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1  Introduction
1.1 � Methods of moments for probability approximation and estimation, and parameter 

estimation

There is a plethora of methods for approximating probability density functions (PDFs), 
using known moments of the unknown PDF, and estimating PDFs from observed/meas-
ured data, some of which are based on first approximating the PDFs. Here is a brief 
description of the primary (most salient) methods:

Method 1, Characteristic Function Method: The first k moments can be 
used to determine the first k derivatives of the characteristic function at zero: 
E[Xk] = (−i)k [dkϕX/dXk](0) . So, the first n terms of the characteristic function’s Taylor 
series expansion around zero is given in terms of the first n moments. By inverse Fourier 
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transforming this approximating Taylor expansion, we obtain an approximating PDF. 
Knowing the truncated Taylor series approximant is less accurate the further away from 
the origin we look, it is advisable to remove the more inaccurate part of this approxim-
ant by windowing it to an interval about the origin. When this is done, the impact on the 
PDF approximant is a convolution with the Fourier transform of the window function. 
This smoothing operation limits the degree of resolution of this PDF approximant. This 
method can be generalized to joint moments and joint PDFs by using joint characteris-
tic functions. Once the PDF approximant in terms of moments is obtained, we have a 
probabilistic model that can be fitted to the data by replacing the model moments with 
sample moments to obtain a PDF estimate.

Method 2, Provost’s Methodology: The least squares fit of an nth-order polynomial to 
a PDF with compact support is given by a weighted sum of Legendre polynomials of 
orders 1 through n in terms of the first n moments of the PDF. Then by replacing these 
moments in this PDF model with sample moments, we obtain a PDF estimate from 
the available data. This is just one of a class of PDF approximation methods based on 
orthogonal polynomials, including Laguerre, Jacobi, and Hermite, some of which apply 
to approximating PDFs with semi-infinite support. These methods are all encompassed 
by a unified PDF approximation/estimation methodology, by which the exact density 
function whose first n moments are known can be approximated by means of the prod-
uct of an assumed base density function, whose parameters are determined by matching 
moments, and a polynomial of degree n, whose coefficients are obtained by making use 
of the method of moments as well [1].

Method 3, Pearson Method of Moments (MoM): When a PDF associated with data is 
unknown or intractable, but it is practical to obtain expressions for its moments up to 
but not including the values of a finite set of parameters, these parameters can be esti-
mated using the MoM. This does not go as far as estimating the PDF itself, as in Meth-
ods 1 and 2, but there are many applications for which it is sufficient to estimate such 
parameters. The classical MoM first used by Pearson for parameter estimation near the 
turn of the nineteenth century is conceptually simple but does not offer a recipe for solv-
ing the (possibly unsolvable) set of simultaneous nonlinear equations that arise when the 
parameter-dependent model moments are equated to corresponding sample moments 
[2]. This drawback does not arise with the new MoM introduced in this article.

Method 4, Generalized Method of Moments (GMM): The GMM performs a weighted 
least squares fit, w.r.t. unknown parameter values, of model moments to sample 
moments, and includes the MoM and several variations on the MoM as special cases [3].

This class of methods as well as Method 3 generally has no explicit analytical solution 
and requires numerical methods with their concomitant typical computational com-
plexity and convergence problems. The linear equations requiring solution for the new 
Method 5 admit analytical solutions which may or may not present less of a compu-
tational challenge, depending on dimensionality, which is determined in a predictable 
manner by the number and output dimensions of the prescribed nonlinear data trans-
formations to be used, which has no counterpart in traditional MoM.

Methods 3 and 4 are parameter estimation methods; that is, they use the technique of 
equating probabilistic moments, having known functional dependence on unknown data 
parameters from a specified model, to sample moments in order to obtain equations 
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whose solutions for the parameter values are taken as parameter estimates. In contrast, 
Methods 1 and 2 use unknown probabilistic moments to approximate unknown data 
PDFs and then replace these unknown moments with sample moments to obtain PDF 
estimates. If it is not possible to execute this procedure repeatedly for each of a range of 
trial values for the parameters to be estimated, to obtain an estimated PDF conditioned 
on parameter values (an estimated likelihood function), then these methods for PDF 
estimation cannot be used for parameter estimation.

These well-known primary methods for parameter estimation are complemented by 
the following essentially unknown Method 5. As summarized below, the new MoM is 
in an entirely different class of methods from those reviewed above. In fact, the new 
method appears to be in a class of its own with only one class member, because it is 
completely unorthodox. For example, it models the unknown parameters used in prior 
art as random variables, and it estimates unknown functions (posterior PDFs) of these 
random variables, which functions are unknown because the data PDFs are unknown. 
This presents more of a challenge for comparison with Methods 3 and 4 because it’s like 
“comparing apples and oranges” which, although both are fruits, have highly distinct 
qualities and characteristics. Meaningful comparison may have to be conducted on a 
case-by-case basis with results of relative performance that may vary widely depending 
on the application. The results obtained in the original 1970s work were and still are 
considered promising for the applications considered then.

Method 5, Bayesian-like MoM (BL-MoM): There is an essentially unknown alternative 
to the above primary methods that uses optimally weighted sample moments to estimate 
the ratio of a likelihood function (parameter-conditional PDF) to the marginal (uncon-
ditional) PDF (see the ratio in the RHS of the equation below), which is tantamount to 
estimating the probability of each parameter value θ , given the observed data x (see the 
LHS of the equation below). This follows from the standard relationship between condi-
tional probabilities

where p is used to represent either a PDF or a probability mass function (PMF), specified 
by the symbol used for the argument. It is generally the case in this article that the p’s in 
the ratio are PDFs and the other two p’s are both PDFs or both PMFs (for discrete ran-
dom variables). In the above relationship, we have

where p(θ) is a PDF, and we replace the integral with a discrete sum when p(θ) is a PMF. 
For example, in a statistical decision application, discrete values of θ can correspond to a 
discrete set of competing hypotheses. Once this estimated a posteriori probability den-
sity (or mass) function in the LHS of the above relation is obtained, it can be substituted 
into any Bayes-risk performance functional which can then be solved for a Bayesian-Like 
(BL) parameter estimate or decision. Because the a posteriori probability p(θ |x) equals 
the aforementioned ratio of PDFs times the a priori probability p(θ) , this a posteriori 
probability estimate is generally known only to within a factor, which is the a priori 

p(θ |x) =
p(x|θ)

p(x)
p(θ)

p(x) =

∫
p(x|θ) p(θ) dθ
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probability. When this factor is unknown, useful estimates can be obtained by treating 
this a priori probability as uniform over some user-specified admissible region of param-
eter space. This essentially converts a maximum a posteriori inference problem into a 
maximum-likelihood problem.

This method appeared in disguised form, unknowingly hiding its equivalence to a 
method of moments, in engineering journals about half a century ago and has apparently 
not been recognized in the statistics literature over the long ensuing period, making it 
an essentially unknown MoM in the statistics community. As a result, there has appar-
ently been no progress made toward comparing this likelihood or a posteriori PDF/PMF 
estimation method with the above-mentioned plethora of known methods for param-
eter estimation. This comparison is a sensible thing to do, given that the solution pro-
vided by the BL-MOM requires the same information as that required by the Methods 
1, 3, 4 and less for Method 2, namely, model moments depending on unknown param-
eters, and sample moments. The primary differences are that the BL-MoM solution: 1) 
specifies optimally weighted sample moments in place of traditional sample moments, 2) 
requires only solution of simultaneous linear equations, and 3) is not restricted to use of 
polynomials; it can use any specified functions in place of polynomials, and it requires 
knowledge of only first- and second-order moments of these functions of the original 
observations.

In this article, a theoretical comparison is made between the Pearson MoM and this 
Bayesian-like MoM. Because comparisons of such methods based on applications to 
data depend heavily on the particular data, any type of useful data-based or application-
based comparison of methods 3 or 4 with 5 is a substantial undertaking: Conclusions 
should not be drawn without comparison of results for a variety of types of data, some-
thing the Author has not attempted and something that will likely require the combined 
efforts of multiple investigators over an extended period of time.

However, a few analytical comparisons between the BL-MoM method and the unadul-
terated Bayesian method of parameter estimation were made when the BL-MoM method 
was first introduced (not by that name or with that interpretation) by the Author, and 
these are reported in the engineering publications [4–7] and the unpublished engineer-
ing PhD dissertation [8]. These publications report on the cyclostationary stochastic 
process version of the general BL-MoM concept for which multiple samples of multivar-
iate data are seen to be equivalent to a single sample path of a cyclostationary stochastic 
process. The process in this equivalence is a special case of a discrete-time cyclostation-
ary process with period K equal to the number of random variables in the MoM for-
mulation and with R periods observed, where R equals the number of samples of each 
random variable in the MoM formulation. The process is special because the values of 
the unknown parameters for the random variables in one period are the same as those in 
all other periods whereas, in the signal models in the original work on communications 
systems, the parameters were modeled as random and identically distributed from one 
period to the next.

The purpose of this article is to give this new method visibility, without which the 
needed comparative studies will never be made. The motivation for conducting the 
needed comparative studies is provided by the list of theoretical benefits of the BL-MoM 
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compared with the classical MoM (Method 3), which appear to carry over to the GMM 
(Method 4).

By way of explanation for the expansive style of this article, rather than simply present-
ing a terse mathematical statement of the assumptions made (known model moments 
and corresponding (weighted) sample moments, with weights to be solved for) and the 
mathematical method proposed (minimize mean-square error of a specified error meas-
ure to obtain a set of simultaneous linear equations to solve), a choice has been made 
to provide expansive discussion of the fundamental differences in concept and method, 
relative to all the known alternatives, which consist of Methods 3, 4 since Methods 1, 
2 have already been identified in the discussion above as inapplicable except in highly 
unusual circumstances. This narrative aspect is merited by the break from the tradition 
of the primary methods reviewed above.

1.2 � Introduction to the Pearson MoM and the alternative BL‑MoM

The traditional method of moments is said to have been introduced by Pearson [2] 
around the turn of the nineteenth century for parameter estimation and also by Cheby-
shev in 1887 (see [9]) for proving the Central Limit Theorem. This method for parameter 
estimation, when applied to either multivariate or time series data, consists of equat-
ing sample moments measured from the data with theoretical moments obtained from a 
probabilistic model of the data, and then solving for the unknown values of parameters 
in the theoretical moment expressions. The theoretical moments can be interpreted as 
unconditional moments depending on unknown parameters, or moments conditioned 
on unknown values of random parameters. The choice of interpretation has no impact 
on the method. However, the latter interpretation can be used to formulate a radically 
new approach to parameter estimation based on concepts from Bayesian Inference.

The classical MoM 3 and the more sophisticated Methods 2 and 4 are a mainstay of 
parameter estimation for probabilistic models of data in econometrics, biostatistics, 
and other fields for which knowledge of the likelihood function is often unavailable or 
complexity of the known likelihood function prevents its use for maximum-likelihood 
estimation.

In the method of moments, one can use the mean and centralized moments or the 
mean and non-centralized moments, and one can use as many moments as there are 
unknowns, and there are other variations that have been devised. One such variation 
uses the fact that the theoretical moments for an Mth-order autoregressive time series 
model satisfy a set of M + 1 linear equations in M + 1 unknowns involving only sec-
ond-order moments, the autoregressive model coefficients, and these equations can be 
solved for these unknown coefficients. This method is very common in data modeling 
and time series prediction and associated studies of causality. More generally, however, 
the method of moments and its generalization, Methods 3 and 4, require the solution of 
nonlinear equations.

In the alternative approach, conditional moments are used and the objective is not 
to match theoretical moments to samples moments but rather to estimate the poste-
rior PDF of the unknown parameters using the observed data, and then select the val-
ues of the conditioning parameters that maximize the estimated posterior PDF, thereby 
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obtaining the maximally “probable” solution for the parameter values, where the quota-
tion marks denote the fact that the PDF used is only an estimated PDF.

In this alternative method, one can use moments of a linear combination of any user-
specified nonlinear functions of the observations; the equations to be solved are always 
linear, regardless of the particular functional dependence of the theoretical conditional 
moments on the parameters. But, when polynomial nonlinearities are used, the higher 
the order of the polynomials, the higher the order of the required moments of the origi-
nal data. The posterior PDF estimator requires orders of moments up to twice the order 
of the polynomial.

The alternative method is optimal in the Bayesian sense that its estimate of the poste-
rior PDF is a minimum mean-squared-error estimate subject to the selected constraint 
on the nonlinearities used.

This method requires calculating the sum of the moments, conditioned on the 
unknown parameter values, weighted by a prior PDF for those parameters. But one can 
always use a uniform PDF over a sufficiently large finite region of the domain if there is 
no knowledge of a prior PDF. This is tantamount to switching from a Bayesian approach 
to a maximum-likelihood (ML) approach, since the posterior PDF, as a function of the 
unknown parameters, is proportional to the likelihood function over the admissible 
region of the domain of the uniform prior PDF. However, the ML approach here is still 
only maximum-“likelihood” because the likelihood function used is only an estimated 
likelihood function.

This alternative method can use a single sample of a stationary (or cyclostationary) 
sequence of random variables, which favors applications to time series analysis, or it can 
use multiple samples of one or more random variables.

To provide the reader with a look ahead at what this new method offers in compari-
son with the classical MoM, Table  1 summarizes the key characteristics of these two 
methods.

Expanding on Table  1, the radically different MoM produces more than just a sin-
gle estimate for each parameter; it produces an estimate of the posterior PDF of the 
unknown parameters. This “PDF” can be used to calculate most “probable” estimates 
of the unknown parameters (their posterior “PDF” modes) which equal maximum-
“likelihood” estimates when the prior PDF is chosen to be uniform, or it can produce 
minimum “mean”-squared-error estimates (their posterior “means”) or minimum 
“mean” absolute value of error estimates (their posterior “medians”) where, in all cases, 
the quotation marks denote the fact that the posterior PDF used in the estimates is the 
MMSE estimate of the true posterior PDF, subject to a user-specified constraint on the 
structure (functional form) of that estimator’s dependence on the observed data.

Prior to recognizing the applicability of this method to multivariate statistics, it was 
devised and used to design linear and quadratic communications receivers for digitally 
modulated signals and was found to have strong resemblances to statistically optimum 
receivers that are linear or quadratic under the simplifying assumption (for the optimum 
receiver) of additive Gaussian noise [4, 5].

The purpose of this article is to show that this method is promising for not only sta-
tistical inference based on single samples of time series data but also for multivariate 
statistical inference based on multiple samples in general. The particular applications 
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studied in the original papers [4, 5], which focused on data communications system 
design, demonstrated that the new method is analytically tractable and can indeed 
produce useful parameter estimates. But, the applicability to multivariate statistical 
inference using multiple samples has not been recognized or pursued. The theoretical 
advantages of the alternative method identified in Table 1 provide strong motivation 
by showing when the new method can be expected to be competitive with the pri-
mary methods 3, 4 for application to multivariate statistics in general.

The radically different MoM is no less different from the much newer generalized 
MoM introduced by Hanson [9] than it is from the classical MoM from a century ear-
lier, and the generalized MoM is equivalent to several other methods introduced 20 to 
30 years earlier [9].

There is a limitation to the applicability of this new method. As stated in row 2b 
of Table  1, the user must be able to calculate the moments specified in row 2a of 
this table, as explicit functions of the unknown parameters. This typically requires 
a model in which the unknown parameters appear explicitly in the data model. For 
example, if the unknown parameter is the variance of one random variable for which 
multiple samples are available, the expected values of any nonlinear functionals to 
be used for estimation (e.g. the squaring function), conditioned on knowledge of the 
variance, are not defined; e.g., the fourth moment conditioned on knowledge of the 
variance is undefined, except in very unique cases like jointly Gaussian variables.

Table 1  Advantages of the radically different MoM

# Comparison basis Classical method of moments Radically different MoM
1. Functionals of data used Uses sample moments Uses linear combinations of any 

specified functionals of samples, 
including for example optimally 
weighted sample moments

2. Model Used Probabilistic conditional moments 
of data

Probabilistic conditional first and 
second-order moments of specified 
functionals of data

3. Nature of equations to be Solved Generally nonlinear, except for 
Autoregressive models

Always linear

4. Breadth of Optimality Criteria Produces a single solution with no 
optimality properties in general

Produces different solutions for dif-
ferent choices of optimality criteria

5. Convergence to ML or Min-Risk 
Estimate

Has no general relationship to 
ML or Min-Risk estimates, except 
asymptotically as the amount of 
data grows without bound

Converges to ML or Bayesian Min-
Risk estimate (when parameters 
as order of prior PDF is known) of 
polynomial estimator increases, 
assuming the Taylor series of the 
posterior probability converges, and 
sample moments converge

6. Use of Prior Information Does not use prior information Uses prior information in an optimal 
manner when available

7. Number of Samples Used for each 
random variable

Typically, as many as possible One (e.g., for long time series) or 
many

8. Philosophy of Approach Purely ad hoc Disciplined application of Bayesian 
methodology

9. Ability to address dynamic as well 
as static models

Is not convenient for tracking 
rapid changes in parameters of 
interest

Is inherently amenable to tracking 
rapidly changing parameters
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Because there is much distracting detail in the following presentation of the derivation 
of the new MoM, a streamlined summary of this derivation is provided in Appendix 1. 
Readers may prefer to read Appendix 1 first in order to know in advance where the deri-
vation is heading as it proceeds through the following sections of this paper.

2 � Classical method of moments
Assume we have R observations (samples) {xk ,r : k = 1, 2, . . . ,K , r = 1, 2, . . . ,R} of 
K random variables {Xk} and a model of the functional dependence of these random 
variables on Q unknown parameters θ = {θq : q = 1, 2, . . . ,Q} and L random variables 
Z = {Zl : l = 1, 2, . . . , L}

We briefly consider three alternative assumptions and then down-select to one: 

1.	 the joint PDF of {Xk} is known, or
2.	 the joint PDF of {Zl} is known and this enables calculation of the joint PDF of {Xk} , or
3.	 a formulaic probabilistic model of X is available and enables the calculation of the 

joint moments of {Xk}

Cases 1) and 2) are quickly dispensed with here because resorting to ad hoc methods 
in these cases is generally not necessary unless issues of complexity arise. To be more 
specific, we consider the well-known relationship among prior (before data observation) 
and posterior (after data observation) probabilities

where p(θ) is the prior PDF of the parameters, p(θ |x) is the posterior PDF, p(x|θ) is the 
Likelihood Function and p(x) is the unconditional data PDF, which can be decomposed 
into conditional PDFs (likelihood function values) as follows:

or, for discrete-valued parameters,

In the abbreviated notation used here, the particular PDF function is denoted by the 
symbol used for its arguments.

Given knowledge of the functions p(θ) and p(x|θ) , the other two functions in (2) can 
be calculated, and one can choose to use an ML estimate or any minimum Bayes-risk 
estimate of the parameter vector θ.

Consequently, resorting to the ad hoc MoM is generally not necessary for parameter 
estimation unless these functions are not known or are exceedingly difficult to calculate, 
particularly the Likelihood Function.

For case 3), the classical MoM for estimating the values of {θq} is to: 

(1)Xk = fk(θ;Z)

(2)p(θ |x) =
p(x|θ)p(θ)

p(x)

(3)p(x) =

∫
p(x|θ)p(θ)dθ

p(x) =
∑

θ

p(x|θ)p(θ)
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(1)	equate M ≥ Q calculated joint probabilistic moments of {Xk} to the M correspond-
ing sample moments of {xk ,r : k = 1, 2, . . . ,K ; r = 1, 2, . . . ,R} . For example, some 
subset M of the (K 2 + K )/2 unique moments from the set of K 2 second-order 
moments can be used: 

Then, 

(2)	try to solve this set of M simultaneous equations.

3 � Radically different method of moments
In preparation for introducing the alternative MoM, we briefly expand the above dis-
cussion of Cases 1) and 2) from Sec. 2. It follows from (2) that any difference between 
the ML estimate and the MAP estimate is completely determined by the prior PDF. In 
the event that the prior PDF is uniform over the region where the likelihood function 
reaches its maximum value, then the ML and MAP estimates are equal. In  situations 
where knowledge of a non-uniform prior PDF is not available, it is common to assume 
it is uniform over a sufficiently large finite region A in the prior-PDF domain, Q-dimen-
sional Euclidean space:

where |A| denotes the volume of A. In this case, (2) reduces to

and (3) reduces to

It follows that the maxima of the likelihood function and the posterior PDF coincide, 
and these two alternative methods become one and the same:

Unfortunately, whether or not the prior PDF is known, if either the likelihood func-
tion or the posterior probability is unknown, neither the ML nor Min-Risk methods 
can be used, and the MoM 3, or the generalized MoM (GMM), Method 4, are likely to 
be resorted to. However, the interpretation of θ as a vector of random variables instead 
of unknown constants enables a radically different alternative to the MoM and GMM 
to be derived. In the original formulation of this method for time series analysis, the 
name structurally constrained Bayesian methodology (SCBM) [6] was introduced. This 

(4)E{XjXk |θ} =
1

R

R∑

r=1

xj,rxk ,r for j, k = 1, 2, . . . , K

p(θ) =

{
1

|A|
, θ ∈ A

0, θ /∈ A

p(θ |x) =





p(x|θ)

|A|p(x)
, θ ∈ A

0, θ /∈ A

p(x) =
1

|A|

∫

A
p(x|θ)dθ

argmax
θ∈A

{p(θ |x)} = argmax
θ∈A

{p(x|θ)}
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descriptive name is also appropriate in the more general setting of multivariate statis-
tics based on multiple samples; however, it has the disadvantage of suggesting that a full 
probabilistic model for the data is available, as it must be in classical Bayesian statis-
tics. For this reason, the alternative name Structurally constrained Bayesian method of 
moments is suggested here. The same acronym can be used. The substantive advantages 
of the SCBM over the classical MoM are described in Table  1 (entries 1, 3–6, 8, 9 in 
Table 1).

In the SCBM, knowledge of the posterior PDF required by the MAP and other Bayes-
ian methods is replaced with the requirement of knowledge of moments of X condi-
tioned on θ , as in the classical MoM. Such moments can often, in practice, be calculated 
from the model (1), even when the posterior PDF and the likelihood function cannot be 
calculated.

The SCBM specifies (1) a constraint that the estimator be confined to some linear 
space derived from the observations X , and (2) a performance criterion for optimizing 
an estimate of the posterior PDF.

The following discussion explains the extension of the original work on the SCBM to 
multivariate statistics for which the classical MoM was devised. This discussion is not a 
necessary part of the radically different MoM when applied to the classical MoM data 
model. But it does lead to an understanding of why the SCBM is able to address dynamic 
as well as static MOM problems and produce tracking parameter estimates.

When more than one sample of the vector of observed random variables is available, 
say R as in (1), each sample can be interpreted as originating from a distinct K-dimen-
sional vector X r , all R of which are identically distributed and are concatenated to form 
the composite RK-dimensional column-vector of observations X = [XT

1 X
T
2 . . .XT

R ]T . 
In this case, each X r can contain as few as K = 1 random variable, Xr . This enables 
the SCBM to accommodate scalar-valued time series of observations—for which the 
rth observed random variable Xr is the rth time sample of a scalar-valued stochastic 
process—as well as the classical MoM setup involving multiple (R) statistical samples 
{xr}

r=R
r=1 of a single K-dimensional random vector X of observations, each sample vec-

tor depending on the same unknown parameter vector θ in which time may play no 
role. The SCBM was originally proposed for time series analysis for communications 
systems, i.e., for statistical signal processing. But, with this simple device of reindexing 
and re-interpreting, it becomes apparent that the methodology applies as well to the 
classic multivariate statistics problem for which the MoM was created. The stochastic 
process model with a single scalar-valued sample path of length KR that is equivalent 
to the K-variate model with R sample vectors has a special temporal structure because 
the sequence of RK times samples has a block structure in which the joint PDF of any 
subset of time samples depends periodically on the time shift parameter with a period 
of K. That is, the process is Cyclostationary [10, 11]. And this is precisely the type of 
stochastic process for which the SCBM was originally created [4, 5]. However, in the 
models originally addressed with the SCBM a sequence of R random Q-vector param-
eters {�r} is stationary whereas, for the classical MoM model, reinterpreted as a scalar-
valued time series model, the Q-vector is fixed from one period to another {θ r = θ} 
and is not treated as a realization of a random vector. Therefore, instead of estimating a 
time sequence of Q-vectors, as in the typical communications system application, there 
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is only one Q-vector for all blocks of K time samples. However, this reveals that the 
SCBM allows for the MoM data model to be generalized to allow for some evolution 
of parameter values as more samples are collected. This would be done by allowing the 
parameter vector to become dependent on the data-block index r so that the otherwise 
static SCBM-based MoM becomes dynamic and tracks evolving parameters. The case 
in which such changes occur slowly is accommodated by including high correlation in 
the stationary sequence of random vectors. For the other extreme of maximally rapid 
changes in the parameter vector, the parameter sequence can be modeled as independ-
ent and identically distributed. For this dynamic MoM problem, the original time series 
formulation [4] and [6] is preferred to the classical MoM problem formulation.

3.1 � Structural constraint

For each value of θ , the posterior probability estimator p̂(θ |X) must be some linear func-
tional of some set of specified nonlinear functions {gj(X)} of the random variables X mod-
eling the observations. A sufficiently general linear functional for many applications has the 
form

where the dot represents tensor product. The set of values of p̂(θ |X) for each specified 
value of θ generated by all component linear functionals {Hj(θ)} of the specified set of 
nonlinear functions {gj(·)} of X is a linear vector space � of random variables. For exam-
ple, one can choose

in which case (5) reduces to

which is a multivariate polynomial of order 2. Of course, this linear plus quadratic form 
is easily generalized to higher-order polynomials. In (7), {hk(θ)} is a representation (ker-
nel) of the functional H1(θ) and {hk ,l(θ)} is a representation of the functional H2(θ) . In 
general, the functions {gj(X)} nonlinearly map the data of a given dimension (e.g., a 1 
dimensional vector) into possibly higher dimensions (e.g., a 2 dim tensor) as illustrated 
in (6), and the functionals {Hj(θ)} , which are tensors, each map this multi-dimensional 
data into scalars.

For applications in which the observed data is a continuous-time stochastic process, 
{X(t) : t ∈ {a, b} ⊂ (−∞,+∞)} , (7) becomes

which is a 2nd-order Volterra-like counterpart of a 2nd-order polynomial.

(5)p̂(θ |X) =
∑

j

Hj(θ) ·
[
gj(X)

]

(6)
g1(X) = X

g2(X) = XXT

(7)p̂(θ |X) =
∑

k

hk(θ)Xk +
∑

k ,l

hk ,l(θ)XkXl

(8)p̂(θ |X) =

∫ b

a
h(t; θ)X(t)dt +

∫ b

a

∫ b

a
h(t, u; θ)X(t)X(u)dtdu



Page 12 of 26Gardner ﻿EURASIP Journal on Advances in Signal Processing         (2025) 2025:17 

In this case, {gj(X)} and {Hj(θ)} are, respectively, counterparts for continuous-time 
data, of possibly dimension-expanding nonlinear data transformations and linear func-
tionals of the data, for the discrete-time data described above.

This choice to constrain the estimator to be in a specified linear vector space facilitates 
the analytical optimization of the estimator.

In the above example, (6), the solution uses non-centralized moments. A recom-
mended alternative is to replace X with X = X − E{X} . Also, the term g0(X) = 1 
for which H0(θ) · g0(X) = h(θ) , a constant scalar, can be included in (6). This adds 
to the RHS of (7) and (8) the constant term h0(θ) . These modifications are illustrated 
in [5], and they are made in some of the examples below. In addition, the quantity 
p(θ |X) can be replaced with p(θ |X) − E{p(θ |X) = p(θ |X) − p(θ) , which is done in 
the examples below. Observe that p(θ |X) = p(θ |X) . These changes amount to refor-
mulating the MMSE estimation problem as a zero mean error/minimum error vari-
ance estimation problem.

This completes the explanation of the types of structural constraints imposed by the 
SCBM method. We now move on to a description of the optimality criterion.

3.2 � Optimality criterion

The performance criterion for optimizing the structurally constrained estimator of the 
posterior PDF arises from selecting squared error as a cost function. Then the Bayes 
Risk to be minimized, which is the expected value of the cost, is the mean-squared error 
(MSE):

This may seem strange at first glance because probabilities are not random variables. 
However, when a random variable X is substituted in place of a sample observation x , 
inside the function p(θ |·) , the function value becomes a random variable. For the param-
eter estimation problems of interest here, we have a set of multiple random variables 
indexed by the parameter vector θ.

The optimization problem before us is to find the estimator p̂(θ |X) for each value of θ 
that minimizes the above MSE subject to the constraint that the random variable p̂(θ |X) 
is contained in the specified linear vector space � of all admissible estimators, which we 
denote by p̃(θ |X) . The solution to this optimization problem is well-known to be the 
orthogonal projection of the vector p(θ |X) , generally outside of � , onto the hyperplane 
� contained in the linear space of all admissible functionals of the observables.

A technical detail here is that, in order to apply the classical orthogonal projection 
theorem, the linear space must be an inner-product space, and this in turn requires that 
the vectors in the space all have finite norms; in this application, this means the prob-
ability model of the nonlinearly transformed observed random variables {gj(X)} must 
have finite mean-squared values. This puts constraints on both the nonlinearities used, 
{gj(·)} , and the probabilistic model of the original observations {p(X |θ) : θ ∈ A} . These 
constraints are to be expected: one cannot use mean-squared error if random variables 
of interest do not have finite mean-squared values. Nevertheless, even if X does not have 

(9)MSE = E{[p̂(θ |X) − p(θ |X)]2}
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finite mean-squared values, the nonlinearities {gj(·)} can be chosen such that {gj(X)} do 
have finite mean-squared values.

3.3 � Solution for optimum posterior PDF estimate

The necessary and sufficient condition that characterizes the orthogonal projection solu-
tion described above is the following orthogonality condition:

By using the estimator characterization (5), this condition can be re-expressed as

which is equivalent to

where (because E{·} is linear) Hj(θ) operates on the quantity in square brackets after the 
expectation is executed, as made more explicit below in (19).

As a final step in simplifying these equations, we use the magic relationship:

in which the unknown posterior PDF vanishes and the assumed-known prior PDF (pos-
sibly a uniform PDF when it is not known) appears. Substituting (13) into (12) produces

The unconditional moments in the left member of this set of linear equations can be re-
expressed in terms of conditional moments as follows:

This is a set of linear equations in the unknown linear functionals {Hj(θ)} . Thus, regard-
less of the nonlinear functions selected in the structural constraint, the equations to be 
solved are always linear. In addition, when the nonlinear functions {gj(X)} are comprised 
of homogeneous polynomials, as in the examples above, the linear equations are fully 
specified by moments of X conditioned on the parameters θ.

(10)E{[p̂(θ |X) − p(θ |X)]p̃(θ |X)} = 0 ∀p̃(θ |X) ∈ �

(11)E








�

j

Hj(θ) · [gj(X)] − p(θ |X)


gk(X)



 = 0 ∀{k}

(12)
∑

j Hj(θ) · E
{
[gj(X)]gk(X)

}

= E
{
p(θ |X)gk(X)

}
∀{k}

(13)

E
{
p(θ |X)gk(X)

}
= E

{
p(X |θ)p(θ)gk(X)

p(X)

}

=

∫
p(x|θ)p(θ)gk(x)

p(x)
p(x)dx

=

∫
p(x|θ)gk(x)dx p(θ)

= E
{
gk(X |θ)

}
p(θ)

(14)
∑

j

Hj(θ) · E
{
[gj(X)]gk(X)

}
= E

{
gk(X)|θ

}
p(θ) ∀{k}

(15)
∑

j Hj(θ) ·
∫

E

{
[gj(X)]gk(X)|θ̃

}
p(θ̃)dθ̃

= E
{
gk(X)|θ

}
p(θ) ∀{k}
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This latter observation reveals that the SCBM is a method of moments in the special 
case for which polynomial nonlinearities {gj(·)} are selected, and the radical differ-
ence between the details of the SCBM and those of the classical MoM and GMM 
explains why this method is called a radically different MoM. Another interesting 
observation that can be made from (15) is the fact that by using the SCBM, the oth-
erwise required knowledge of the likelihood function—the data PDF conditioned on 
the parameter values—is replaced with the required knowledge of the 1st - and 2nd

-order moments, conditioned on candidate values of the unknown parameter vector, 
of prescribed nonlinear functions of the data which, for up-to-nth-order polynomial 
functions of the data, are 1st - through 2nth-order moments of the data, conditioned 
on candidate values of the unknown parameter vector. So, the required knowledge of 
likelihood functions—the data PDFs conditioned on parameter values—is replaced 
with the required knowledge of a finite set of data moments conditioned on param-
eter values. This is, after all, the essence of methods of moments.

As mentioned in a previous section, when the prior PDF is known, this is additional 
information the SCBM uses, which the classical MoM does not use. And, in addition, 
when the prior PDF is not known, it can be assumed to be uniform over a user-specified 
region of parameter space which the user can specify according to any relevant prior 
information.

To illustrate the design equation whose solution fully specifies the posterior PDF esti-
mate for each set of parameter values θ of interest, we consider here the example (6), 
modified by inclusion of the k = 0 term and replacement of X by X  as discussed in Sect. 
. Using (12), modified by replacement of p(θ |X) with p(θ |X) − p(θ) , we obtain

which, using modified (6), is equivalent to

which can be more explicitly expressed as

(16)
H0(θ) · E

{
[g0(X)]gk(X)

}
+ H1(θ) · E

{
[g1(X)]gk(X)

}

+H2(θ) · E
{
[g2(X)]gk(X)

}

=
(
E{gk(X)|θ} − E{gk(X)}

)
p(θ) for k = 0, 1, 2

(17)
H0(θ) · E

{
[1]gk(X)

}
+ H1(θ) · E

{
[X]gk(X)

}

+H2(θ) · E

{
[XX

T
]gk(X)

}

=
(
E{gk(X)|θ} − E{gk(X)}

)
p(θ) for k = 0, 1, 2

(18)

H0(θ) · E{[1]} + H1(θ) · E
{
[X]

}

+H2(θ) · E

{
[XX

T
]
}

= (E{1|θ} − E{1})p(θ)

H0(θ) · E
{
[1]X

}
+ H1(θ) · E

{
[X]X

}

+H2(θ) · E

{
[XX

T
]X

}
=

(
E{X |θ} − E{X}

)
p(θ)

H0(θ) · E

{
[1]XX

T
}

+ H1(θ) · E

{
[X]XX

T
}

+H2(θ) · E

{
[XX

T
]XX

T
}

=
(
E{XX

T
|θ} − E{XX

T
}
)
p(θ)
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Using (7), we can now re-express the above set of linear equations more explicitly as 
follows:

The unconditional moments in (19) can be characterized in terms of conditional 
moments using (3) as follows for example:

If no prior information is available for specifying a prior PDF, a uniform PDF can be 
used to obtain

The solutions to (19) are used in the estimator formula (7), modified by replacement of 
p̂(θ |X) with p̂(θ |X) − p(θ).

1 � [Style3 Style3]Example 1

Linear Estimator In the case of a constant plus linearly constrained estimator of the pos-
terior PDF, the design equation (18) reduces to

which has the explicit solution

Consequently, the posterior PDF estimator, given by the modified version of (7), reduces 
to

Substituting (23) into (24) yields

(19)

h(θ) +
∑

k ,l hk ,l(θ)E{XkXl} = 0

∑
k hk(θ)E{XkXj} +

∑
k ,l hk ,l(θ)E{XkXlXj}

= E{Xj|θ}p(θ) ∀j

h(θ)E{XjXi} +
∑

k hk(θ)E{XkXjXi}

+
∑

k ,l hk ,l(θ)E{XkXlXjXi}

=
(
E{XjXi|θ} − E{XjXi}

)
p(θ) ∀i, j

(20)E{XkXlXjXi} =

∫
E{XkXlXjXi|θ}p(θ)dθ

(21)
∫

E{XkXlXjXi|θ}p(θ)dθ =
1

|A|

∫

A
E{XkXlXjXi|θ}dθ

(22)
h(θ) +

∑
k hk(θ)E{Xk} = 0

h(θ)E{Xj} +
∑

k hk(θ)E{XkXj} = E{Xj|θ}p(θ) ∀j

(23)

h(θ) = 0

h(θ) =
[
E{XX

T
}
]−1

E{X |θ}p(θ)

(24)p̂(θ |X) = p(θ) + hT (θ)X

(25)p̂(θ |X) = p(θ)

(
1 + E{X

T
|θ}

[
E{XX

T
}
]−1

X

)
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Denoting the square root of the inverse of the covariance matrix in (25) by W  , and 
denoting the centered decorrelated vector of observations by Y = WX  , we can re-
express (25) for a particular sample of data x as

In words, the constant plus linear estimator probabilistically centers the data and 
probabilistically decorrelates it and then empirically correlates it with its probabil-
istic mean conditioned on the parameter vector, multiplies this by the prior PDF and 
adds this to the prior PDF. The sign and magnitude of this meaningful empirical cross-
correlation determine if the posterior probability estimate is larger or smaller than 
the prior probability, and by how much. This is what comes from using an optimally 
weighted centered sample moment as an alternative to the MoM’s unweighted (and 
centered) sample moment. Even for this crudest (lowest order) version of this class of 
estimators, it appears to be smarter than AI, which could be expected to produce the 
classical MoM parameter estimator.

For a pseudo-MAP estimator of θ , (25) yields

which can be re-expressed using (26) as

Similarly, the pseudo-MMSE estimator, which is the pseudo-posterior mean, is given by

where dθ = dθ1dθ2 . . . dθQ.

1 � [Style3 Style3]Example 2
Linear Plus Quadratic Estimator In the case of a constant plus linearly plus quadrati-
cally constrained estimator of the posterior PDF, for the special case in which the odd-
order unconditional moments of the observed data are zero, the design equations (19) 
reduce to the following equations:

which can be solved to obtain

(26)p̂(θ |x) = p(θ)

(
1 + E{Y T |θ}y

)

(27)θ̂MAP = argmax
θ

{
p(θ)

(
1 + E{X

T
|θ}

[
E{XX

T
}
]−1

x

)}

(28)θ̂MAP = argmax
θ

{
p(θ)

(
1 + E{Y T |θ}y

)}

(29)θ̂MMSE =

∫
p(θ)

(
1 + E{Y T |θ}y

)
θdθ

(30)

h(θ) +
∑

k ,l hk ,l(θ)E{XkXl} = 0

∑
k hk(θ)E{XkXj} = E{Xj|θ}p(θ) ∀j

h(θ)E{XjXi} +
∑

k ,l hk ,l(θ)E{XkXlXjXi}

=
(
E{XjXi|θ}−E{XjXi}

)
p(θ) ∀i, j
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The first and third equations in (31) can be combined to obtain the desired three explicit 
solutions for the unknown scalar, vector, and matrix defining the estimator. As can 
be seen, the solution for hk ,j(θ) requires the inversion of a rank-4 tensor. A standard 
approach to doing this is to represent the tensor in terms of matrices and use existing 
software to invert the matrices and then convert those back to the desired inverse tensor. 
See, for example, the article [12], and references therein, and [13].

1 � [Style3 Style3]Example 3
Higher-Order Polynomial Estimators Observe from (19) that the representations of the 
linear functionals {Hj(θ)} for homogeneous polynomial nonlinearities {gj(X)} are rank-1 
tensors (vectors) in one linear design equation for first-order polynomials, then rank-1 
and rank-2 tensors (vectors and matrices) in two simultaneous linear design equations 
for second-order polynomials, then rank-1, rank-2, and (by extrapolating) rank-3 ten-
sors in three linear design equations for third-order polynomials, etc.; and the conditional 
moments of the modeled data defining these linear equations are the elements of rank-1 
and rank-2 tensors for first-order polynomials, then rank-1 through rank-4 tensors for sec-
ond-order polynomials, and then rank-1 through rank-6 tensors for third-order polynomi-
als, etc.

•	 This pattern enables one to simply write down the tensor design equations for any 
order polynomial estimator of the posterior PDF. All the analytical work has been 
done here, leaving for the user only the computational challenge of inverting tensors or 
otherwise solving explicit linear tensor equations.

4 � Summing up the radically different MoM
The SCBM can be summed up as follows:

•	 The pseudo-Min-Risk estimate of a parameter vector is calculated from the structur-
ally constrained Min-MSE estimate of the random posterior PDF in the same man-
ner that the true Min-Risk parameter estimate would be computed from the true 
posterior PDF, were it available.

•	 The Min-MSE posterior PDF estimate is calculated from the structurally constrained 
formula 

 in which the nonlinear functions {gj(x)} are specified by the user (e.g., (6)).

(31)

h(θ) = −
∑

k ,l hk ,l(θ)E{XkXl}

hk(θ) =
∑

j

[
E{XkXj}

]−1
E{Xj|θ}p(θ) ∀k

hk ,l(θ)=
∑

j,i

[
E{XkXlXjXi}

]−1

·
[(

E{XjXi|θ}−E{XjXi}
)
p(θ)−h(θ)E{XjXi}

]
∀k ,l

p̂(θ |x) =
∑

j

Hj · [gj(x)]
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•	 The linear functionals (tensors) {Hj} in this formula are the solutions to the set of 
simultaneous linear equations 

 (e.g., (19)). If the prior PDF is unknown, it is approximated with a uniform PDF over 
a user-specified region of the parameter space (e.g., (21)).

•	 If the user-specified nonlinear functions are multivariate polynomials, then all 
expected values in these linear equations are conditional moments obtained from a 
probabilistic model of the observations, justifying this as a method of moments [e.g., 
(19)–(21)].

•	 Moreover, for homogeneous polynomial nonlinearities, the linear design equations 
can be explicitly written down in terms of linear tensor equations, knowing nothing 
more than the specified order of the polynomial to be used. Similarly, the estimator 
formula can be explicitly written down as a polynomial in the observed data. The 
only work a user needs to do is solve the known simultaneous linear tensor equations 
and implement the polynomial posterior PDF estimator.

•	 As explained below in Sect.  , the estimated posterior PDFs satisfy two of the three 
traditional axioms of probability

5 � Options for SCBM solutions for parameter estimates
Once we have the optimum estimate of the posterior PDF, we can proceed to choose 
a particular Bayesian minimum-risk performance criterion for estimating the parame-
ters θ . For example, we can choose the posterior mode (MAP) criterion described above 
which, for the assumption of uniform prior PDF, is equivalent to ML; or we can choose 
the posterior median, which derives from using the absolute value of the error in each 
element of the estimate of the vector θ for the risk function. We also can use the poste-
rior mean, which results from using the squared error of each element of the estimate of 
the vector θ . Some comparisons have been made between the pseudo-posterior mode 
and pseudo-posterior mean estimates in [4, 6], and especially [7]. The results of these 
comparisons depend on the particular structural constraints chosen. Consequently, 
there may be low likelihood of obtaining any general comparative results on perfor-
mance dependence on the selected type of risk. Nevertheless, the results in [7] establish 
some conditions under which the estimated posterior mean is superior to the estimated 
posterior mode for the decision problem of classifying observed data into one of a finite 
number of specified classes. This is interesting since the mode seems like a more natural 
choice and actually is when the posterior probability is not just an estimate.

6 � Application of SCBM to decision making
The Bayesian approach to minimum-risk decision making uses the same minimum-
risk criterion as that it uses for parameter estimation. The primary difference is that the 
parameters for decision making are discrete-valued, and each discrete value corresponds 
to a particular hypothesis. The hypothesis that is decided to be the correct one mini-
mizes the risk, given the particular observed data. Consequently, the SCBM described in 

∑

j

Hj ·

∫
E

{[
gj(X)

]
gk(X)|θ̃

}
p(θ̃)dθ̃ = E{gk(X)|θ}p(θ) ∀{k}
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this paper applies as well to decision making as it does to parameter estimation. This has 
been pursued in the early work reported in [4, 6, 7]. The Author does not know of any 
formalism that has been formulated for a decision-making counterpart to the classical 
MoM formulated for parameter estimation. (However, one would expect that some work 
on this concept has been done.) Consequently, no complement to Table 1 that applies to 
decision making is included herein. Nevertheless, it seems likely that Table 1 may apply, 
as is, to both parameter estimation and decision making.

7 � Properties of the SCBM posterior PDF estimator
It is shown in the original contribution [6] that the posterior PDF (and discrete prob-
ability mass function) estimates provided by the SCBM satisfy the traditional axioms of 
probability, regardless of the specific structural constraints chosen by the user, except 
for the positivity axiom. Another property of interest is revealed by the general solution 
(26) for a constant plus linear constraint, and this is that the posterior PDF estimate is 
explicitly specified in terms of the prior PDF and the conditional mean of the centered 
and decorrelated data. In all cases of essentially arbitrary nonlinearities in the structural 
constraints, the solution is fully specified in terms of the prior PDF and conditional first- 
and second-order moments of the nonlinearly transformed data. And for polynomial 
nonlinearities, these are equivalent to higher-order conditional moments of the model 
for the original random data, guaranteeing this is indeed a method of moments; how-
ever, in place of the sample moments of the data used in the classical MoM, more gen-
eral weighted averages of the data and products of the data with itself are used, and the 
weighting functions are optimized according to a Bayesian minimum-risk (minimum 
mean-squared-error) criterion.

8 � Applications
To illustrate a non-traditional type of application of this alternative MoM, previously 
published work is referred to here. In [4, 6] the problem of optimizing a digital com-
munications system receiver is addressed. One of the models used for this is a contin-
uous-time cyclostationary process defined for all time, and the unknown parameters 
in this process comprise an infinite sequence of discrete values from a finite alphabet 
of encoded symbols representing the information-bearing data being transmitted on a 
stream of pulses. Thus, this is an ongoing decision problem in which a decision as to 
which symbol was transmitted is made every symbol interval (after some delay required 
to process data following each symbol interval). The data received for each symbol 
extend over multiple symbol intervals, creating what is called intersymbol interfer-
ence. As shown in [4, 6], the solution for a constant plus linearly constrained receiver 
has much in common with the min-risk receiver for additive Gaussian noise: It is com-
prised of a parallel bank of matched filters, each filter matched to one of the finite set 
of transmitted pulse shapes, followed by a symbol-rate time sampler and a multi-input/
multi-output sampled-data filter which produces SCBM estimates of the posterior prob-
abilities of the transmitted symbols. This portion of the receiver structure that follows 
the bank of matched filters is known as a Fractionally Spaced Equalizer, which attempts 
to remove the intersymbol interference; however, its function is seen here to be much 
more than a traditional channel equalizer. In fact, it is more akin to a discrete-time 
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Wiener filter. These probability estimates can be used for making decisions on which of 
the symbols from the finite alphabet were transmitted or for estimating symbol values or 
estimating the entire transmitted signal.

Another application, addressed in [5], considers parameter estimation and decision 
making for marked and filtered Poisson processes, used to model optical communica-
tions signals transmitted over optical fibers. Results obtained for a linearly constrained 
receiver strongly paralleling those obtained in [4, 6].

Yet another application to communications receiver design is addressed in [6], where 
a linear plus quadratically constrained receiver for non-coherent decision making for 
sinewave-carrier modulated signals is considered. Again, results obtained are similar to 
optimum receivers for signals in Gaussian noise.

9 � Reflection
Some of the concepts used to formulate the SCBM parameter estimation method could 
be said to be twisted–they are quite unconventional. Seeking a new MoM within the 
Bayesian framework seems unmotivated and, at first glance, unlikely to succeed. Yet, the 
Bayesian formulation is logical, and it leads to a tractable genuine MoM for two reasons: 

1.	 The infrequently used concept that the posterior probability, with the condition-
ing quantity—which is normally a sample of a set of observed random variables—
replaced with the observable random variables (not their samples), is itself a random 
variable and can be subjected to classical random variable estimation theory; though, 
it is uncommon to apply such theory to the problem of estimating an unknown 
deterministic function u(X) of the observations, which is exactly what the poste-
rior probability is. In fact, such a problem is generally unsolvable because it gener-
ally requires knowledge of the unknown function, even when the estimates are con-
strained to belong to a linear space derived from the observations, such as � herein. 
It appears, at first glance, by comparing (12) and (13), to be solvable under only one 
condition and this is that u(x) is proportional to the ratio p(x|θ)/p(x) of the likeli-
hood function to the unconditional PDF of the data, an example of which is the pos-
terior PDF in which case the proportionality factor is the prior PDF p(θ) . This condi-
tion is responsible for the disappearance of the unknown function u(X) = p(θ |X) in 
the RHS of the design equation (12) as per (13). However, a deeper look reveals that 
u(X) and p(θ |X)a for any scalar a can differ by any random variable that is orthogo-
nal to gk(X) for all k. A good example is u(X) equal to the event indicator function, 
u(X) = 1 for all samples X = x for which the event � = θ occurs and u(X) = 0 for 
all other X = x . It is easily shown that (12) reduces to (14) with this choice for u(X) . 
The reason for this is that p(θ |X) is the orthogonal projection of this indicator func-
tion onto the space of all finite mean-square functions of X (see [14, pp. 427–428]). 
Therefore, the orthogonal projection of this indicator function onto the linear sub-
space � is identical to the orthogonal projection of p(θ |X) onto �.

2.	 The SCBM is based on the adoption of minimum mean-squared error as an optimal-
ity criterion for estimating the function u(X) , together with the constraint on the 
estimator to a hyperplane in the space of all admissible functions g(X) of the data. 
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These two choices of formulation are responsible for the design equation (12) being a 
set of linear equations.

The observation above reveals that this alternative MoM could have been formulated 
in terms of estimating either any scaled version of the event indicator function or the 
ratio p(x|θ)/p(x) instead of the posterior PDF p(θ |x) . In these cases, the prior PDF p(θ) 
disappears (with the appropriate scalar a) from the RHS of the general design equation 
(15), but not the LHS.

Because this methodology is so highly structured in terms of the algorithms required 
for implementation, namely linear equation solvers and multivariate polynomial func-
tionals of the observations, it should be highly amenable to efficient algorithmic imple-
mentations in terms of either software computer applications or special purpose digital 
signal processing hardware.

As a final remark, it is mentioned that, unlike the radically different MoM, the classical 
MoM and GMM do not appear to be nearly as convenient a starting point for developing 
a tracking parameter estimator, regardless of how the memory of the sample moments 
calculator is adjusted, because every change in the sample moments requires the solu-
tion of a new set of generally nonlinear equations.

10 � Conclusions
A method of parameter estimation using only specified moments of the observed data is 
described. It is radically different from the classical method of moments (MoM) intro-
duced at the end of the nineteenth century and its generalization GMM, and shows 
promise for being competitive. The alternative method uses estimates of posterior PDF 
values of the unknown parameters—estimates that are constrained to be linear combi-
nations of specified nonlinear transformations of the observed data. These estimates are 
the solutions to linear equations specified in terms of first- and second-order moments 
from a probabilistic model of the nonlinearly transformed data. For polynomial nonlin-
earities up to the order n, these are equivalent to moments of the observed random vari-
ables up to the order 2n, revealing that this general method includes an alternative MoM 
as a special case; however, in place of the sample moments of the data used along with 
the probabilistic moments in the classical MoM and GMM, more general weighted aver-
ages of products of the data with itself are used, and the weighting functions are opti-
mized according to a Bayesian minimum-risk criterion. The solution for the posterior 
PDF estimate is studied analytically. Results are encouraging.

Appendix 1: Outline of derivation of new MoM
Background

•	 The method of moments (MoM) is a classical statistical technique for estimating the 
parameters of a probabilistic data model

•	 The MoM was introduced just prior to the turn of the nineteenth century by K. Pear-
son and P. Chebyshev, independently
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•	 It is designed for statistical inference where the available data consists of multiple 
samples of a set of random variables, with a partially specified probabilistic model

•	 The partial model needed is a set of joint moments of various orders for the random 
variables, showing explicit dependence on unknown parameters

The classical method of moments

•	 The number of moments M needed is equal to the number of unknown parameters a 
in these moment models (formulas); e.g., 

 for which f, g, h are known functions
•	 The statistics that are computed from the data consist of the sample moments cor-

responding to the theoretical moment models, e.g., 

•	 The inference procedure is to equate the computed sample moments to the theoreti-
cal moment formulas and attempt to solve these equations 

•	 The tractability of this MoM depends on the particular nonlinear equations

An Alternative Approach

•	 I recently observed that every multivariate statistical inference problem based on 
multiple samples can be reformulated as a problem of statistical inference for a single 
times series of data based on one sample path of the time series, consisting of con-
catenated time series segments equal to a first sample of the ordered set of random 
variables, followed by a second sample of the same random variables, and so on, until 
all samples have been included, e.g., 

•	 The theoretical model for this time series is a single sample path of a cyclostationary 
stochastic process {Yk} , with period equal to the number of random variables and 
with the time sequence of this set of random variables being i.i.d. from one period to 
the next: e.g., {x11, x

1
2} and {x21, x

2
2} are i.i.d.

M12 = E{X1X2} = f (a1, a2, a3)

M2 = E{(X2)
2} = g(a2)
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•	 This is a special cyclostationary process because it contains the same unknown 
parameters in every period

•	 I generalized this model to allow the parameter values to change from one period 
to the next and modeled them as samples of a stationary sequence of random vari-
ables, which preserves the cyclostationarity

•	 Then I invoked an unusual methodology I had introduced in the early 1970s for 
this type of cyclostationary process model which I used for commonly encoun-
tered digital pulse-modulated signals used in communications transmission sys-
tems

•	 The unusual methodology uses Bayesian concepts to formulate the problem of esti-
mating the parameter values (transmitted digits {ai} ) in terms of the sequence of pos-
terior probabilities, which can be used to compute various minimum-risk parameter 
estimates, such as maximum-posterior-probability estimates and minimum mean-
squared-error estimates, e.g., 

•	 Finally, I formulated an inference problem for estimating these posterior probabilities 
using structurally constrained minimum MSE estimators: optimum linear combina-
tions of any appropriate specified nonlinear transformation of the data samples 

•	 This particular formulation ensures the posterior probability estimates are always the 
solutions to sets of simultaneous linear equations

•	 By choosing polynomial nonlinearities, the equations are fully specified by weighted 
sample moments of the data; this makes it a MoM

•	 The weights are optimal in the sense of producing structurally constrained minimum 
MSE estimates of the posterior probabilities

•	 The aforementioned modeling of the sequence of parameter vectors in my model of 
multi-sample multivariate data enables this MoM to track unknown parameters that 
evolve with time. This does, however, require a probabilistic model for the sequence 
of parameter vectors, but this is a vehicle for trading off speed of tracking with mem-
ory or effective number of samples averaged over.

•	 In actuality, the reformulation process described above was performed in reverse 
order for the purpose of showing that the original work on time series was equivalent 
to a radically new MoM.

Summary

•	 A new method of moments has been introduced, and it is radically different from the 
four primary methods.

•	 The numerous advantages of the new method are fully described in Table  1 in 
Sect. 1.2.

•	 The utility of the new method was studied back in the 1970s for estimating digital 
symbols in digital transmission systems developed by Bell Telephone Labs

âi = max
ai

P(ai|{yk})

ˆ̂ai = max
ai

P̂(ai|{yk})
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•	 But more diverse applications to various specific multivariate parameter estimation 
problems, and comparison with the classical MoM, have not yet been pursued

What’s Unusual About this Application of Bayes Minimum Risk Methodology?

•	 The quantities to be estimated, the posterior probabilities of parameters, are deter-
ministic functions of the observed data.

•	 So, why do we need to estimate them?
•	 For the same reason we would choose to use the MoM: we do not know the com-

plete probabilistic model for the data and, because of this, we cannot calculate these 
functions as in (2), (3)

•	 The particular way I set up the problem for estimating the unknown function 

 of the known data requires knowledge of only moments of orders determined by the 
orders of the polynomial nonlinearities selected for the structural constraint

•	 This was not foreseen, but rather was discovered during my open-ended investiga-
tion as a young naïve investigator in my first year as an assistant professor

Appendix 2: Comments from the statistics community
The following paraphrased solicited comments received by the Author indicate impor-
tant future work needed to establish the place of this method among other methods 
thereby expanding the exposure of its relative advantages and disadvantages.

Comment Set 1

This paper compares a new method of moments (MoM) with a methodology previously 
introduced by the Author and with other types of MoM estimators. Potentially useful 
references are provided below, all posterior to the Author’s work in the 1970s but widely 
used today: [15] proposed what is today known as approximate Bayesian computation 
(ABC). Instead of using a likelihood, sample moments are used to perform Bayesian 
inference, conditional on the moments rather than the full sample of observations. In 
many settings, the expectation of the moments is not tractable (the integral in Section 3 
of this paper) and Monte Carlo simulations are used. See [16] for a review. A related, but 
less computationally intensive, approach is called Synthetic likelihood, proposed in [17].

See also [18]. This is related to quasi-Bayesian inference, see below. Another approach 
is to replace the likelihood with its empirical counterpart: the empirical likelihood which 
is computed under model constraints. In a Bayesian framework, this yields the Bayesian 
Empirical likelihood estimator of [19]. The authors in [20] consider quasi-Bayesian infer-
ence which builds on the generalized method of moments and discusses the possibility 
of using the characteristic function in a generalized method of moments setup; econo-
mists usually refer to [21] and other papers by the authors.

P(a|{yk})
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Comments Set 2

This paper introduces a quasi-Bayesian approach applicable when the likelihood func-
tion is not explicitly available, yet certain moments can be obtained as an explicit 
function of unknown parameters. Consequently, the paper proposes a method 
for conducting Bayesian estimation in contexts where the GMM or the method of 
moments (MoM) would typically be employed. Unlike previous pseudo-Bayesian 
estimations that approximate the likelihood function to derive the pseudo-posterior 
distribution, this work proposes a technique for directly approximating the posterior 
distribution itself. Potentially useful comments are provided below: 

1.	 There have been several papers proposing Bayesian estimation methods in contexts 
analogous to those discussed by the Author. Examples include works in [19, 22–24]. 
A comparison of the proposed method with these existing methods could further 
delineate its contribution.

2.	 Table 1 compares the proposed method with the MoM. Previous studies of pseudo-
Bayesian estimation have rigorously examined the theoretical foundation of utilizing 
pseudo-likelihood for Bayesian estimation, from both Bayesian and frequentist per-
spectives. Results from similar future studies of the Author’s method could serve to 
verify and supplement item 5 in the Author’s Table 1.
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