitly) in the successive classical contributions on Volterra system

4 At that times, in the first Wiener’s contributions, it happened the opposite of

what became usual in the successive decades, also in spite of the repeated

Gardner’s reminds on the risks deriving from an automatic straightforward

replacement of the statistical averages with time averages: obliged by the

available analog processing device constructed by Lee to carry out time

averages, Wiener showed always aware that replacing statistical means with

time averages was a critical issue and gave a mathematical justification of this

replacement, establishing it on the solid basis of the Birkhoff ergodic theorem

(a care motivated by the logical value of its scientific construction and carried

out also despite his unfriendly personal relation with Birkhoff). It is reasonable

to deduce that this initial caution used by Wiener had created a general feeling

(especially among those who had not taken care to study his demonstrations)

that Wiener had already completed all the demonstrations needed to carry out

such replacement in any context.
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identification before Gardner’s introduction of the use of cyclostationary inputs to great

advantage, as explained in the sequel. Moreover, when the stochastic process theoretical

framework is used, even though only time averages are of interest, the process can

be nonstationary as long it is asymptotically-mean stationary as defined by R.M. Gray

in the mid-1980s. This guarantees that each sample path of the process is stationary

in the fraction-of-time probability framework, which is all that is needed for methods

based on time averages. Similarly, Gardner’s methods are valid for generally nonstationary

processes that are asymptotically-mean cyclostationary which guarantees its samples paths

are cyclostationary in the fraction-of-time sense. Because expected values are of no interest

when only time averages are used, none of the stochastic process models need to be ergodic

or cycloergodic.

Since (7) allows the estimation of only the highest-order Volterra kernel, the lower-order

Volterra kernels must be estimated by subtracting the contributions of the already known

kernels from the system output. It is rather direct to note, however, that, because the odd-

order moments are all zero, the same identification holds also for the order N − 1

hN−1(τ1, . . . , τN−1) =
1

(N − 1)! AN−1
〈y(t)x(t− τ1) . . . x(t− τN−1)〉 τi 6= τj for i 6= j

(9)

so that the subtraction of the last identified term of order, say, M in the Volterra polynomial

enables the identification formula to be used for both orders M − 1 and M − 2.

We have started by presenting the most robust identification procedure developed by the
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M.I.T. group but in previous works a great deal of theoretical effort had been done by Wiener

to avoid the critical assumption in (7), i.e., that τi 6= τj for i 6= j. The final robust procedure

is the result of the practical approach to laboratory experiments of the group of Lee and

allowed them to considerably simplify the identification procedure.

Schetzen [41] states that “in practice, we can use (7) to determine the kernels as close as

desired to those points at which two or more τ ’s are equal, and so it normally is not necessary

to determine the kernels exactly at those points.” The processing device to which Schetzen

is referring to is an analog device, though implemented with some digital electronics; in

particular, notice that, also with analog processing, the kernel hN(τ1, . . . , τN) is evaluated at

a finite number of values, so that the kernel is evaluated from a finite number of samples.

However, in comparison with discrete-time processing, the sampling of the kernel arguments

can be non-uniform and the values of the delays τ1, τ2, . . . , τN can be rather arbitrarily

chosen.

However, one should consider that the condition τi 6= τj should be more precisely written

as |τi − τj | ≥ τmin where τmin is the smallest positive value of τ for which the following

relation5 holds:

〈x(t)x(t − τ)〉 ≪
〈
x2(t)

〉
(11)

5 When the standard assumption of white Gaussian signal is replaced by that

of strict-sense white signal, the condition (11) is replaced by the following one:

〈
x2n+1(t)xk(t− τ)

〉
≪
〈
x2n+k+1(t)

〉
∀n, k ≥ 0 (10)
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In practice, τmin is not zero and, therefore, the possibility of interpolating its values from

those that can be estimated by using the formula (7) depends on the characteristics of the

system kernels. For example, the third-order kernel of the system y(t) =
∫
h(τ)x(t−τ)dτ +

x(t)x(t − 100τmin)x(t − 200τmin) can be estimated by using (7) but that of the system

y(t) =
∫
h(τ)x(t− τ)dτ + x(t)x(t− τmin/100)x(t− τmin/200) cannot. Therefore, for some

systems, those for which the kernel memory is shorter than the support of the autocorrelation

(i.e., shorter than the inverse of the input signal bandwidth), the robust procedure cannot be

used.

This identification method is specifically related to the analog description and has therefore

been reported in its analog version. When we consider the discrete-time description, the

relation should obviously be replaced by the following one:

hN(k1, . . . , kN) =
1

N ! AN
〈y(k)x(k − k1) . . . x(k − kN)〉 ki 6= kj for i 6= j

(12)

where the symbol 〈·〉 still denotes the time average, which for a discrete-time x(k) can be

written as

〈x(k)〉 = lim
K→+∞

1

2K + 1

K∑

k=−K

x(k) (13)

In this case, the condition ki 6= kj for i 6= j does not need further specification. However,

the possibility to interpolate the diagonal kernel values (those of the main diagonal and those

of the minor diagonals) from the off-diagonal ones, which can be estimated by (12), depends

on the characteristics of the system. Also when the discrete-time system is derived from a
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continuous-time representation of a physical system by uniform sampling with sufficiently

high sampling rate, such interpolation is possible when the sampling rate is sufficiently large

but the sampling rate is limited by the requirement of insuring that the sampled version of

the input signal is white, so that there is no guarantee that the method in (12) can be

applied in any case, without careful consideration of the time-sampling rate and the input

bandwidth (assumed to be finite as it would be in practice, instead of infinite as assumed

mathematically). Moreover, interpolating the diagonal kernel values from the off-diagonal

ones is prone to error propagation since the estimated contributions coming from the higher-

order kernels need to be removed from the overall output in order to enable identification

of lower-order kernels as if each was the highest order kernel.

The problem of estimating the diagonal elements was already clear to Wiener, and, in

fact, an identification formula that holds also for diagonal elements had been derived by

Wiener. It has the following form

hN(τ1, . . . , τn) =
1

N ! AN

〈{

y(t)−

N−1∑

m=0

ym(t)

}

x((t− τ1) . . . x(t− τN)

〉

(14)

where the signal ym(t) (m ∈ {0, 1, . . . , N−1} ) is the result of a lower-order cross-correlation

procedure. The details for constructing the compensation terms ym(t) are popular in the

literature [41]; we do not dwell on this because the removal errors resulting from estimated

terms makes the method slow to converge, so that Lee’s group finished (after years of vain

attempts) by proposing the use of (7), and neglecting the presence of systems for which the

identification of diagonal terms is important. It is noted here that the definition of Wiener’s
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terms ym(t) depends on the assumption that the white input signal is Gaussian. Nevertheless

the literature is full of successive works that refer to the impossibility of estimating the

diagonal terms by using Wiener’s approach in (14). The authors of [44] showed a restriction

of the set of possible systems for which the procedure makes sense when continuous-time

systems are considered; moreover, they had reported the practical difficulties leading to ‘large

errors in the corresponding “diagonal integral”‘ (the “diagonal integrals” are integrals along

diagonal values of the higher-order kernels that affect the estimated lower-order kernel) so

that ‘for third or higher order systems, this problem of the Lee-Schetzen method cannot be

easily avoided’. They also mention the Marmarelis thesis [45] by reporting that a decrease

of accuracy had been noticed in a few attempts to measure third order kernels. However,

the doubts raised by the authors of [44] about “fundamental difficulties of the Lee-Schetzen

method rather than to computational errors” seem too severe, and Wiener’s proposal seems

to be affected by a common problem in the identification approach: any identification formula

is asymptotically exact, but only experimental results are able to provide an idea of how many

measured samples are needed to make the estimation error negligible. With the technical and

theoretical difficulties of the Fifties and the Sixties (the reader interested in the processing

capability available in that period can read [46]), it was not possible to verify the Wiener

method by carrying out an experiment with a sufficiently large number of data points and

this led to growing doubts about the reasons for which an asymptotic method seemed to not

converge. Nevertheless, Wiener’s identification formula (14) exhibits a large variance of the
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estimation error and, even with modern processing technologies [47], the problem of using

it for estimating the diagonal kernel values still holds.

The convergence problem of the identification formula was emphasized by Wiener’s choice

to try to estimate the kernels of a system representation that depended on the same assumption

regarding its input (to be white and Gaussian); and, different authors of the period, rather

than concentrating on a system representation independent of the system input properties,

tried to generalize the approach by creating a set of possible representations of the same

system which depended on the input properties. Ogura [48], Segall and Kailath [49], and

Brillinger [50] repeated the Wiener approach for Poisson processes. Klein and Yasui [51]

reach the extreme of this trend by defining the Fourier kernels, i.e., a set of kernels useful to

specify the behavior of the same system, each useful for specific characteristics of the input

signal. The name Fourier is used to specify the generality of the approach, capable of finding

many possible representations of considered system, suited to the specific characteristics of

the input signal.

Therefore, also during the Seventies, there still remained a gap between studies that

emphasize the generality of the Volterra representation and the identification approaches

that simplify their task by using other representation with kernels, more easily identified

than the Volterra kernels but dependent on the same characteristics of the signal input. This

loss of interest in the estimation of Volterra kernels, rather than true technical difficulties,

resulted in failure to solve the identification problem for the diagonal values of the Volterra
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kernels. The problem was so neglected that even the methods that appeared in the scientific

literature which solved it were ignored. It is instructive to read how Schetzen concludes the

first part of [41] where he acknowledges the generality of the Volterra system representation:

“If the order of the system is not finite, then, generally, the contribution of each Volterra

operator cannot be separated from the total system response. For this case, there is no exact

method for the measurement of the system Volterra kernels, and various approximation

techniques must be used.” In synthesis, up to the Seventies, the general view was that a

general representation was too difficult to identify, and therefore, attention was dedicated only

to a special representation, suited to the statistical properties of the input signal. After this

change in direction occurred, the identification of general representations became a neglected

problem and some useful contributions that appeared in the literature were practically never

mentioned in the successive literature.

A. Non-Gaussian white input signals

Since the identification formula (12) still holds for any strict-sense white non-Gaussian

signal, the considered extension to non-Gaussian inputs is trivial. Also in this case, the

problem that remains to be solved is the identification of the diagonal kernel values for

the Volterra representation. But, as just stated, rather than solving this open problem, many

researchers focused on only identification of specific representations dependent on the input

characteristics.

Some researchers investigated the identification problem for particular statistics of the
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white input signal; there is a list of contributions that follows in this line. However, the

slowness in resolving the problem of the diagonal values in kernel estimation has also

fundamentally slowed research regarding proper choice of the time-series distribution for

applications in which the experimentalist can choose the input signal. There is no complete

comparison of the performance associated with each possible choice of the input distribution;

however, the existing literature suggests that abandonment of the Gaussian input signals is

associated with improved performance of the system identification procedures.

The solution of the problem of the diagonal kernel values in correlation-based methods

is returned to in the sequel.

B. Correlation methods for colored input Gaussian signals

There are basically two main contributions in this line of work; they arrived in about

the same period. Of the two contributions, the first one arrived gradually; it can be found

formalized in [41] but the main basic steps can be found already in Schetzen’s 1961 thesis

report [52]. In fact, in [41] Schetzen showed how to apply his method (relative to the case of

white Gaussian signal) when the input signal is Gaussian but not white. The power spectral

density Sx(j2πf) is factored as follows: Sx(j2πf) = S+
x (j2πf)S

−
x (j2πf) where S+

x (j2πf)

is the complex conjugate of S−
x (j2πf) and all the poles and zeros of S+

x (s) possess negative

real components. The method utilizes the whitening filter so that, with reference to the

figure 1, defined a first filter with frequency response equal to the inverse of S+
x (j2πf), a

nonlinear system S
′

can be considered whose input, denoted by z(t), is white and Gaussian.
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1

S +x ( j2π f )
S +x ( j2π f ) S✲ ✲ ✲ ✲

y(t)x(t)z(t)x(t)

S
′

Fig. 1. The basic decomposition proposed by Schetzen for Gaussian non-white input signal.

This system S
′

can be therefore identified with the procedure already developed for white

Gaussian input signals, and then the impact of the coloring filter inside S
′

must be removed

from the overall identified system in order to identify the original system S.

As mentioned, all the basic components of such an extension are already present in his

1962 report so that the method is fully developed in a period of about twenty years. At

the beginning the main task was the inversion of the Volterra system and the extraction of

the 2N th-order white Gaussian components from a general signal, an effort that culminated

in his 1976 contribution [53]. In fact, in [52], [54] we find the formula for 2N th-order

moments of a zero-mean Gaussian process in terms of a sum (over all pairs of variables)

of products of the autocorrelation function; we also find the sentences “if h1(t) is not a

minimum-phase network, then an inverse to h1(t) does not exist, but can be approximated

arbitrarily closely, although only at the expense of increasingly large time delay” and “any

Gaussian process can be considered to be the white Gaussian noise response of a linear

filter”. These points were much advanced for the year 1961; for example, the last sentence,

which is not proved by Schetzen, still merits a theorem in Yasui’s paper [51] about twenty
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years later (see Theorem 6 in [51]: “The response of S to a stationary Gaussian input is

Gaussian if and only if S is linear”).

The second important contribution came in the middle of this two-decade period (Sixties

and Seventies) in which Schetzen developed his method. In fact, Brillinger [55] showed that

HN(f1, . . . , fn) =
Px...xy(−f1, . . . ,−fn)N+1

N ! Px(f1) . . . Px(fN )
(15)

where Px(f) is the power spectral density of the zero-mean, Gaussian and stationary input6

signal x(t), and Px...xy(·, . . . , ·)N+1 denotes the (N+1)th order joint input-output polyspectra.

Brillinger and Rosenblatt are known for their introduction of higher-order cumulants, which

is strictly linked to their reading of the contributions introduced by Shiryaev [56] in higher-

order statistics. The relation reported here extends the famous Wiener input-output relation

for linear systems (i.e., Sxy(f) = Sx(f)H(−f)) to the polyspectra and uses it to identify

the highest-order Volterra kernel.

In the literature, the contribution of Brillinger is sometimes erroneously reported, e.g.,

the description of Brillinger’s contribution given in [57] only refers of the identification

of a homogeneous Volterra system while it is clearly stated in section 10 of [55] that the

identification formula holds for the highest-order of a general Volterra system; moreover, in

[57] it is also first noted that, analogously to the relation existing between (9) and (7), the

6 To be precise, the mathematical details are slightly different. Brillinger

follows the Wiener statistic notation and assumes that the input signal admits

a Cramer representation, i.e., it can be written as x(t) =
∫
eiλtdZx(λ) where

Zx(λ) is a process with orthogonal increments.
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general identification formula holds also for order N − 1 when the Gaussian input has a

zero-mean value. However, such a result had already been exploited in [58] to provide a full

identification formula for the case of quadratic systems (N = 2), in the first contribution

along the approach that we are describing, about a decade before the Brillinger contribution.

The Brillinger identification formula is rediscovered by the Billings’ group in [59]; the

author, Fakhouri, does not mention Brillinger or other authors of higher-order statistics and

seems not aware of having used the concept of cumulant, though he provides the exact

expression of the cross-cumulant Cx...xy in terms of the moments and relates it to the

multiple convolution in the time-domain. Moreover, he does pass to the frequency domain

to reduce the computational burden and carries out the kernel identification on the basis of

an ARMA (autoregressive moving average) parametric expression of the N th-order Volterra

transfer functions whose coefficients are determined as the solution to a linear system of

equations, which can viewed as a method for parametric polyspectra estimation; such a

method is not only advanced for that time and surely competitive with the higher-order

periodogram defined by Brillinger in [60] and capable to quieting the “note of pessimism”

with which Brillinger concludes his seminal paper [61], but merits being compared with the

most advanced methods for polyspectra estimation reported in the second chapter of [62] and

their further developments. Moreover, unlike Brillinger, the author of [59] also specializes

the procedure to the case for which the input signal is white, thereby expressing with a

different notation a method for solving the problem of the diagonal kernel values; in other
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works, though Fakhouri gives no mention to the concept of cumulant, he provides a formula

that, when read with knowledge of higher-order statistics, states that the long-searched-for

solution to the problem of estimating the diagonal terms of the Volterra kernels for a white

Gaussian input is given by the input-output cross-cumulant, as can be easily checked by

expressing the counterpart of (15) in the time-domain for a white input signal.

The fact that, about ten years later than the Brillinger’s paper, the Billings’ group did not

see that they were rewriting with a different notation his method (defining a cumulant without

recognizing it) illustrates well the long-needed advances in Volterra system identification.

The same group, however, is aware of the need for a synthesizing review of the methods for

Volterra system identification and produced one of the first review paper [63] and Billings’

book [64] still constitutes an important reference source for Volterra system identification.

It is surprising that the availability of (15) has not given an idea for solving the problem

of the diagonal values in (12) by specializing it to the case of strict-sense white input

and noticing that the cross-cumulant was the problem solution at least for the case of white

Gaussian signals. Still the Billings’ book [64] attributes to [57] the introduction of cumulants

for estimating the Volterra transfer functions for Gaussian inputs, probably following

the statement in [57] (according to which Brillinger limited himself to homogeneous

Volterra systems). The neglectfulness of Brillinger’s contribution is similar to that affecting

other important utilizations of higher-order statistical signal processing to Volterra system

identification discussed in the sequel. Furthermore, the following content of Billings’ book
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[64] in the passage in which that the author of one of the most effective methods for

polyspectrum estimation (unaware of the possible interpretation of his contribution in those

terms) declines the method (attributed to [57] rather than to [55]) on the basis of the difficulty

to carry out polyspectra estimation. A careful reading of the entire paragraph, however, could

be interpreted to be a disapproval of a nonparametric approach to polyspectra estimation in

favor of a parametric one for any realistic case and not only for cases with data of limited

sample size.

Rather than including the details regarding the correlation-based identification formulas in

the case of colored Gaussian input signals, we include a revealing detail that is particularly

clear from Schetzen’s approach. The case of colored input signal has interest mainly when

the signal is not under the control of the experimentalist; in fact, when the experimentalist

has control of the input signal, it is difficult to imagine choosing a colored Gaussian signal

instead of a white signal. In Schetzen’s approach this is clear because his approach is to solve

for the filter that produces the actual colored noise from white noise and then use knowledge

of the inverse of this coloring filter to remove its effect from the identified modified system

that includes the coloring filter.

However, the problem is common in both approaches since often an important motivation

for considering the colored signal is missing; moreover, experiments showing the advantages

of the proposed method in comparison with the existing ones for the case of white input

signals are missing. The contribution in [59] is an exception because it mentions a need
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to simplify the procedure associated with the choice of colored signal and carry out a

simulation experiment that shows the efficiency of the method but no comparison with an

alternative method is considered nor is a general discussion about the advantage for which

an experimentalist should prefer the colored signal present. However, apart from the general

principle that imposes an identification formula suited to the existing signal for the case

where the input is not under the control of the experimentalist, we should not forget that

the long-lasting difficulties in solving the problem of the diagonal kernel values had made

the case of colored signal more attractive, since, at least for such a case, exact identification

formulas (by Brillinger and Fakhouri, with the discussed differences between them) for the

highest-order kernels existed.

The important contribution in [59] consisting of making clear that, when a multidi-

mensional ARMA model is reasonable for the higher-order Volterra kernel, then a great

computational advance can be gained by assuming it in the identification procedure in

comparison with an estimation procedure that assumes simply a non-recursive expression

for the kernel coefficients, which significantly increases the number of parameters to be

estimated and the variances of their estimators. The simulation experiments carried out

in [59] are executed with kernels that satisfy an ARMA model and their parameters are

essentially perfectly estimated for a third order model. Also on the basis of the problem

of estimating the diagonal values of the Volterra kernels in correlation-based methods for

white input signals, this is one of the first contributions in the literature associated with an
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experimental section describing a fully working estimation method! Such a sentence should

be seen in connection with the quality of the method for polyspectrum estimation implicitly

derived (together with the same concept of cumulant) in [59].

The contribution by Brillinger is much more profound than those reviewed here with

reference to the identification formula (15), and is discussed in the sequel.

C. The general input signal

Following the general reasoning at the end of the previous subsection and in some sense

confirming it, the non-existence of identification formulas for the general case of non-white

non-Gaussian input has often limited the approach considered in such a general case. More

specifically, the limitation consists in the exclusive reference to a scenario where the input

signal is not under the control of the experimentalist. Not only has an identification formula

not been proposed for this case but also no one seems to have argued that the ability to treat

this case would be an important step ahead for system identification.

The motivation for the research however includes the important case for which the input

signal is present and can only be measured by the experimentalist. All the research in this

line has used the important property of the Volterra representation of being linear in the

parameters so that the problem of their estimation can be carried out as a linear estimation

problem.

The approaches can be roughly classified into two cases:

• the first approach defines a cost function in terms of the time average of the squared
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error signal; the time average that defines the cost function is theoretically conceived

over an infinite time interval and in practice is performed over finite time intervals

determined by the available data. The method in this approach tries to minimize the

cost functions and expresses the values of the Volterra kernels at various orders in terms

of the averages of different kinds of processed data, mainly input and joint input/output

higher-order moments of the input and output signals. In general, this approach leads to

linear systems of equations whose solutions provide the kernel values at various orders.

• the second approach does not directly define a cost function in terms of time averages but

its definition is such that a cost function based on time averages could well approximate

it. The problem is generally defined in mathematical terms; a cost function is defined

and the optimum value of the kernel values is determined by a suitable procedure.

Different procedures using the linearity of the Volterra representation with respect to

its free parameters (the kernels) can be used. Here the approach to Volterra system

estimation is not much different from any approach based on generalized linear models

and admits the same method for solutions. In particular, the method for minimizing the

cost function can be based on the gradient technique or the stochastic gradient technique

(LMS Volterra method) or the least squares technique or a recursive version (RLS

Volterra method). Moreover, a method for selecting a subset of significant coefficients

(nonnull values of the Volterra kernels) in the generalized linear model on the basis of

the data can be selected according to a general procedure for sparse solution of a linear
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system.

IV. ADVANCES DERIVED FROM USING FRACTION-OF-TIME APPROACH TO THE

IDENTIFICATION OF TIME-INVARIANT VOLTERRA SYSTEMS

The contributions of Archer and Gardner in [68], [69] represent important advances to

the problem of time-invariant Volterra system identification. The first contribution lies in a

systematic return to Wiener’s idea of identification by means of input-output higher-order

cross-correlation. On this point the authors introduce a powerful extension of the Klein-

Yasui approach [51] for avoiding the problem (never really solved by the M.I.T. group) of

the diagonal kernel values with white stationary input signal. This extension is mainly due to

the use of the non-probabilistic framework that puts on a solid ground an approach that had

become weak. Norbert Wiener had also provided a solid basis to his algorithms but at the

expense of dedicating much effort to relating statistical means and time averages by means

of the Birkhoff ergodic theorem. However, in the following decades, the ergodic theorem

became the ergodic hypothesis (assumption) and such a firm correspondence between the

two averages was missing from the work on many algorithms proposed in the literature. By

constructing a theory around the fraction-of-time natural density [15], [16] inherent to any

measured time series, i.e., the density according to which the time averages are performed,

research is freed from the problem of establishing which is the density according to which

orthogonalization procedure has to be carried out. Also the approach followed by Klein

and Yasui [51] rests on the ergodic theorem to construct the orthogonalization functionals:

according to this approach, one should first solve the fundamental problem of statistics
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to find the density of the stochastic process modeling the actual data before constructing

the functionals whose orthogonalization is based on this density. Using the fraction-of-time

natural density greatly simplifies the procedure for finding an appropriate orthogonalization

since the construction is based on the use of the time-average of the product of two time

series as inner product on which the Gram-Schmidt procedure of orthonormalization can be

based, at least for the case of temporally independent input sequences, which is the case

considered in [68].

The best previous contribution on this issue is given by Barrett; in fact, in [70] it is clearly

stated how to avoid the limit of the diagonal elements by using the Hermite functionals.

However, such a solution rests on the assumption of Gaussian statistics. Klein and Yasui

had extended such approach to the case of a general statistics of the white input signal but

continue to assume that this statistics is known. The approach proposed in [68], [69], instead,

is defined in terms of temporal averages of the input and output signal, and is independent

of the statistics of the input signal. This advantage is important when the stationary input

signal is not under control of the experimentalist but can be well measured.

If we read what is written about Yasui’s contribution in [71], the great importance of the

contribution in [69], [68] becomes evident since in [71] the fact that [72], [51] do not contain

identification methods is clearly surfaced. In particular, the first Yasui’s contribution [72] is

not mentioned in the list of methods for Volterra systems but it is mentioned with reference

to the Wiener systems identification (it is recognized that it eliminates the problem of the
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diagonal kernels but it is stated about it that the “theoretical presentation is mainly focused

upon a clarification and unification of the Wiener, Volterra, and several other methods based

on the series approach to a nonlinear system”) while the more important contribution [51],

which is used in [68] to construct the orthogonalization for the case of stationary input

signal, is simply not mentioned.

The contribution in [68], [69] constitutes an important advance since, thanks to the use

of the fraction-of-time approach, an immediate identification procedure for the case where

stationary input sequences are employed is much more directly available than it was before

(i.e., the procedure is now defined in terms of temporal averages of signals depending on

the input and output ones). For example, a relatively recent contribution [47] in this line of

researches, being unaware of [69], [68], has proposed to use the interpolation of the values

obtained by (7) as an alternative to other (already discussed and not efficient) methods to

estimate the kernels on the diagonal points.

V. APPLYING THE THEORY OF CYCLOSTATIONARITY TO THE PROBLEM OF VOLTERRA

SYSTEM IDENTIFICATION

A general method for evaluating the Volterra kernels by cross-correlation between the

output signal and a function of the input signal is proposed in [69], [68] by adopting a

non-probabilistic approach, i.e., by modeling the system output as a time series rather than a

realization of a random process. It is assumed that the input signal is cyclostationary rather

than stationary; with reference to discrete time, two cases are considered: (1) the case in
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which the cyclostationary input signal has the form

x(k) = z(k)ejωk (16)

where z(k) is a stationary time-series, possibly complex-valued, and (2) the case where the

input signal is given by

x(k) = ℜ{z(k)ejωk} (17)

where ℜ{·} denotes the real-part extraction operation.

In the first case the input signal is complex-valued and therefore can be applied to the

system only if a mathematical description of the system7 is available.

In the case of complex-valued signal (16) the general system

y(k) =

∞∑

n=1

∑

j
n

hn(jn)λn(k, jn, x(·) ) (18)

is considered where

λn(k, jn, x(·) ) =
n∏

r=1

x(k − jnr
) (19)

and jn = {jn1 , . . . , jnn
}. It is shown that, provided that

ω

2π
is irrational:

hn(kn) =
1

P (kn)

〈

y(k) · γ∗n(k,kn, z(·))

〉

(20)

7 Already in [73] there was proposed a method for identifying the Volterra

transfer functions by employing a complex-valued input signal x(t) = ejω1t +
. . . ejωnt, with the values ωi irrational among themselves; the component with

frequency ω1 + . . .+ ωn is multiplied by the coefficient n! Hn(ω1, . . . , ωn); in

[73] there is an attempt to use the equations that implicitly define the system

to explicitly express the input-output relation with a Volterra series.
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where < . . . > is the temporal average, kn = {km1 , . . . , km1
︸ ︷︷ ︸

n1

, . . . , kmp
, . . . , kmp

︸ ︷︷ ︸

np

} in which

kmq is repeated nq times (and, obviously, n1 + . . .+ np = n) and

P (kn) =
n!

n1! . . . np!
(21)

γn(k,kn, z(·)) = ejωnk e

−jω

p
∑

q=1

nqkmq

φn(k,kn, z(·)) (22)

and φn is such that

〈

λn(k, jn, z(·) ) · φ
∗
n(k,kn, z(·))

〉

= δ̃
n
kn

(23)

in which ̃n is a general permutation of jn.

In the case of real system (17), an identification formula for the highest-order kernel is

proposed, which solves the problem of estimating the diagonal values of the highest-order

kernel

y(k) =
N∑

n=1

∑

j
n

hn(jn)λn(k, jn, x(·) ) (24)

and it is also shown that, in such a case, the relation (20) still holds for any ω provided

that n = N . It is therefore possible to identify the N-order Volterra kernel and to subtract

the N-order output to the overall system output and so to identify the lower-order Volterra

kernels.

For complete specification of the algorithm, it is necessary to be able to calculate the

time-series φn(k,kn, z(·)) that satisfy the condition in (23). It is shown how to determine the

functions φn in the case where z(k) is a sequence of random variables temporally independent
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and the powers zm(k) are linearly independent among themselves for the various values of

m. In such a case,

φn(k,kn, z(·)) =

p
∏

q=1

ψnq
(z(k − kmq

)) (25)

where the functions ψn(·) are such that

〈

zm(k − j0) · ψn(z(k − k0))

〉

= δmnδj0k0 m ≤ n (26)

The ψn(·) can be determined starting from {zm(k)}m=0,...,n by means of the Gram-Schmidt

procedure: ψn(z(k)) is the (properly normalized) component of zn(k), orthogonal to the

subspace identified by the vectors {zm(k)}m=0,...,n−1. With this choice the sequences φn

satisfy a condition stronger than (23):

〈

λm(k, jm, z(·) ) · φ
∗
n(k,kn, z(·))

〉

= δmnδ̃
n
kn

; m ≤ n (27)

on which the validity of the algorithm for every value of the variable ω is based; the validity

of the algorithm for the case ω = 0 allows to use the considered method also for stationary

input sequences.

The results are also expressed in the frequency domain to be able to utilize the

computational advantages of the FFT:

Hn(fn)
∼=

[
1

T
w∗

T (−fn)YT (1
T
nfn)

]

⊗ AK(f1)⊗ . . .⊗AK(fn) (28)

in which

AK(f) =
sin[πf(K + 1)]

sin(πf)
(29)
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YT (f) =
∑

|k|≤T
2

y(k)e−j2πfk (30)

wT (fn) =
∑

|k|≤T
2

w(kn)e
−j2πf

T

n
kn (31)

w(kn) =
1

P (kn)
γn(0,kn, z(·)) (32)

and K must be larger than the system memory L.

The approximation error in (28) tends to zero when T → ∞. The computational efficiency

increases significantly if a rectangular window of length 1
K

is used to replace the function

AK(f).

The proposed method has been verified in both the case in which the mathematical

description is available and therefore the complex-valued input sequences can be used and

the case in which the use of the real-valued input sequence is mandatory. The input sequence

is the PM sequence based on the definition

z(k) = σ ejθ(k) (33)

with θ(k) a sequence of IID variables that assume with the same probability M discrete

values in [−π, π]. This test case is further extended to the case in which z(k) is a purely

stationary fraction-of-time-probability independent Gaussian sequence with known standard

deviation.

The capability to solve the problem of the diagonal kernel values is elegant and arrives

at perfection. It is likely that this also corresponds to reduced variance of the estimator
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but unfortunately this issue has not been verified by simulation experiments reported in the

literature.

Therefore, we can conclude that the contribution in [68] represents an advance in

comparison with the methods operating with stationary inputs also if the method proposed

in it is used in the setting ω = 0 (stationary input); moreover, the possibility to choose a

value ω 6= 0 enables direct identification of any value of the Volterra kernel at any order

provided that a mathematical description of the system is available. Moreover, also when

the mathematical description is not available, it opens the possibility of extending all the

identification methods already proposed in the literature to the case of cyclostationary input

sequences. Such an extension is likely associated with performance improvements of the

identification methods; however, no successive literature contribution has further investigated

this issue. This may be due to the assumption that past failures of efforts to solve long-

standing problems with earlier methods indicated there was no promise for success.

A. Input signal affected by measurement noise

The method developed in [68] considers both the case where the input signal is under

control of the experimentalist and the case where it is only measured by the experimentalist,

though the first case is given much more attention. In [74], [75] the second case is given

much more attention by assuming that both input and output signals have to be measured by

the experimentalist and may be affected by measurement noise, a case usually neglected in

the literature. The presence of an additive, zero-mean noise term, independent of the input
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signal, has been considered only for the output signal, which is still a necessary assumption

even when the input signal is under control of the experimentalist. Moreover, the majority

of earlier methods proposed in the literature are not able to correctly operate when the input

signal is affected by noise.

A deep analysis of the existing methods could show that only the method of Gardner and

Archer in [68] is suited for adaptation to a noisy-input scenario: for an input signal of the

form z(k) cos(2πν0k), with z(k) a sequence of temporally independent random variables with

identical distributions, and such that the powers {zm(k)} are linearly independent of each

other, the maximum order Volterra kernel can be identified. However, the method proposed in

[68] assumes that z(k) is available to the experimentalist, but, when only noisy measurements

of the system input and output are available, it is not possible to assume such knowledge.

Two cases in which this problem is addressed are proposed in [74]. Before considering the

relative details, the needed signal notation is introduced: signal v(k) = x(k) + η(k) denotes

the noisy measurement of the input signal x(k) and the signal w(k) = y(k) + ζ(k) denotes

the noisy measurement of the output signal y(k); therefore, we denote with η(k) and ζ(k)

the disturbance signals affecting the measurements of the input signal x(k) and output signal

y(k), respectively.

It is also noted that in [68] the input signal is perfectly known while in the two cases

described in the next two subsections only a noisy version v(k) of the useful input signal x(k)

is available. However, it is assumed that the useful signal x(k) is a general IID sequence
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modulated by an AM sequence, whose frequency parameter ν0 is assumed known. The

method in [68] cannot be straightforwardly applied in this case because it assumes that the

signal z(k) is available while in the considered scenario only the noisy version v(k) of the

input signal x(k) is available. The first case considered in [74] and described in Subsection

V-B, is an extension of the method already proposed in [68]; the extension lies in the fact

that its application only resorts to a noisy version of the input signal x(k) and does not

require knowledge of the intermediate signal z(k), which is needed in the method described

in [68]. Moreover, the second case, considered in [74] and described in Subsection V-C,

includes at same time the extension from the stationary to the cyclostationary input of the

Brillinger’s method relative to the case of colored Gaussian input and the extension of this

method to the case in which the input signal measurements are affected by noise.

B. First case: IID modulating sequence

To extend the method in [68], which assumes an AM cyclostationary signal, to the case

where only the signal v(k) is available, it is necessary to modify the orthogonalization method

proposed in [68], which uses the signal z(k), by resorting to the sinusoidally-weighted

time-averages of signals depending only on the noisy version of the input signal x(k) . In

particular, it is necessary to resort to the sinusoidally-weighted time-average 〈x(k)〉ν0 of a

discrete-time signal x(k)) as follows:

〈x(k)〉ν0 =
〈
x(k)e−j2πν0k

〉
(34)
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and, using it, to define the following functions:

ψ0[x(k)]
△
= 1 (35)

ψ1[x(k)]
△
= x(k)− 2 〈x(k)〉ν0 cos(2πν0k) (36)

ψ2[x(k)]
△
= x2(k)− 2

〈
x2(k)

〉

2ν0
cos[2π(2ν0)k]

− 2
〈 x2(k)ψ1[x(k)] 〉3ν0

〈 ψ1[x(k)]ψ1[x(k)] 〉2ν0
ψ1[x(k)] cos[2πν0k] (37)

and, for general n,

ψn[x(k)]
△
= xn(k)−

n−1∑

i=0

2
〈 xn(k) · ψi[x(k)] 〉(n+i)ν0

〈 ψi[x(k)] · ψi[x(k)] 〉2iν0
ψi[x(k)] · cos[2π(n− i)ν0k] (38)

Then it is shown in [74] that

〈

ψn[x(k)] · ψi[x(k)]

〉

(n+i)ν0

= 0 ∀i < n, n ≤ N, 4Nνo < 1 (39)

The assumption 4Nνo < 1 can be replaced also by the condition that ν0 is irrational. From

(39) it can be shown that the following relation holds:

〈

ψn[x(k)] · x
i(k)

〉

(n+i)ν0

= 0 ∀i < n, n ≤ N, 4Nνo < 1 (40)

and, therefore, defined

kN = {km1 , . . . , km1
︸ ︷︷ ︸

n1

, . . . , kmp
, . . . , kmp

︸ ︷︷ ︸

np

} (41)
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with n1 + . . .+ np = N , for a finite-order system, we can write

hN(KN) =

〈

y(k)ψn1[ x(k − km1)] . . . ψnp
[ x(k − kmp

)]

〉

2Nν0

·
n1! . . . np!

N !

〈

xn1(k − kmp
)ψn1 [x(k − kmp

)]

〉

2n1ν0

. . .

〈

xnp(k − kmp
)ψnp

[x(k − kmp
)]

〉

2npν0

(42)

Such expression can be viewed as a re-writing of the method (20) proposed in [68]. The

main contribution in [74] lies in the proof that the identification formula (42) still holds when

the input signal x(k) is replaced by its noisy measurement v(k) and the output signal y(k)

is replaced by its noisy measurement w(k) provided that the input noise η(k) and output

noise ζ(k) are independent of the input signal and do not exhibit cyclostationarity properties

analogous to those of the useful signals, specifically described by the following conditions:

Rlν0
η (·)n ≡ 0 ∀n ≤ N l ∈ {1, 2, . . . , 4N} (43)

and

Rlν0
η...ηζ (·)n ≡ 0 ∀n ≤ N + 1 l ∈ {N,N + 1, . . . , 3N} (44)

provided that lν0 is not an integer. In (43) Rlν0
η (·)n denotes the nth-order reduced-dimension

cyclic temporal moment function [76] of the disturbance signal η(·) at the cycle frequency

lν0 while in (44) Rlν0
η...ηζ (·)n denotes the nth-order reduced-dimension cyclic temporal cross-

moment function of the disturbance signals η(·) and ζ(·) at the cycle frequency lν0.
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C. Second case: Gaussian modulating sequence

For the case for which the input signal is x(k) = z(k) cos(2πν0k), with z(k) Gaussian,

zero-mean and stationary, the following identification formula for the highest-order kernel

is derived in [74]:

HN(ν1 + 2ν0, . . . , νN + 2ν0) =
P 2Nν0
x...xy (−ν1, . . . ,−νN )N+1

N ! P 2ν0
x (ν1 + 2ν0)2 . . . P

2ν0
x (νN + 2ν0)2

(45)

where P 2Nν0
x...xy (−ν1, . . . ,−νN)N+1 denotes the (N + 1)th-order cyclic cross-polyspectrum

[76] of the signals x(k) and y(k) and P 2ν0
x (ν1 + 2ν0)2 denotes the second-order cyclic

polyspectrum of the signal x(k). This formula can be seen as an extension to a general

ν0 of the Brillinger’s formula (15) proposed in [55] for the case ν0 = 0 and continues to

be strictly linked to the Shiryaev [56] contribution regarding the cumulants of a Gaussian

signal.

The main contribution of [74] is the proof that the identification method is not affected

by the presence of measurement noise, i.e., (45) still holds when the input signal x(k)

is replaced by its noisy measurement v(k) and the output signal y(k) is replaced by its

noisy measurement w(k) provided that the additive input noise η(k) and the additive output

noise ζ(k) are independent of the input signal and do not exhibit cyclostationarity properties

analogous to those of the useful signals, specifically described by the following conditions:

C2nν0
η...ηζ(·)n+1 ≡ C2ν0

η (·)2 ≡ 0 ∀n ≤ N (46)

In (46) C2nν0
η...ηζ(·)n+1 denotes the (n + 1)th-order reduced-dimension cyclic temporal cross-

cumulant function of the signals x(k) and y(k) at the cycle frequency 2nν0 and C
2ν0
η (·)2
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denotes the second-order cyclic covariance (also, named, second-order reduced-dimension

cyclic temporal cumulant function) of the signal η(k) at the cycle frequency 2ν0.

Moreover, in [74] it is also shown for both methods how to derive the lower-order kernels

of the considered system in the presence of noise affecting the measurements of the input

signal. Furthermore, it is noted that both methods are robust with respect to an overestimation

of the maximum order N of the Volterra system, an issue rarely considered in the literature.

Finally, let us note that the methods in [68] have been extended to the case of polyperiodic

Volterra systems in [77]; the polyperiodic Volterra systems are Volterra systems where the

kernels are not constant but are polyperiodic functions of time and therefore can be specified

by a set of cyclic Volterra kernels (Fourier coefficients of the Volterra kernels). Moreover,

the methods in [74], suited to the case where the input/output system measurements are

affected by additive noise, have been extended to the case of polyperiodic Volterra systems

in [78].

D. Further contributions using the processing of cyclostationary signals

A method regarding the blind estimation of a nonlinear system that admits a homogeneous

quadratic Volterra description is introduced in [79], [80]. The contribution refers to the case

where the purely quadratic nonlinear system describes a communication channel and utilizes

the cyclic properties of typical signals at the output of communication systems. The proposed

methods use the cyclic autocorrelation or cyclic cepstrum of the output signal and assume

the presence of simple system input (that is typical of those used in communication systems)
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that induces the typical property of the channel output.

Moreover, very recently a new contribution on the use of a cyclostationary input signal

to identify a Volterra system model has been proposed in [81]. It assumes that the nonlinear

system is an industrial device that admits an LN block description (as specified in Subsection

II-C) and that the input signal is under the control of the experimentalist. At the system input,

the authors choose to employ a cyclostationary sequence whose fraction-of-time mean and

variance are periodic functions of the discrete time. This kind of cyclostationary signal is

well suited to the scenario where the experimentalist has full choice of the possible input

signal.

VI. INPUT-OUTPUT RELATIONS

To complement the material above, which is specific to nonlinear system identification, this

section reviews some useful mathematical expressions for input/output relations given two

Volterra systems S1 and S2 for which y(t) and z(t), respectively, denote the output signals

corresponding to the same Gaussian input. The mean, crosscorrelation E{y(t+ τ)z(t)}, and

power spectral density of y(t) are evaluated in [73] and are given by:

〈y(t)〉 =
∞∑

n=1

1

(2n)! n! 2n

∫

Rn

Sx(f1) . . . Sx(fn)H2n(f1,−f1, . . . , fn,−fn)df1 . . . dfn (47)

〈y(t+ τ)z(t)〉 =

= a0b0+
∞∑

k=1

∫

Rk

ei2πτ(f1+...+fk)

k!
Sx(f1) . . . Sx(fk)ak(f1, . . . , fk)bk(f1, . . . , fk)df1 . . . dfk (48)

Sy(f) =| a0 |
2 δ(f)+

∞∑

k=1

∫

Rk

Sx(f1) . . . Sx(fk)

k!
| ak(f1, . . . , fk) |

2 δ(f−f1−. . .−fk)df1 . . . dfk

(49)
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where a0 = 〈y(t)〉, b0 = 〈z(t)〉 and for k > 0:

ak(f1, . . . , fk) =

∞∑

n=0

∫

Rn

Sx(f
′

1) . . . Sx(f
′

n)

(2n + k)! n! 2n
H2n+k(f1, f2, . . . , fk, f

′

1,−f
′

1, . . . , f
′

n,−f
′

n)df
′

1 . . . df
′

n

(50)

and bk is obtained from (50) by replacing the transfer function of S2 evaluated in the points

−f1, . . . ,−fk with the transfer function of S1 Hk(f1, . . . , fk). The relation (49) can be

extended to the case where a deterministic sine signal is added to the Gaussian signal.

The first contribution of this type is given in [22] where the output autocorrelation is

evaluated independently of the assumption of Gaussian white input.

In [82] the assumption of Gaussian input is removed. The joint input-output correlation and

the output autocorrelation (and their transforms) are expressed in terms of the higher-order

moments of the input signal (and of their transforms):

RY X(τ)=〈y(t+ τ)x∗(t)〉=

∞∑

n=1

∫

Rn

hn(u1, . . . , un)RXX(n,1)(τ − u1, . . . , τ − un)du1 . . . dun

(51)

RY Y (τ) =

∞∑

n=1

∞∑

m=1

∫

Rn+m

hn(u1, . . . , un)h
∗
m(un+1, . . . , un+m)·

·RXX(n,m)(τ − u1 + un+m, . . . , τ − un + un+m, un+m − un+1, . . . , un+m − un+m−1)

du1 . . . dun+m (52)

SY X(f) =
∞∑

n=1

∫

Rn+1

Hn(f1, . . . , fn)ŜXX(n,1)(f1, . . . , fn+1)δ(f − f1 . . .− fn)df1 . . . dfn+1

(53)



60

SY Y (f) =

∞∑

n=1

∞∑

m=1

∫

Rn+m

Hn(f1, . . . , fn)H
∗
m(−fn+1, . . . ,−fn+m−1, f1 + . . . fn+m−1)·

·ŜXX(n,m)(f1, . . . , fn+m)δ(f − f1 . . .− fn)df1 . . . dfn+m (54)

where

RXX(n,m)(τ1, . . . , τn+m−1) = 〈x(t + τ1) . . . x(t + τn)x
∗(t + τn+1) . . . x

∗(t+ τn+m−1)x
∗(t)〉

(55)

and

ŜXX(n,m)(f1, . . . , fn+m) = F
[
RXX(n,m)(τ1, . . . , τn+m−1)

]
δ(f1 + . . .+ fn+m) (56)

In [83] the same authors have derived expressions much similar to those reported in [73] by

specializing the results obtained in [82] to the case of Gaussian input.

The mean and the autocorrelation function of the output signal of a discrete-time nonlinear

Volterra system whose input consists in a sequence of independent random variables:

〈y(n)〉 =
∞∑

k=1

k∑

p=1

∑

ν∈P(k,p)

Λ(ν)
∑

v∈Zp

S(ν, v)hk (57)

Ryy(m) =

∞∑

k=1

∞∑

l=1

k+l∑

p=1

∑

ν∈P(k,p)

Λ(ν)
∑

v∈Zp

S(ν, v)hmkl (58)

where P(k, p) denotes the set of partitions ν = {ν1, . . . , νp} of a positive integer k in p

parts, i.e.,

1 ≤ ν1 ≤ . . . ≤ νp ν1 + ν2 + . . .+ νp = k (59)

and, moreover,

Λ(ν) =

p
∏

i=1

Cνi (60)
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in which Ci is the cumulant of order i of x(n) and

S(ν, v)hk =
∑

π(ν)

hk

(
p
∑

i=1

viIi(1), . . . ,

p
∑

i=1

viIi(k)

)

(61)

where π(ν) is the set of partitions of the set {1, 2, . . . , k} in p subsets such that each subset

Ki contains νi elements and Ii(j) is the function that denotes the belonging of j to the set

Ki and

hmkl(u1, . . . , uk+l) = hk(u1, . . . , uk)hl(uk+1 +m, . . . , uk+l +m) (62)

In [84] for a nonlinear Volterra system with multiple inputs and outputs, almost

periodically time-variant, the general input-output relations in terms of the higher-order

cyclostationary statistics that, when specialized to the case of N nonlinear time-invariant

systems with a single input and output, become:

S
α
y1,...,yN

(f ′)N =

+∞∑

n1, ..., nN = 1

∫

Rn1+...+nN−N

S
α
x(n1),...,x(nN )

(

[λ(n1)′T,

f1 − λ(n1)′T1, ...,λ(nN )′T]T
)

n1+...+nN

·H(nN )
(

[λ(nN )′T, α− f ′T
1− λ(nN )′T

1]T
)

N − 1∏

m = 1

H(nm)
(

[λ(nm)′T, fm − λ(nm)′T
1)]T

)

dλ(n1)′ · · · dλ(nN )′ (63)

where H(nm)(f (nm)) is the nmth-order transfer function, xm(t) is the input and ym(t) is the

output of the mth system; x(nm) is the nm-dimensional vector [xm(t), ..., xm(t)]
T, and λ(nm)′

and f ′ are vectors whose dimensions are nm − 1 and N − 1, respectively.
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VII. CONCLUSIONS

The research on Volterra system identification has received much more attention for the

case of stationary input signals than cyclostationary input signal in the last thirty years

since the seminal contribution in [68]. The dispersion of identification methods among quite

different journals complicates the integration of the different methods already proposed and

recent contributions ignore the most important results achieved by the use of cyclostationary

input signals. As a result, further investigation that has been needed in order to provide

experimental evidence of the advantages associated with the use of the cyclic properties of

the input signals has not occurred. It is the intention of this review article to bring attention

to the substantial merit of cyclostationarity exploitation for purposes of nonlinear system

identification.
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des sciences de Rome en 1910. Gauthier-Villars, 1913.

[4] ——, Teoria de las funcionales y de las ecuaciones integrales e integro-differenciales. Conferencias explicadas en la

Facultad de la Ciencas de la Universitad, 1925, redactas por L. Fantappié, Madrid. Madrid: L. Fantappié, 1927.
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