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A B S T R A C T

Cycloergodicity is the equivalence of sinusoidally weighted time averages of measurement functions on sample 
paths of a stochastic process exhibiting some form of cyclostationarity to their expected values which, in turn, 
equal sinusoidally weighted time averages of time varying expected values of those measurement functions. 
Colloquially, cycloergodicity is a generalization, from unweighted averages to sinusoidally weighted averages and 
thereby to periodic and almost periodic averages, of the property “time averages equal (time averages of) ensemble 
or population averages”. Despite the historical practice of treating ergodicity as a strictly mathematical subject in 
a theorem/proof format, this article provides a narrative presentation of previously missing cycloergodicity 
theorems, which are expressed in plain English, with minimization of distracting technical detail to enable 
readers to use the concepts in their work on probabilistic analysis of time-average statistics derived from single 
records of time series data without populations. The results obtained do not support the use of stochastic process 
models for the empirical types of applications addressed. This motivates a brief but hard-hitting perspective on 
an alternative probability model referred to as Fraction-of-Time Probability, a non-population probability. For 
technical details required for mathematical proofs of the theorems, readers are referred to a classic book.

1. Introduction to cycloergodicity

In mathematics, the single word ergodicity is used to represent the 
idea that a point in a moving system will eventually visit all parts of the 
space that the system moves in, in a uniformly random sense. For 
example, the system can be the mathematical model of an ensemble of 
trajectories (coordinate-vector-valued functions of time) of physical 
particles (points) in a gas within a chamber (a time/position space) or an 
ensemble of sample paths (called sample points—not the analogs of the 
gas particles) in the abstract sample space of all possible trajectories of a 
hypothetical stochastic process, such as a scalar-valued thermal noise 
voltage waveform, for which the term trajectory is used to convey the 
concept of a point moving along a locus in time/amplitude space. This 
mental construct is developed around the underlying concept of a hy
pothetical experiment which, when performed, produces at random one 
such trajectory. Ergodicity is intended to imply that the average or 
statistical behavior, over all trajectories at one point in time, of the 
system can be deduced (with probability equal to one) from the statis
tical behavior over time of a single randomly selected trajectory.

The concept of ergodicity has led to a substantive literature in the 
mathematics of probability and more generally measure theory and 
dynamical systems and also plays a key role in empirical time series 
analysis in the field of Mathematical Statistics. The objective of this 

article is to provide solid scientific support for a paradigm shift in 
Mathematical Statistics involving time series analysis, with no intended 
impact on the broader mathematical theory of Ergodicity, a field in 
which I claim no expertise.

The field of study motivating this article is the probabilistic analysis 
of statistics derived from time series analysis: the measurement of time 
averages of specified measurement functions of time series data for the 
purposes of statistical inference and decision making. This field is quite 
mature and there is no intention of contributing directly in any major 
way to the body of knowledge summed up in theory and methodology 
and algorithms for implementing inferences and decisions. Rather, the 
target here is rooted more deeply in the conceptualization and mathe
matical definition of probability as used for the basis for the probabilistic 
analysis of time-average statistics, though this does have an impact on 
both thinking and some aspects of the practice of probabilistic analysis.

This article is a prelude to a companion article [17], which provides a 
broad perspective on probabilistic modeling in science and engineering; 
the present article is motivated by the admonition: “know thine enemy”. 
The meaning here is that the new research results on cycloergodicity 
reported do not support the use of stochastic process models for the class 
of time series analysis problems of interest, which permeate the 
empirical components of science and engineering. This is explained in 
the final section of the paper, where a brief perspective on an alternative 
probability model is provided. This perspective is a component of the 
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full perspective on the alternative, called Non-Population Probability, 
that is presented in the companion paper.

For an experimentalist having measured a single time series of data 
and doing empirical data analysis by calculating time-average statistics, 
with no interest in hypothetical or real populations of time series, should 
a stochastic process model of the time series based on orthodox popu
lation probability (the Kolmogorov model) be introduced for the pur
pose of probabilistically quantifying the utility of the statistics or should 
unorthodox non-population probability based on fraction-of-time (FOT) 
measurements from the same time series be used, or should a mathe
matical model of an infinitely long version of the time series be used? 

• Answer 1: Were the empiricist to consult just about any mathematical 
statistician today (an expert in a formally recognized field of academic 
study and industrial laboratory work), there would, with high likelihood, 
be no quandary: the typical answer would be “population probability is 
the only recognized mathematical model of probability in Mathematical 
Statistics”.

• Answer 2: Were the empiricist to consult the Author of this article, who 
has a long history of innovation in time-series analysis and its applications 
in engineering, there would, with certainty, be no quandary: the answer 
would be “use the real data you have to calculate FOT-probabilities of 
whatever events involving the measured statistics are of interest, or use 
FOT-expected-values of whatever functions of the statistics are of interest, 
or, especially if the amount of data is lacking, use a formulaic model of the 
time series and calculate infinite-time FOT probabilities or FOT-expected 
values from that model.

Before discussing the pros and cons of these two conflicting answers, 
let us consider an example.

1.1. Motivating example

Let us start with a simple motivating example: An example of a time- 
average-based statistic from a time series is the empirical variance of a 
data record x(t) for some range of time, t. For specificity, let x(t) 
represent a thermal noise voltage in some electrical circuit for which the 
empirical variance is 

σ̂2
(x) =

1
W

∫W

0

[x(t) − m̂(x)]2 dt 

where m̂(x) is the empirical mean, 

m̂(x) =
1
W

∫W

0

x(t) dt 

(An alternative discrete-time model is completely analogous).
Assuming the data used above on the time interval [0, W] is only 10 

% of the entire available data record on the time interval [0, V], we can 
calculate 10 independent measurements of empirical variance, indexed 
by n: 

σ̂2
n(x) =

1
W

∫(n+1)W

nW

[x(t) − m̂n(x)]2 dt, n = 0, 1, 2,3, ⋯, 9 

As a metric for quantifying how reliable any one of these variance 
measurements is, we can calculate the percentage P of the 10 blocks of 
data of length W for which the deviation from the average of the 10 
variances exceeds, say, 5 % of that average: 

P =
1
10

∑9

n=0
U
[⃒
⃒σ̂2

n (x) − m̂
(

σ̂2
)⃒
⃒ − 0.05m̂

(
σ̂2

)]

where U is the unit step function that is 0 when its argument is less than 
zero and one otherwise.

This quantity P is the fraction of discrete time n for which the 
empirical variance exceeds the specified error bound. This Fraction of 
Time (FOT) of the occurrence of an event has all the properties of the 
standard axiomatic definition of probability and is referred to as FOT- 
Probability. It is an example of an element of a complete theory of finite- 
time probability (either discrete or continuous time) that can be used for 
probabilistic analysis of time series data. In addition, using a mathe
matical model of x(t) that extends over all time along the real line or the 
integers and that is, in whatever manner possible, based on the actual 
record of data available and any knowledge about the origin of the data 
(such as a specified dynamical system driven by what is called white 
noise (in the FOT probability sense, including continuous-time Gaussian 
noise or non-Gaussian discrete-time noise), one can in principle use the 
limit as averaging time approaches infinity to calculate an idealized 
FOT-probabilistic model of the data—idealized in the sense that all 
random effects in the data are averaged away in the limit.

Numerous examples of FOT-probability models of communication 
signals are provided in [5].These models can be comprised of whatever 
probabilistic parameters are desired, such as individual moments, joint 
moments at multiple time separations, associated cumulants, first order 
and higher order cumulative probability distribution functions, spectral 
densities and higher-order spectral moments and associated spectral 
cumulants, etc., as shown in [5] and other references provided below 
that followed [5]. The time averaging performed empirically from the 
data or mathematically from a model of x(t) can include averaging types 
that produce stationary, cyclostationary, and almost cyclostationary 
probabilistic models (the latter two of which capture statistical 
cyclicity), and generalizations thereof [5,16].

1.2. A scientific approach

The above example illustrates a scientific approach to probabilistic 
modeling of data which is a relatively mature theory that is today 
considered unorthodox and is mostly not used in Mathematical Statis
tics. The history of this anomaly is touched on in this article and treated 
in more depth in the companion article [17]. What IS orthodox is to 
imagine there is a population of times series (which there actually may be 
in practice sometimes, but frequently not) and define probability in 
terms of relative frequency of occurrence of events upon random se
lection of hypothetical data records from a mathematical model of the 
population. This is done by axiomatically positing an abstract sample 
space of typically an uncountable infinity of possible data records and an 
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ACS Almost Cyclostationary
AMACS Asymptotically Mean Almost Cyclostationary
AMCS Asymptotically Mean Cyclostationary
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LLR Log Likelihood Ratio
LR Likelihood Ratio
PDF Probability Density Function
PQ Period Quality
QP Quasi Periodic
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abstract probability measure defined on all typically uncountably many 
subsets of interest in this sample space and axiomatically positing spe
cial properties of the sample space and measure that facilitate theorem 
development and theorem proving. In other words, the orthodox 
approach to probabilistic modeling of time series data introduced by 
Kolmogorov in 1933 is designed for mathematicians with little concern 
for empiricism or, for many applications, realism in any sense. This 
example amply demonstrates that we have a serious problem in Math
ematical Statistics that is long overdue for corrective action. This article 
and its companion [17] comprise my proposed solution, which has 
already waited 38 years for action to be taken, beyond that of a few 
colleagues of mine. 

• In this article, the weak link we call ergodicity between empiricism and the 
Kolmogorov stochastic process model is investigated and shown to be of 
little use for empiricists working with real data, which is the majority of 
real scientists and engineers.

• It is hard for me to understand how so many people in so many critically 
important fields of study who have been in need of a better theory for 
probabilistic analysis can have apparently been complacent with the or
thodox for so long. This enigma is further studied in the companion paper 
[17].

• Empiricists do encounter time series analysis problems for which the data 
record length is too short for calculating useful statistics or, barely long 
enough but still too short for calculating FOT-probability models of the 
statistics. In such cases, relying completely on an idealized FOT- 
probability model, possibly using a data model (as described earlier), is 
more parsimonious than creating an imaginary population and positing a 
corresponding stochastic process model.

1.3. Ergodicity vs. cycloergodicity

Cycloergodicity is the word we use, by analogy with the use and 
meaning of the word Ergodicity, for the property of a stochastic process 
that guarantees the convergence of sinusoidally-weighted time averaged 
measurements (functions of the process) on a realization (sample path) 
of a stochastic process, as averaging time increases without bound, to 
sinusoidally-weighted time averages of time-varying expected values of 
those same measurements, which is the same as saying sinusoidally- 
weighted time averaged measurements on a stochastic process 
converge to their own expected values. Cycloergodicity also guarantees 
the convergence of periodically time varying time average measure
ments, obtained by averaging time samples taken once every period and 
doing this separately for every starting time throughout one period. 
Ergodicity applies to time averages of stationary stochastic processes 
and, more generally, to Asymptotically Mean Stationary (AMS) stochastic 
processes, which are nonstationary processes for which the finite-time 
averages of time-varying expected values converge to a limit value, 
the temporal-mean value of the probabilistic-mean (expected value). 
Cyclostationary (CS) processes and more generally Almost Cyclostationary 
(ACS) processes are examples of AMS processes, and they can be 
generalized to Asymptotically Mean (Almost) Cyclostationary (AM(A) 
CS) processes. Almost Cyclostationary Processes are generalizations of 
Cyclostationary Processes that exhibit at least two incommensurate sta
tistical periodicities: the time functions composed of the time translates 
of their probability measures are almost periodic functions in the classical 
sense [1] for every event set (with probability 1).

Although ergodicity applies to ACS and AMACS processes, it still 
means that the time average converges to its expected value, even if the 
process is not stationary provided that it is AMS, including the various 
versions of cyclostationary processes. But this is a distinct type of ergo
dicity that is generally unrelated to cycloergodicity. Cycloergodicity applies 
to stationary, cyclostationary, and, more generally, almost cyclosta
tionary processes, and even more generally to their asymptotic mean 
versions for which the expected values are, respectively, time-invariant, 
periodically time varying, or almost periodically time varying, or more 

generally none of the preceding, but containing one of the preceding as 
an additive component.

Stationary (S) processes, even those that are ergodic, can fail to be 
cycloergodic, in which case their sample paths can exhibit statistical 
cyclicity even though the probabilities and expected values of the pro
cess do not. This is not well known but is easily demonstrated without 
resort to contrived examples. Similarly, cyclostationary processes, even 
those that are cycloergodic for the period of cyclostationarity, can fail to 
be cycloergodic for other periods. Consequently, the classic Theorem of 
Ergodicity (and its variations [2]) cannot be manipulated to include 
cycloergodicity, as has been done for the special case of cyclostationary 
processes by representing a CS scalar-valued process by a S 
vector-valued process [2]. This means that a stationary or cyclosta
tionary or almost cyclostationary process may be cycloergodic for one 
period (which, for discrete-time processes, must be commensurate with 
the time sampling increment), and still not be cycloergodic with some 
other incommensurate period. This leads to the following important 
conclusion: 

• When sample paths of stochastic processes exhibit statistical cyclicity, the 
existing theory of ergodicity is inadequate to explain the relationship 
between sinusoidally weighted time averages and their expected values.

In other words, Cycloergodicity is a genuine generalization of 
Ergodicity. Except for the case of cyclostationarity (and AMCS) with a 
single period (which for discrete time, is commensurate with the time 
sampling increment [2,3]) and except for what might be said to be a 
contrived variation thereof for what are called quasi-periodic probability 
measures (those AMACS measures with only rational cycle frequencies 
[3,4]), there are to my knowledge (based on the relevant literature) no 
cycloergodic theorems for the various other cases mentioned above.

The fact that there is no mention of this incompleteness of ergodicity 
theory in the classic mathematically oriented book for engineers on 
ergodicity [2], despite the existence of substantial literature demon
strating the practical utility of ACS process models dating back to the 
classic engineering book [5] published almost forty years ago, and 
including the sequel [6], is strange. It seems to speak to the ongoing 
separation between what might be called pure-mathematics and the 
applied-mathematics oriented practice of engineers, physicists, and other 
scientists, as well as some applied mathematicians—one of many re
flections on the impact of humanity on the conduct of science [7, p.7;8, 
chap.7].

In an attempt to move this important yet neglected aspect of sto
chastic process theory forward, this article presents tutorial explanations 
of necessary and sufficient tests of discrete-time and continuous-time 
stochastic process models for the property of cycloergodicity. Each of 
these decomposes both the question and the answer regarding cyclo
ergodicity with multiple arbitrary periods into separate unrelated parts, 
one for each period of interest. As discussed below, it also is shown that 
the known ergodicity theorems for discrete-time cyclostationary AMS 
processes [2,9] and their continuous-time counterparts (characterized 
by vector-valued discrete-time process [2,10]) can be applied directly to 
each and every component part in the decomposition to achieve the 
desired necessary and sufficient condition for cycloergodicity, one 
period at a time. Although straightforward word descriptions of the 
individual steps required to test a process model for cycloergodicity are 
provided, mathematicians may prefer to refer to these theorems as 
propositions because it may be argued that the word descriptions are not 
sufficiently rigorous; for example, they may not cite all restrictive as
sumptions precisely determining applicability. Nevertheless, they do 
provide key necessary and sufficient conditions for cyclo
ergodicity—conditions that can be seen to be natural counterparts to 
existing ergodicity theorems. But to the astute reader, it should be clear 
that these theorems are simply the composites of a known ergodicity 
theorem and one or the other of two lemmas enabling a novel applica
tion and insightful explication of theory and methodology from a single 
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source [2]. From this perspective, these results might be labeled corol
laries. Nevertheless, their explicit recognition is, one might say, long 
overdue. And the form of presentation by their originator, the Author, is 
specifically designed to serve empiricists wanting to perform probabi
listic analysis of their measured cyclic statistics of real time series. To 
categorize them as simply appendages to known ergodicity theorems 
deemphasizes their importance in conceptualization.

Before proceeding with this discussion, it is noted for the readers’ 
benefit that the now-traditional usage of the term Ergodic Theorems for 
the theorems addressing the convergence of time averages to their ex
pected values (such as Birkhoff’s Ergodic Theorem) is not used in this 
article. Being a stickler for precise language, as one component of the 
pursuit of unambiguous communication, I point out that these theorems 
are not themselves ergodic: they cannot exhibit the property of ergo
dicity, as some stochastic processes or their probability measures can, 
although they can and do address the property of ergodicity. It follows 
that these should be called Ergodicity Theorems. Consequently, the sub
ject of the discussion in this article is referred to as Cycloergodicity 
Theorems, not cycloergodic theorems. (Unfortunately, the equivalent 
language misuse in applications of cyclostationarity is pervasive: au
thors often use the adjective “cyclic” in place of the correct nouns/ad
jectives “cyclicity” or “cycle”. The entities too often referred to as cyclic, 
do not cycle. This can be confusing to students of the subject, cf [8, Chap. 
1, Definitions].)

The purpose of the next section on background is, as it is sometimes 
said, to leave no stone unturned. Consequently, the narrative is admit
tedly extensive and possibly a little redundant here and there, and this is 
the exact opposite of what is found in existing literature on ergodicity 
theory which, for the most part, has been contributed by mathemati
cians and strongly mathematically oriented physicists and engineers. It 
is no doubt said by some mathematicians that this is its strength. And I 
cannot argue with this if the objective is to develop more theorems and 
more proofs, such as in information theory, which is in large part what 
mathematicians do. But the objective of this article is entirely different. 
The intended readership is experimentalists and empiricists whose pri
mary objective is to derive information from data and who are wanting 
to probabilistically model their statistics derived from time series mea
surements. This is the realm of mathematical statistics. But, dare I say, 
the emphasis in this field on mathematics may not serve experimental
ists and empiricists as well as a more data-centric treatment, such as that 
briefly introduced in this article and treated expansively in cited books 
and research papers. Unlike the problems of primary concern to math
ematicians, the problems here are data centric, which means that 
mathematical models must be tied very closely to the real data they 
represent. This is the intended essence of the concept of ergodicity for 
empiricists. But this paper shows that ergodicity theory falls short of 
reaching this goal and that recognition of this is long overdue.

2. Background on cycloergodicity

In 1958, William Bennett [11, p.1510] from Bell Telephone Labo
ratories wrote “We suggest the name “cyclostationarity” and analo
gously “cycloergodicity” be used . . .” in connection with a 
continuous-time stochastic process model for a 
digital-pulse-amplitude-modulated signal in his statistical analysis of 
regenerative digital repeaters in communication systems. In fact, as 
pointed out later, these terms were not needed, mathematically, because 
this signal model is equivalent to an infinite-dimensional (or, in discrete 
time, finite dimensional) vector-valued stationary process and the 
desired property of the model is a conceptually straightforward exten
sion of traditional ergodicity from scalar-valued processes to 
vector-valued processes. However, this dismissal does not expose the 
fact that the cycloergodicity test must be applied specifically for the 
correct period and applied separately for each and every one of the 
uncountably infinite (or finite) number of time points within a period. 
Ignoring this detail, this may be the reason the key engineering source 

on ergodicity theory [2] makes no mention of the term cycloergodicity 
despite addressing this concept albeit only in terms of finite-dimensional 
vector-valued discrete-time S-process representations of CS processes. 
Nevertheless, this equivalence is used here in a novel manner as a ne
cessity, not an option, for leveraging classical theory [2] to establish tests 
for cycloergodicity for previously unconsidered process types that are 
not equivalent to vector-valued stationary processes, namely almost 
cyclostationary processes. No previous work has successfully tackled the 
ergodicity question for almost cyclostationary processes. This term was 
introduced in 1978 by the Author [12] for processes whose translation 
indexed probability measure is an almost periodic function of the trans
lation time parameter [1]. Such models arise frequently in radio fre
quency multiuser communication systems (e.g., cellular telephone), 
which was a driving motivation for the Author’s work, who had recently 
been employed by Bell Telephone Laboratories before returning to 
academia. This term is also used in this article because it is now standard 
terminology in fields where these models are used.

The only known attempt to establish cycloergodicity (with proba
bility = 1) theorems for almost cyclostationary processes is that of the 
Author and his coauthor, Russel Boyles, in the 1983 article [3], but 
success was not achieved for discrete-time processes, and no attempt 
was made for continuous time. In this present article, the term cyclo
ergodicity is adopted but also used in the modified form T-cycloergodicity 
because it is shown that a single process can exhibit ergodic properties 
associated with some periods and not others, making explicit mention of 
the period essential. At this point in our understanding, avoidance of the 
term cycloergodicity as in [2] is no longer advisable. It is shown in this 
article that establishment of a theory of cycloergodicity for discrete-time 
almost cyclostationary processes requires stepping outside of the 
admittedly extensive and mature field of ergodicity theory (cf [13]) by 
introducing the concepts of interpolating/re-sampling a stochastic pro
cess model and the associated probability measure to achieve a model 
transformation that is both necessary and sufficient in order to use classic 
ergodicity theory to derive a necessary and sufficient condition for 
T-cycloergodicity for a period T that is incommensurate with the orig
inal process’s time-sampling increment. This transformation of the 
process, but not the measure, is also necessary for testing for T-cyclo
ergodicity, and this appears to have significant practical consequences.

The introductory section in the 1983 paper [3] fully defines the class 
of cycloergodicity problems that had not then and has not until now 
been addressed by what can be called the classic theory of ergodicity for 
AMS discrete-time processes and their special cases, which is the domain 
addressed in [2]. The Author has found no published work on this 
ignored (vis a vis cycloergodicity) class of processes, here termed non-
contrived AMACS including non-contrived ACS, in the ensuing 42 years 
(non-contrived means continuous-time or discrete time with any cycle 
frequencies not exhibiting a finite limit point and, in particular, not 
limited to rational cycle frequencies only, and is used when necessary to 
avoid ambiguity with Quasi-Periodic probability measures as explained 
below). This seems to fly in the face of the great deal of published work 
on ACS processes in the statistical signal processing engineering litera
ture stemming from the seminal work reported in the paper [12], and 
subsequent work in three 1985–1994 books [5,14,15], followed 24 and 
30 years later by the encyclopedic treatments [16] and [8], all of which 
study in immense detail this otherwise largely ignored class up until the 
1990s, producing volumes of results on development of a comprehen
sive theory and associated statistical methodology, which has led to 
resultant technology demonstrating significant abilities to mitigate the 
undesired effects of signal interference. Much of this work was moti
vated by the explosion of multiuser communication systems technology, 
such as cellular telephone, beginning around 1980, because these sys
tems naturally create interfering signals residing in the same time pe
riods, frequency bands, and spatial locations. The ACS model is 
quintessential for representing interfering signals and enabling the 
technological development that followed. Most of the technology 
developed for exploiting cyclostationarity uses algorithms that compute 
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time-average statistics with sinusoidal weighting or its equivalent in 
terms of periodic time averages. The majority of this published work, 
excluding the Author’s, bases its probabilistic analysis on expected 
values from the theory of population probability (stochastic processes) 
without the benefit of cycloergodicity theory establishing the relation
ship (or lack thereof) between these expected values and the time av
erages: the topic of this article.

This history brings into question the importance of cycloergodicity 
theory. The achievements made in interference mitigation technology 
were accomplished without the cycloergodicity theorems presented in 
this article. This supports the perspective, presented in the companion 
paper [17], that the use of stochastic processes in time-series analysis 
based on time averaging is typically illogical and out of step with current 
practice in which time-average statistics are the focus and expected 
values are a distant abstraction. Engineers have apparently succeeded 
(and continue to) in their work by using typical empirical methods, 
without any logical support from theory, but rather with intuition that 
analysis of expected values can suggest algorithms that use time aver
ages instead. We can congratulate these engineers for their progress 
despite the conceptual and mathematical pitfalls that awaited them 
(summarized in this article), which arise from unknowing use of 
potentially non-cycloergodic models. We can only surmise that progress 
may have been accelerated, or better solutions obtained, had the engi
neers made logical use of the non-population probability theory based 
on fraction-of-time probability for their probabilistic analyses of the 
time-series statistics needed in this development work. That use of this 
alternative to stochastic processes can be fruitful is amply illustrated 
with the plethora of signal analysis studies and 
cyclostationarity-exploiting algorithms invented using fraction-of-time 
probability theory as documented throughout the preceding references 
[4–8] in this article, as well as [18–48] and the companion perspective 
paper [17] (quotes from which are copied in last section of this article).

Nevertheless, the stochastic process theory deserves to be completed 
with the addition of needed cycloergodicity theorems; so, let us proceed. 
But it is a statement worthy of note here that the entirety of the Author’s 
development of the now-comprehensive theory of cyclostationarity from 
the mid-1980s forward, and his many applications of this theory, were 
built exclusively using fraction-of-time probability and yet the follow-on 
work by almost everyone so engaged has been conducted using unnec
essarily abstract stochastic process models that may or may not exhibit 
the cycloergodicity that is required for establishing relevance to the 
motivating empirical time-series analysis problems.

The paper [3] shows that the class of AMACS processes is, perhaps 
surprisingly, identical to the class of AMS processes, and it exten
ds/generalizes the classic ergodic theorems to cycloergodic theorems. 
There are no surprises in methods or results, except for one: The class of 
discrete-time AMACS processes is shown to include ACS processes only if 
for any cycle frequencies that are incommensurate with the sampling incre
ment, the cyclic components of expected measurements are zero. So, the only 
processes covered by the extended/generalized theory that are not CS 
(Cyclostationary) are what might be called a contrived class referred to as 
those with Quasi-Periodic (QP) probability measures as defined by Blum 
and Hanson in 1966 [3,4] (discrete-time AMACS or ACS with only 
rational cycle frequencies). What can be called non-contrived ACS pro
cesses that are not CS are excluded from the cycloergodicity theorems 
presented in [3]. A revealing example given in [3] is the independently 
distributed discrete-time Bernoulli process with an Almost Periodic 
sequence of probably parameters that equals a constant plus a sinusoid 
with frequency that is incommensurate with the process time-sampling 
increment. This example is not contrived, and it reveals that we have no 
ergodicity theory for substantive discrete-time ACS processes that are 
not CS (or QP). For those unfamiliar with almost periodic functions, they 
comprise the class of functions that consist of a finite or infinite sum of 
periodic functions with incommensurate periods. 

• Finally, after 42 years since the only known previous attempt, a set of 
theorems for these previously omitted processes is introduced in the next 
section. These theorems reveal necessary and sufficient conditions for 
discrete-time or continuous-time stochastic process models to exhibit the 
cycloergodicity properties that are necessary and sufficient for estimating 
almost periodically time varying expected values using time averages. 
These theorems accommodate the ubiquitous situation of simultaneous 
presence in data of statistical periodicities having incommensurate periods 
which, in the case of discrete time, can also be incommensurate with the 
time-sampling increment. These results inform the mathematical analyst 
of the necessary and sufficient analytical tests that must be performed on 
a stochastic process model to determine its cycloergodicity.

The approach proposed in these theorems is to decompose any given 
ACS (i.e., almost periodic) or AMACS (i.e., contains an additive almost 
periodic component) probability measure into a set of component CS (i. 
e., periodic) measures (and a residual for the AMACS case); and to then 
independently apply an existing ergodicity theorem to each component 
measure by using its vector AMS representation.

In the simplest of ACS cases, a discrete-time ACS process has only one 
periodicity in its probability measure (or, more accurately, in its family 
of time-translated measures), but the period is incommensurate with the 
time-sampling increment; otherwise, the process is cyclostationary. In 
the next simplest case, a continuous-time ACS process has two period
icities with periods that are incommensurate with each other. Such 
processes can be constructed, for example, by adding two CS processes 
with incommensurate periods. This happens every day all over the world 
when two propagating cellular telephone radio-frequency signal waves, with 
distinct carrier frequencies and/or digital symbol rates, both impinge on the 
same receiving antenna of a cell phone or base station. Such signals typically 
exhibit only or up to 4 or possibly 6 distinct periods in its autocorrelation 
function, while exhibiting a countable infinity of periods in its CDFs. The 
theory of cyclostationarity can be used to design receivers that separate 
these interfering signals (see, for example, the topics Cyclic Wiener 
Filtering, Cyclic Signal Interception, and Nonlinear System Identifica
tion in the books [4–8] and other related topics in [18–49]. The 
importance of this is reflected in one narrow-perspective represented by 
three examples: (1) there is a representative patent [49], purchased from 
the inventors by Apple Computers for 6 figures, on an invention that 
exploits cyclostationarity to separate spectrally overlapping cell phone 
signals, with the objective of improving system capacity and message 
quality. (2) Lockheed Martin Corporation purchased from the lead in
ventor for 7 figures cyclostationarity-exploiting intellectual property 
(signal processing algorithms, software, and R&D reports) targeting 
solutions for signal reception and information extraction in highly 
corruptive radio-frequency environments. (3) 10 agencies and labora
tories of the US Government and 10 of its large contractors invested 8 
figures over 25 years in support of the R&D conducted by one faculty 
member’s team of graduate students into cyclostationarity exploitation 
in the field of signals intelligence [7, page 12].

However, the practical value of the cycloergodicity theorem for ACS 
and AMACS processes is limited by the same constraints encountered in 
applying traditional ergodicity theory, namely the difficulty that can be 
encountered in testing for the necessary and sufficient mathematical 
conditions for cycloergodicity of a stochastic process. These basic the
orems, generally speaking, are not of much use in empirical analysis of 
time series data based on time-averaged or time-averaged/sub-sampled 
or sinusoidally weighed time-averaged measurements. They simply 
provide a modicum of comfort to those using stochastic process models 
in connection with doing empirical time-average based analysis of time- 
series data. Nevertheless, cycloergodic theorems establishing that 
certain specific classes of stochastic process models are cycloergodic are 
of definite help here—see Appendix II. (Also, it should not be forgotten 
that ergodicity theorems can be useful in theoretical work on stochastic 
processes not expected to be directly relevant to empirical analysis.)

To go a step further with the cell phone example, consider that a 

W.A. Gardner                                                                                                                                                                                                                                    Signal Processing 238 (2026) 110186 

5 



stochastic process model for the additive mixture of two cell phone 
signals can be cycloergodic or not. This depends, in part, on the 
modeling of the phases of the carrier frequencies and/or the phases of 
the digital symbol repetition rates (or any other periodic structure in the 
signal format). Any randomness of such phase parameters of the model 
destroys cycloergodicity at the period of the associated frequency or 
rate. In addition, cycloergodicity is destroyed by any randomness of a 
time-invariant amplitude parameter multiplying one or both signals or 
individual components of a signal (see Appendix II). As can be seen, the 
absence of cycloergodicity is not a contrived situation. It is true that an 
engineer trained in the theory of cyclostationarity of man-made com
munications signals (in today’s language in the world of machine 
learning, a person with domain expertise—some say a dying breed) can 
likely determine which parameters in an explicit stochastic process 
model of such signals will destroy cycloergodicity if modeled as random, 
but this situation of being intimately familiar with the design and 
modeling of the signals of interest might well not carry over to data 
analysis in the sciences for which the signals of interest are not man
made. Nevertheless, biology has enjoyed many applications of the the
ory of cyclostationarity [16, p.362], as have other fields throughout the 
sciences [16, chap.10]. Before leaving the topic of utilizing cyclo
stationarity for separating interfering signals, it should be mentioned 
that signals with identical cycle frequencies also can sometimes be 
separated. It is not always necessary for cycle frequencies to be different 
or incommensurate for exploitation of cyclostationarity.

Readers desiring more motivation for buckling down and addressing 
cycloergodicity directly are referred to a set of six revealing examples in 
the next subsection illustrating the surprisingly troublesome anomalous 
behavior that can arise with non-cycloergodic stochastic process models. 
These remarks are not proven herein to be correct, but the Author as
sures readers that he has demonstrated this and suggests that the desired 
impact of the claimed anomalous behavior will be greater for readers 
who choose to ponder these apparent mysteries instead of having readily 
available explanations handed to them.

2.1. Examples of non-cycloergodic processes

This section on background concludes with several remarks illus
trating the apparently strange nature and seriousness of issues that can 
arise with non-cycloergodic stochastic process models. Each remark 
centers on a fact-example that illustrates how severely the breakdown 
between empirical data behavior and stochastic process model proper
ties can be in the absence of cycloergodicity. 

• Remark 1: Hidden statistical dependence and causality

For two jointly strictly stationary and ergodic stochastic processes, X 
and Y, for which Y’s future is to be predicted from the past of X, there are 
examples for which there is no predictive power using any linear or 
nonlinear time invariant transformation of X if Y is non-cycloergodic, 
despite the fact that prediction with any desired level of accuracy, 
given enough data, using a linear least squares periodically time varying 
predictor is achievable. Example: Let Y be a moving average over a piece 
of the past of the stationary ergodic process X with periodically time 
varying coefficients all having the same period and all containing 
random phases (either all the same or statistically independent) that are 
uniformly distributed over one period. The probabilistic correlations 
between Y and any/all linear or nonlinear functions of X are zero 
because of the random phases, so X has no time-invariant predictive 
power for Y. Yet there is a periodically time-varying transformation of 
any sample path of X that produces predictions of the corresponding 
sample path of Y with accuracy that increases without bound with 
increasing data segment length. Learning this prediction transformation 
requires performing a linear least-squares periodically time-varying 
prediction of sufficient memory length and sufficient harmonic 

content of predictor coefficients using only the past of both X and Y for 
training, and then applying the trained predictor to X up to its present 
value to predict a future value of Y. The harmonic content of the periodic 
weights can be estimated using an estimator of the cyclic spectral den
sity or cyclic autocorrelation function for Y and simple combinatorics 
that relate periodicities in Y to those in its lag product. This predictor 
sees only one realization of the random phase and can estimate it over 
time using a least-squares procedure. The role of the random phase in 
this model is to render the process non-cycloergodic in a manner that 
renders the correlations between Y and all linear and nonlinear func
tions of X equal to zero. 

• Remark 2: Hidden strength of periodicities

The strength of cyclostationarity of a CS or ACS stochastic process 
Y(t) = X(t +Θ) at any one or more periods can be weakened, relative to 
that in a single sample path, to any desired extent by design of the PDF of 
the phase randomization variable Θ. This fact is intimately associated 
with the fact that there is, in general, no fixed relationship between the 
strength of cyclicity in a non-cycloergodic stochastic process and the 
strength of cyclicity in its individual sample paths. This is proven in 
[12], where the exact impact of the PDF of the phase variable on the 
expected strength of cyclic features is derived. Any non-degenerate PDF 
(PDF that is not equal to a single Dirac delta) destroys any cyclo
ergodicity that may have been present prior to phase randomization.). 

• Remark 3: Hidden strength of spectral redundancy

All CS and ACS stochastic processes exhibit some non-zero degree of 
spectral redundancy [18–20]. This degree is reduced by phase 
randomization and also can be modified by amplitude randomization of 
process components that are the origin of spectral redundancy. For 
example, since the n-th moment of a randomized amplitude factor on a 
CS component of a process will generally differ from the n-th power of 
any realization of that amplitude factor, the degree of n-th order spectral 
redundancy will differ. More specifically, for X = Y + AZ, where pro
cesses Y and Z are independent of each other, each have zero-mean 
value, Y is S and Z is CS, n = 3, and the PDF of the factor A is even, 
the degree of first-order cyclostationarity of Xn and therefore the degree 
of spectral redundancy among triples of frequencies in X with amplitude 
randomization A can be zero despite the strengths of redundancy of its 
various realizations. This phenomenon is relevant to Remark 2 as well. 

• Remark 4: Mysterious origin of spectral lines

Let the input process X to a stable nonlinear time-invariant trans
formation be strictly stationary and ergodic and have no spectral lines in 
its spectral density of expected power or of time-averaged power and be 
non-cycloergodic. The corresponding output process Y also is strictly 
stationary and ergodic, but it can exhibit spectral lines in both its 
spectral density of expected power and of time-averaged power. 
Example: If the input is the product of a sine wave with random phase 
uniformly distributed over [0,2π] and a stationary ergodic zero-mean 
process, and the nonlinear transformation is a squaring operation, 
then even though the input and output are stationary and ergodic and 
the input exhibits no spectral lines, the output time-average-power 
spectrum and expected-power spectrum will both contain spectral 
lines at frequencies 0 and twice the frequency of the sine wave factor at 
the input. Without knowing the exact structure of the input process, this 
raises the question of where the spectral lines came from. In other words, 
the seemingly reasonable assumption that stationarity and ergodicity of 
the input and output of a time-invariant stable system guarantees that, 
with no spectral lines at the input, there can be none at the output is 
false. The reason is that non-cycloergodicity produces hidden 
periodicity. 
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• Remark 5: Performance loss of likelihood-ratio detectors

Consider three alternative approaches to detection of the presence of 
a random signal in random noise, based on three alternative models for 
the observed data which is actually statistically independent time sam
ples of stationary Gaussian noise, possibly plus cyclostationary Gaussian 
signal with unknown time origin (phase). Detector-1 uses the Log 
Likelihood Ratio (LLR) test statistic for exactly this model, with maxi
mization over the unknow phase parameter. Detector-2 uses as a test 
statistic the Likelihood Ratio (LR) after removal of conditioning on the 
phase for the resultant non-cycloergodic model by taking the expected 
value of the LR w.r.t the phase modeled as a random variable uniformly 
distributed over the period of cyclostationarity. Detector-3 uses the LLR 
for a stationary Gaussian model for the signal with the same power 
spectral density as that of the stationarized (phase-randomized) version 
of the actual signal (which version is not Gaussian because of the phase 
randomization). It can be shown that the performance improvement 
achieved, at very little added computational cost, by using the cyclo
ergodic model that Detector − 1 uses can be substantial. 

• Remark 6: Performance loss of minimum-mean-squared-error 
(MMSE) linear transformations

Consider the sum of two spectrally overlapping stationary ergodic 
signals, which are inseparable using a time invariant transformation, 
whether linear or non-linear. If these signals are modeled as non- 
cycloergodic their optimum linear time invariant processer can fail to 
separate them even though they may be completely separable using an 
almost periodically time varying linear transformation. Examples 
include double-sideband amplitude-modulated sine waves, pulse- 
amplitude-modulated periodic pulse trains, and amplitude-shift keyed 
sinewaves. The spectral redundancy in these signals enables either 
constructive or destructive linear combining of frequency-shifted sub- 
bands.

3. Cycloergodicity theory

In the tutorial paper [50], a thorough treatment of non-population 
probability theory of stationary, cyclostationary, and almost cyclosta
tionary processes and a comparison with the Kolmogorov 
population-probability theory of stochastic processes is presented. 
Included in [50, Sec. 3.7] is a brief discussion of cycloergodicity that 
describes how to formulate cycloergodic theorems for all but one class of 
almost cyclostationary processes which are discrete-time processes with 
at least one period of cyclostationarity that is incommensurate with the 
time-sampling increment of the process. That discussion gives additional 
insight into the only preceding published treatments of cycloergodicity 
[3,9] and also expands the classes or processes treated from discrete 
time to continuous time and, in addition, lends powerful insight into the 
challenge of the one remaining class of processes for which no known 
method for developing a cycloergodicity theorem had yet been estab
lished. In this third (following [3] and [50]) broad treatment of the 
subject, all classes of processes exhibiting cyclostationarity, including 
those left out of previous treatments, are considered: these are 
discrete-time and continuous-time processes that are 
asymptotically-mean cyclostationary or asymptotically-mean almost 
cyclostationary, which includes those that are cyclostationary or almost 
cyclostationary and discrete-time processes that exhibit cyclo
stationarity or asymptotically-mean cyclostationarity with at least one 
period that is incommensurate with the time-sampling increment. These 
results, like those in [50, Sec. 3.7], are presented in discussion form, not 
in the form of formal mathematical/symbolic statements of theorems 
and proofs like the results in [3]; however, like [3], the discussion is 
detailed in terms of properties of the probability measures of the sto
chastic processes of interest, and in terms of the mathematical necessary 
and sufficient conditions (under typical assumptions) on the measures 

for existence of cycloergodicity. Yet, the presentation remains accessible 
to those with no substantive knowledge of measure theory and little if 
any knowledge of stochastic process theory beyond standard engineer
ing introductions to stochastic processes. This goes farther than the 
classic treatment of ergodicity for engineers [2], which shares the goal 
here of accessibility for engineers but remains considerably more tech
nical than the treatment given here. For references to related earlier 
work on ergodicity, readers are referred to, [3, p.106] and also, for 
mean-square cycloergodicity, [16;3, Sec. II]. Together with the other 
references in this present article, these additions complete the Author’s 
bibliography of all previous work he has found that is directly or closely 
related to the topic of cycloergodicity (with probability = 1). 

• The pragmatic approach taken in this article that enables a general 
treatment of cycloergodicity including discrete and continuous-time pro
cesses and all the relevant types of cyclostationarity cited above is to use a 
notation P that is given alternative interpretations as either finite- 
dimensional CDFs or “infinitely” more abstract probability measures, 
as defined in Kolmogorov’s definition of a stochastic process. The proofs 
of the theorems are considerably less abstract for finite-dimensional 
events and their probabilities than they are in [2] for general abstract 
events sets in sample space and their probability measures. But the con
cepts that are relevant to empiricists are the same. It is not an objective of 
this article to provide mathematically rigorous proofs of theorems. Rather 
the objective is to communicate in a language that is intelligible to em
piricists wanting to solve real practical problems by facilitating an intui
tive understanding of cycloergodicity and the necessary and sufficient 
conditions for a stochastic process model to have this property. Never
theless, meaningful descriptions of proofs for all theorems included are 
provided or known proofs are cited in the literature.

For example, in order to avoid material that requires substantive 
knowledge of mathematics well above the level of typical PhD graduates 
in science and engineering, this article takes the long-established result 
of Birkhoff’s Pointwise Ergodic Theorem (the term pointwise means the 
desired equality between a time average and its expected value holds for 
every point in the sample space within a set of probability measure equal 
to 1—abbreviated herein by w.p.1), which most of the theorems 
included herein rely on, as a given. There are a number of claimed proofs 
of this theorem in the mathematics literature, two of which I have 
selected: [2,51]. The necessity part seems easy to prove by counterex
ample, but the sufficiency part is quite a challenge.

One more preliminary remark is needed before proceeding to the 
theorems. The question of how many incommensurate periods can be 
exhibited by the family of time-translated versions of a process’s mea
sure should be addressed. The answer is 0 or a countable infinity or 
anything in between. An example of 1 is the independently distributed 
discrete-time Bernoulli example already discussed. This example can be 
generalized to a probability parameter that is any almost periodic 
function with range in the closed interval [0,1]. So, this one example can 
exhibit a number of periods equal to any natural number, or countable 
infinity. Another example of a countable infinity is the mixture of pe
riods that occur when two processes are added together as happens with 
interfering signals in radio communications. Here, it is easiest to work 
with the CDF of a discrete-time process, which is the expected value of 
the indicator function of the event set S(t) for a process with sample 
paths denoted by x(t,ω)

S(t) = {ω ∈ Ω : x(t,ω) ≤ y} (1) 

The expected value of the (0,1)-valued indicator of this set equals the 
first-order CDF: 

Fx(t, y) = E{IS(t)(ω)} =

∫

Ω

IS(t)(ω)dP(ω) =
∫

S(t)

dP(ω) = Prob{x(t,ω) ≤ y}

(2) 
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where 

IS(t)(ω) = U(y − x(t,ω)) =
{

1, x(t,ω) ≤ y
0, otherwise (3) 

for which U(z) is the unit step function. This step function U(z) can be 
approximated by the sum of 1 and Tanh(z), and Tanh(z) admits a power 
series approximation for mag(z) < π, and this power series contains all 
odd powers. All the odd powers of z = y − x(t,ω) produce all even and 
odd powers of x(t,ω). Consequently, U(y − x(t,ω)) appears to contain all 
even and odd order powers of x(t,ω). Therefore, the expected value of 
U(y − x(t,ω)) contains all even and odd moments of x(t,ω). This suggests 
that, if x(t,ω) exhibits statistical cyclicity of some order with two or 
more incommensurate periods, then some of its CDFs will likely contain 
all integer-linear combinations of the reciprocal of the two periods, 
which comprises a countable infinity. By the classical Daniell- 
Kolmogorov Extension Theorem [52], the measure for a discrete-time 
stochastic process is uniquely determined by the set of 
finite-dimensional (finite order) CDFs. Therefore, we can expect some 
measures for some practical stochastic process models, for which the 
process itself contains only a few statistically cyclic terms, to exhibit a 
countable infinity of cycle frequencies. The Gaussian process can be used 
as a relatively tractable example to investigate because its CDFs are all 
functions of only first- and second-order joint moments of the process. 
Nevertheless, the dependence of the CDF on these moments is highly 
nonlinear, including the inverse of the covariance matrix. In contrast, 
the log joint characteristic function of any order for a Gaussian process, 
which contains exactly the same information as the joint CDF, is simply a 
linear plus quadratic function with both the mean and covariance matrix 
entering linearly. But this should be contrasted with the general infinite 
series expansion of the characteristic function in terms of joint moments 
for non-Gaussian processes. And even for a zero-mean Gaussian pro
cesses, the joint moments depend on potentially numerous products of 
the autocorrelation, depending on the order of the moment.

For reference further on in this section, the time-average counterpart 
of the stochastic-process CDF (1) – (3) is defined for n-th order as 
follows:

The event set of interest is, for each translation t of interest, 

Ŝ(t) = {tʹ ∈ R : x(t+ tʹ+ t1) ≤ y1, x(t+ tʹ+ t2) ≤ y2,…, x(t + tʹ+ tn)

≤ yn} (1́ ) 

where R is the set of real numbers (the analog of Ω) and the set Ŝ(t) is 
defined for the interval of values of t + t’ inside [-V, V] for which the 
time series x(t+t́ +ti) is defined for i = 1, 2, . . ., n. The Fraction-of-Time 
CDF is the time average over the time interval [-V, V] of the (0,1)-valued 
indicator of this set: 

F̂{x} (t,{y}) = 〈IŜ(t)(t
ʹ)〉V =

∫

R

IŜ(t)(t
ʹ)pV(tʹ)dtʹ=

∫V

− V

IŜ(t)(t
ʹ)

1
2V

dtʹ

= FOT-Prob{x(t+ t1)≤y1,x(t+ t2)≤y2,⋯,x(t+tn)≤yn}

(2ʹ) 

where pV(tʹ)dtʹ, the analog of dP(ω), is the time differential times the 
uniform PDF over the interval [-V, V] on which x(t+t́ +ti) is defined for i 
= 1, 2, . . ., n, and 

IŜ(t)(t
ʹ) =

∏n

k=1

U(yk − x(t + tʹ + tk))

=

{
1, x(t + tʹ + t1) ≤ y1,…, x(t + tʹ + tn) ≤ yn

0, otherwise

(3́ ) 

In the limit as V →∞, the dependence of the FOT-Probability on t 
vanishes, but this requires an infinite record of time series data. 
Nevertheless, in practice, t can be selected to maximize the amount of 

available data used in (2′), and then the left-hand side of (2′) can be 
treated as independent of t.

This definition of FOT-CDF produces a stationary model. For a T- 

cyclostationary model F̂
T
{x}(t,{y}), we make the replacement in (2′) 

∫V

− V

(⋅)
1

2V
dtʹ ←

∑
(M− 1)T

2

tʹ=−
(M− 1)T

2

(⋅)
1
M

(2́ )́ 

In this case, in the limit as M →∞, the dependence on t becomes 
periodic. For finite M, only the single period of the CDF in t in the center 
of the data record, which is the one that results from the largest number 
of non-zero terms in the sum of M terms, should be retained, and the CDF 
over one period in t should be periodically replicated every T units of 
time.

For an α-sinusoidal cyclostationarity model F̂α
{x} (t,{y}), we make the 

replacement in (2′) 
∫V

− V

(⋅)
1

2V
dtʹ ←

∫V

− V

(⋅)
1

2V
exp{− i2παtʹ}dtʹ (2́ʹ́) 

and select the best values of t covering one period of the sinusoid and 
then replicate. Finally, for the almost cyclostationary model, we simply 
use the standard model proposed in [5] in terms of cyclostationary CDF 
components: 

F{
Tq}

{x} (t, {y}) = F{x}(t, {y}) +
∑Q

q=1

[
FTq
{x}(t, {y}) − F{x}(t, {y})

]
(2́ʹ́́ ) 

which is valid for stochastic processes (population probability) and non- 
population probability for finite and infinite time averaging, and Q may 
be infinite. Using Fourier series representations, the CS and ACS models 
can be expressed in terms of only the α-sinusoidal CDFs. More complete 
discussions of such CDFs for all orders and for traditional time averages 
as well as sinusoidally-weighted time averages, periodic subsampling 
averages, and almost periodic averages are given in [5,6,26] and 
thereafter in many references cited throughout this paper and, for finite 
V and M, in [7, page 3.5.3,8, Sec. 3.5.3,44].

For reference below, the classic Fundamental Theorem of Expectation 
is expressed here: 

E{g({x(t + t1,ω), x(t + t2,ω),…, x(t + tn,ω)})}

≡ E{g̃(t,ω)} =

∫

Ω

g̃(t,ω)dP(ω) (4) 

for which g is some measurement function of the process at n time points 
with specified separations, abbreviated to g̃(t,ω). This theorem avoids 
finding the measure for g from the measure P for x, which can be a very 
challenging analytical task. As an alternative, the above can be 
expressed in terms of the n-th order CDF, 

E{g({x(t + t1,ω), x(t + t2,ω),…, x(t + tn,ω)})}

=

∫∞

− ∞

⋯
∫∞

− ∞

g(y1, y2,…, yn) dF{x}(y1, y2,…, yn)
(5) 

or its n-th order derivative, the PDF (Probability Density Function), 

E{g({x(t + t1,ω), x(t + t2,ω),…, x(t + tn,ω)})}

=

∫∞

− ∞

⋯
∫∞

− ∞

g(y1, y2,…, yn) f{x}(y1, y2,…, yn)dy1 dy2 …,dyn
(6) 

which avoids finding the CDF or PDF for g from the joint CDF for n time 
samples of x. As we shall see, ergodicity theorems can be expressed in 
terms of the measure of the process or its CDFs in the case for which only 
a finite number of time points are of interest.
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Also, for reference below, the not-so-well-known Fundamental The
orem of Averages [5] is expressed here 

〈g({x(t + t1,ω), x(t + t2,ω),⋯, x(t + tn,ω)})〉

=

∫∞

− ∞

⋯
∫∞

− ∞

g(y1, y2,…, yn) dF̂{x} (y1, y2,…, yn,ω)

=

∫∞

− ∞

⋯
∫∞

− ∞

g(y1, y2,⋯, yn) f̂ {x}(y1, y2,⋯, yn,ω)dy1 dy2 ⋯dyn

(7) 

where the circumflex atop the CDF and PDF denotes Fraction-of-Time 
probability for a single sample path, not stochastic probability for the 
process, and the angle brackets denote time average instead of expec
tation. This theorem is valid for any finite time-interval, as well as in the 
limit as averaging time approaches infinity [7, page 3.5,8, Sec. 3.5]. This 
theorem is also valid for the FOT Probability models defined above for 
CS and ACS cases.

In Gray’s book [2], the property of a discrete-time process having 
both ergodicity properties and N-ergodicity properties for N > 1 
(cycloergodicity properties with period N) is referred to as Total Ergo
dicity. This may be a misnomer, because it does not account for cyclo
ergodicity (defined below) of a discrete-time process for one or more 
periods T that are not commensurate with the sampling increment and 
each other. Also, the issue of translating a measure or an event set by 
some amount other than an integer multiple of the defining time index 
for a discrete-time process may be a new concept. I do not recognize this 
concept arising in Gray’s treatment [2]. Because the techniques pre
sented in the classical ergodic theory [2] are sufficient to derive ergo
dicity theorems for discrete-time vector-valued AMS measures, I adopt 
here two primary objectives: 

• Objective 1: Explain how to reduce the objective of seeking cyclo
ergodicity theorems for continuous-time AMACS (or ACS) processes 
to that of applying ergodicity theorems defined in the traditional 
manner for each of multiple derived AMCS (or CS) discrete-time 
processes via their vector-valued AMS (or S) representations.

• Objective 2: Explain how to reduce the objective of seeking cyclo
ergodicity theorems for discrete-time AMACS (or ACS) processes 
with periods that are incommensurate with the process’s time sam
pling increment to that of applying ergodicity theorems defined in 
the traditional manner for each of multiple derived AMCS (or CS) 
discrete-time processes via their vector-valued AMS (or S) repre
sentations, for which measure decomposition and interpolation and 
process interpolation of the original process are used.

Both of these objectives give rise to another apparently new concept 
in ergodicity theory, namely that of sinusoidally-weighted times aver
ages and their ergodic properties. Although I and a PhD thesis student 
back in the early 1980s, the late Russell A. Boyles, did tackle the 
cycloergodicity problem for discrete time [3], we proceeded along the 
lines of the techniques in Gray’s early work, which is now reported in his 
book and we found that any ACS (or AMACS) discrete-time process in 
the class of AMS processes is degenerate in the sense that all cyclic 
components (sinusoidally-weighted time averages) of expected mea
surements are zero unless the cycle frequency is commensurate with the 
reciprocal of the sampling increment. Yet, both new Cycloergodicity 
Theorems 4 and 5 presented below appear to be valid applications of 
methods presented in [2], even if the applications are novel. This result 
in [3] is a direct consequence of the fact that an infinitely long 
discrete-time average of a sinusoid using a time-sampling increment 
(candidate period) that is an integer multiple of the true period of the 
sinusoid yields the unique value of the sinusoid at all the sampling times, 
whereas if this ratio is not an integer, the average value will converge to 
some other value which, for a non-rational ratio, will be zero.

For completeness, new ergodicity and cycloergodicity theorems that 
avoid use of the difficult-to-prove Birkhoff ergodicity theorem also are 

presented. These theorems apply to the property of a stochastic process 
model that is here called local ergodicity in contrast to the classical global 
ergodicity. The term global as used here probably does not appear in the 
literature because it is needed only to distinguish from local, and the 
term local ergodicity (with the meaning here) does not, to my knowledge, 
appear in the literature. The necessary and sufficient conditions pro
vided in these local (cyclo) ergodicity theorems are expected to gener
ally be less of a mathematical challenge to verify.

3.1. Key to integration of new theory into classical ergodic theory

The quantities in classical treatments of the theory of ergodic prop
erties for discrete-time processes with either stationary or AMS measures 
are all defined for only translations that are equal to the discrete-time 
process’ time-sampling increment and integer (N) multiples thereof, 
which are the only possibilities for time-translation transformations to 
be measure preserving—a necessary condition for ergodicity. The 
crucial (as to be seen below) concept of T-translation invariance of event 
sets and their probabilities for T-cycloergodic properties, when T is 
incommensurate with the time sampling increment, is therefore outside 
of classical theory (which includes Nedoma’s theory of N-ergodicity [9], 
which is cycloergodicity with period N.). Nevertheless, it is shown in this 
article that, as claimed in [50], the classical Birkhoff theorem can be 
applied by using one or the other of two crucial new lemmas that address 
what is called Probability Measure Decomposition and Interpolation and, 
indirectly, associated Process Interpolation. The first of these lemmas 
described below addresses the more straightforward case of 
continuous-time (CT) processes, and the second lemma addresses the 
slightly less straightforward discrete-time (DT) processes. It is noted that 
this Measure Decomposition, in which a measure is represented by an 
algebraic sum (with some negative terms) is unrelated to the classical 
and more abstract Ergodic Decomposition (cf [2]), in which a measure is 
represented in terms of a mixture of measures by the expected value of a 
random measure, which is a sum of probability-weighted measures with 
positive weights adding to 1. 

• The role of this new measure decomposition is that of being the unique tool 
for representing the almost periodic family of translated probability 
measures for a (possibly asymptotically-mean) almost cyclostationary 
process, which measure is NOT preserved by the time-translation trans
formation of the process (even with the technique of using vector-valued 
representations), by a set of periodic families of translated probability 
measures for cyclostationary processes, for which the time-translation 
transformation can be made measure preserving by using the previously 
known tool of vector-valued representation. This decomposition renders 
the almost cyclostationary process indirectly amenable to classic ergodic 
theory.

There is an alternative to the periodic decomposition for obtaining 
component measures that are preserved under the time-translation 
transformation, and this is the harmonic or sinusoidal decomposition, 
also described below. However, the component measures in this 
decomposition are complex-valued measures instead of probability 
measures, but the complex-valued measures occur in the representation 
of the probability measure in conjugates pairs, the sum of any number of 
which harmonically related pairs—when added to the zero-frequency 
sinusoidal measure—is a periodic probability measure. The theory of 
complex-valued measures allows for representation of each complex 
component as a vector containing real and imaginary parts or a polar 
representation consisting of a magnitude-measure multiplied by a phase 
factor [53].

The approach proposed here is to use this sinusoidal decomposition 
and use time averages to estimate each component complex-valued 
measure of a specified event and then add the results to obtain an esti
mate of the almost periodic probability of the specified event (or simi
larly for the almost periodic expected value of a function), analogous to 
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the proposed method for periodic component probability measures for 
periods that are commensurate with the sampling increment. 

• Because the real-valued magnitude of these complex-valued measures are 
preserved by the time-translation transformation (although the phase gets 
shifted in the phase factor), classical ergodic theory techniques can 
apparently be applied to derive the necessary and sufficient conditions for 
each component estimate to converge to its expected value. But, instead of 
a cycloergodicity test on the probability of translation-invariant event sets 
being needed, it is the probability of sinusoidally translation-variant event 
sets that must be tested.

Because of the parallels between the periodic decomposition 
approach to cycloergodicity of almost periodic measures and the sinu
soidal decomposition approach, only the former is spelled out in some 
detail below. Nevertheless, this sinusoidal-component approach to 
estimating moments of almost periodic CDFs representing almost peri
odic measures is commonplace in the literature on the theory of cyclo
stationarity, well represented by the references in this article, and dating 
back to the Author’s seminal book on the subject [5]. Although the proof 
of the sinusoidal cycloergodicity theorem not given herein is less 
straightforward than the proof of the periodic cycloergodicity theorem 
given, the practice of estimating the sinusoidal components is just as 
practical as estimating the periodic components for every time-phase 
throughout a period as again illustrated in much past work on both 
periodic and sinusoidal component estimation.

Recall, as discussed above, that the quantity P occurring below, with 
its various notational embellishments, is a measure, which can be 
interpreted as an abstract measure defined for all events in the field of 
abstract subsets of the sample space of a Kolmogorov stochastic process 
model or as a finite-dimensional CDF defined for all values of its 
argument.

Lemma 1. Periodic and Sinusoidal Decompositions for CT

Consider any nonstationary family of probability measures P(t)=Tt[P], 
indexed by t, obtained from translation of the event-set argument of a given 
measure P from a Kolmogorov process for all real numbers t, and recognize 
that the composition, P(t), of the measure with the translation operation, 
when evaluated at some event set in its domain, can be treated simply as a real 
valued function of the real variable t, and assume that for each event set, P(t) 
can be decomposed into the sum of an almost periodic component, when it 
exists, and a generally nonstationary residual that contains no sinusoidal 
components cf [1,46]. Because the residual vanishes in both of the limit 
averages of interest considered below, it is not of interest and not addressed 
below, and the notation P(t) is used below for the almost periodic component 
instead of the original generally nonstationary family of measures. (Because 
the average of the residual is zero, it has no impact on the ergodic properties of 
the process, which are fully determined by the average of P(t) which equals 
the average value of the almost periodic component of P(t) which is denoted 
by P0 below.) In the following, all instances of the symbol P, regardless of 
superscript {α}, {T}, 0, or none, represent a measure evaluated at some 
particular event set and is therefore a real or complex number or, where 
indicated, a real-valued or complex-valued function of the real time variable. 
Therefore, (8) below is a standard Fourier series representation for a 
continuous-time almost periodic real-valued or complex-valued function on 
the real line for which the union of sets of α over all event sets is assumed to be 
countable [1]: 

P(t) = P{α}(t) = def
∑

α
[Pαexp{i2παt}]

Pα = def lim
U→∞

1
2U

∫U

− U

P(u) exp{ − i2παu}du
(8) 

In (8), the sum in the first line is over a possibly infinite but countable set of 
frequencies. By partitioning the set of frequencies α, called cycle frequencies 

here, into mutually exclusive subsets in each of which all cycle frequencies are 
harmonically related, we can re-express the above as follows: 

P(t) = P{T}(t) = def
∑

T

[
PT(t) − P0]+ P0

PT(t) = def lim
K→∞

1
2K + 1

∑K

k=− K
P(t − kT)

= P{m/T}(t) =
∑∞

m=− ∞
Pm/T exp{i2πmt/T}

(9) 

where the reciprocal of each period T is the generator for each of the subsets of 
harmonically related cycle frequencies, all of which are integer multiples of 
the fundamental frequency 1/T. The sum in the first line of (9) is over a 
possibly infinite but countable set of periods, T. (The reader should observe 
that the T-periodic averaging operation on RHS of (2′’) and the second 
equation in (9) are the same.)

Lemma 2. Periodic and Sinusoidal Decompositions for DT

Lemma 1 for continuous time can be converted to the lemma desired here, 
for discrete time, by simply replacing the integral in the 2nd line of (8) with a 
discrete sum. The discrete-time P used in the so-modified 2nd line of (8), to 
calculate the Fourier coefficients {Pα}, generates the continuous-time P(t) 
appearing everywhere else in (8) and (9) which is defined for all real t. Thus, 
this representation can be interpreted as a means of interpolating a discrete- 
time almost periodic function to obtain a continuous-time counterpart whose 
discrete time samples at the original times agree with the original almost 
periodic function and whose spectral content is identical. However, unlike 
continuous-time almost period functions in general, this spectrum is band
limited (or periodically replicated). By sampling any of the continuous-time 
periodic component measures, as in the 2nd line of (9), at discrete times 
that are commensurate with any selected period, the awkward situation of the 
first two lines of (9) being undefined for the original discrete-time P(t), when 
the sampling increment is not commensurate with the period, is circumvented. 
This process is referred to here as Probability-Measure Resampling. Its utility 
in practice is unknown, except for when the probability measure is repre
sented by a set of CDFs of all orders. In this case, the above representations 
(8) and 9) of CDFs is a central part of the well-developed theory of ACS 
processes. But, for theoretical use for the measure itself, the lemma enables 
ergodicity theory proofs for discrete-time processes to be generalized to 
cycloergodicity, regardless of the relationship between the period of cyclo
stationarity and the time-sampling increment of the process.

3.2. Ergodicity theorems

Before getting into the details of the new theorems, it is emphasized 
here that a process may be non-cycloergodic with a period that is not 
exhibited by the probability measure—a new concept in ergodicity 
theory: In other words, sample paths can exhibit statistical cyclicity even 
though the family of translated probability measures exhibits no peri
odicity with that period. This can happen as a result of random phase 
variables. For example, a random process that is a function (e.g., a sum 
or a product) of a cyclostationary process and a stationary process can be 
made stationary by adding a time-invariant random variable to the time 
parameter in the cyclostationary process or the sum of processes [12]. 
But the sample paths of the process will still exhibit statistical cyclicity 
due to the originally cyclostationary process. That is, sample paths of 
such a process or time-invariant functions thereof (such as a lag product) 
can, with probability equal to 1, contain finite-strength periodic com
ponents. The only requirement for such a process to be stationary is that 
the characteristic function of the random phase variable must be zero at 
the cycle frequencies in every expected measurement function (such as 
joint moments and CDFs). The periodic zeros of a sinc function (except at 
zero frequency) are quite useful here. For every uniformly distributed 
random phase variable in a sum of statistically independent such phases, 
we obtain a sinc factor in the characteristic function for the sum. So, all 
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cycle frequencies in any expected measurement function of a poly
cyclostationary process (almost cyclostationary with a finite number of 
periods) can be annihilated with a single random phase variable equal to 
a finite sum of uniform random variables with properly chosen PDF 
widths [12]. (The case of an infinite number of periods may require 
investigation.)

As a prelude to the new cycloergodicity theorems presented below, 
the discussion here begins with known theorems of global ergodicity 
(where the unusual modifier global is used, as explained earlier in this 
section, to distinguish from Local ergodicity, a lesser-known concept, as 
defined herein).

Theorem 1. Probability-1 Global Ergodicity Theorem for DT Stationary 
Processes (attributed to G. D. Birkhoff for pointwise (w.p.1) ergodicity, and 
paraphrased from https://en.wikipedia.org/wiki/Ergodicity) – A stationary 
probability measure on a sample space is ergodic for the measure-preserving 
integer-time-translation transformation if and only if the average over all 
translations of time-translated versions of each measurable function on the 
sample space converges to the expected value of that function, with proba
bility measure equal to 1, for all measurable functions; and a necessary and 
sufficient condition for this ergodicity property is that there exist no 
translation-invariant subsets of the sample space not having probability equal 
to 0 (or, as a degenerate case, 1).

Effectively, this means that the translated measurement function 
“never” (or w.p.0) equals a constant or it “always” (or w.p.1) equals a 
constant. The “never” case is typically desirable and the “always” case is 
uninteresting because the function of interest is then “non-random”: it is 
a time-invariant constant with probability equal to 1. As examples of w. 
p.1 and w.p.0, if a time series is bounded below with Relative Lebesgue 
Measure equal to 1, (which is expressed as “for almost every time t”) w. 
p.1 at value − 100, then the event x(t,ω) < − 100 “never” (throughout 
the sample space) happens for almost every time t and the event 
x(t,ω) > − 100 “always” (throughout the sample space) happens for 
almost every time t.

Because the functions in Theorem 1 include event-set indicator 
functions, whose expected values equal the event-set probabilities, this 
theorem applies to estimation of event-set probabilities as well as to 
expected values of measurement functions.

In practice, if the experimenter can prove that the process model for 
{x(t, ω): for all t} being used “never” produces a constant sample path of 
the t-translated event-indicator function for any non-zero-probability 
event set in the sample space, then the finite-time average of the indi
cator of this event will “always” (with probability equal to 1) converge 
to the probability of this event as averaging time approaches infinity.

The requirement that the time-translation transformation preserve 
the measure restricts this theorem to stationary processes. An important 
generalization treated in depth by Gray [2] extends this to 
Asymptotically-Mean Stationary (AMS) processes, for which the 
time-average of a possibly nonstationary measure converges, as aver
aging time grows without bound, to a stationary measure, which can be 
interpreted as the additive stationary component of the nonstationary 
measure, for which the residual—the difference between the nonsta
tionary measure and its asymptotic mean (time average)—has a time 
average value that is identically zero. This stationary component is Pα 

for α = 0 in (8) - (9) and it is said to dominate the nonstationary measure 
in the sense that the latter can equal 0 or 1 only if the former equals 0 or 
1, respectively (because P(t) can take on only values between 0 and 1). 
Less interestingly, P0 also is dominated by the nonstationary measure P 
(t) for a.e. t. Also, because the former is assumed to be nonstationary, the 
time-translation transformation does not preserve this measure, but it 
does preserve the stationary component. Because of this, the above 
classic theorem generalizes to the following:

Theorem 2. Probability-1 Global Ergodicity Theorem for DT AMS Pro
cesses – An AMS probability measure on a sample space is ergodic for the 
integer-time-translation transformation if and only if the average over all 
translations of time-translated versions of each measurable function on the 
sample space converges to its own expected value, with probability measure 
equal to one, for all measurable functions, and a necessary and sufficient 
condition for this ergodicity property is that there exist no translation- 
invariant subsets of the sample space not having stationary-component 
probability equal to zero. Furthermore, the expected value of the time aver
aged measurement equals, with probability equal to 1, the time average of the 
nonstationary expected value of the measurement.

The restriction to discrete time in Theorems 1 and 2 can be removed 
by representing a scalar-valued CT process by a vector-valued DT pro
cess. The vector dimension here is derived from the size of the set of all 
real times in whatever subinterval one chooses for partitioning the real 
line representing time into discrete-indexed contiguous subintervals, 
and this dimension is uncountably infinite (the number of time points in 
a continuous interval of the real line) in every case. Although the choice 
of interval length is arbitrary, in the case of interest in cycloergodicity 
properties with some specified period, choosing the subinterval length 
equal to that one period avoids the need for further decomposition of the 
derived vector-valued discrete time process, as discussed further below.

Theorem 3. Probability-1 Global Ergodicity Theorem for CT AMS Pro
cesses – A CT AMS probability measure on a sample space with a vector- 
valued DT AMS probability-measure representation (with DT increment 
normalized to unity) is ergodic for the integer-time-translation trans
formation if and only if the average over all translations of time-translated 
versions of each measurable function on the sample space for the vector- 
valued representation converges to its own expected value, with DT proba
bility (or stationary-component probability) measure equal to 1, for all 
measurable functions, and a necessary and sufficient condition for this 
ergodicity property is that there exist no translation-invariant subsets of the 
sample space for the vector-valued representation not having stationary- 
component probability equal to 0 (or, as a degenerate case, 1).

For Theorems 1, 2, and 3, it is a simple matter to prove that the (0,1)- 
probability condition for global ergodicity is necessary, by simply 
assuming it is not true and demonstrating that the time average of the 
corresponding time-invariant event-indicator function cannot equal its 
expected value, the event probability assumed to be not equal to either 
0 or 1. The proof of sufficiency is beyond the scope of this article, and 
readers are referred to the established literature (and wished good luck).

The above theorems address global ergodicity, which means ergo
dicity for an individual stochastic process for all individual measurement 
functions and event sets. This article does not address ergodicity “in mean 
square” which is a much weaker less restrictive alternative to “pointwise 
ergodicity with probability 1”. However, it does discuss further below 
Local Ergodicity as a less restrictive alternative to global ergodicity.

Because CT and DT processes that are CS, AMCS, ACS, and AMACS 
are all AMS processes [3] (cf. Lemmas 1, 2), Theorems 2 and 3 are an 
essential part of the new probability-1 global cycloergodicity theorem 
for both DT and CT AMACS processes presented below. By observing, as 
already mentioned above, that the probability of any event set in the 
sample space of a process can be represented by the expected value of 
the (0,1)-valued indicator function for membership in the event set (cf. 
(1)-(3)), Theorems 1 – 3 apply to time-average estimation of probabil
ities of arbitrary event sets in the field of subsets of the sample space as 
well as to estimation of expected values of arbitrary measurable func
tions defined on the sample space such as, for example, any power of the 
process, the expected value of which is a moment of the measure (or of 
the process). Consequently, for efficiency, the following cycloergodic 
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theorems also address only the estimation of expected values of func
tions using time averages (more specifically periodic time averages and 
sinusoidally weighted times averages) of those functions. Because all 2 ×
4 = 8 classes of processes exhibiting cyclostationarity that are listed 
above are subclasses of DT or CT AMACS processes, we can capture all 
the cycloergodicity cases of interest in two theorems, one for CT AMACS 
and one for DT AMACS. Furthermore, since for all eight classes, Lemmas 
1 or 2 are used below to replace the original processes of interest with 
vector-valued DT AMACS processes, one for each period of interest, and 
since every CT and DT AMACS process represented by a vector-valued 
DT process is AMS, we need only one generic theorem for DT AMACS 
processes, which leverages Theorem 2 generalized from scalar-valued to 
vector-valued DT AMS processes, with finite-dimensional vectors for 
original processes that are DT and infinite-dimensional vectors for 
original processes that are CT. However, there is one exception, which 
requires a corollary, and this is the case of an original DT process with 
one or more periods of cyclostationarity that is/are incommensurate 
with the sampling increment. The reason this case is an exception is 
because only in this case must we implement an interpolation processing 
step on the original stochastic process in order to define (and test for 
satisfaction of) the necessary and sufficient condition for cycloergodicity 
given by the upcoming cycloergodicity theorem. In practice, there may 
be only one or a few periods of cyclostationarity of interest, each of 
which would require a cycloergodicity test to be performed. However, 
for complete cycloergodicity of a process, as many as a countable in
finity of tests for individual periods may (theoretically) need to be 
performed. This is part of the reason that the upcoming Local Cyclo
ergodicity Theorems are of some interest. (The reader is reminded of 
Appendix II, which avoids “re-inventing the wheel” for (cyclo)ergodicity 
testing in some applications.)

The number of periods that may be of interest will generally depend 
on the particular measurement function whose expected value is to be 
estimated. There can be more periods for higher-order moments to be 
estimated than for lower order moments and different numbers for 
cumulants and moments; and there can be different numbers of periods 
for estimation of joint CDFs and joint characteristic functions (less for 
characteristic functions for Gaussian processes). This remark exposes the 
important fact mentioned briefly above that no process has a unique 
cycle spectrum (exhaustive set of cycle frequencies), because no process 
has a unique probabilistic model. Equally valid options include 1) the set 
of all moments or cumulants (countable for DT and uncountable for CT), 
2) the CDFs for all finite sets of discrete-time samples (countable for DT 
and uncountable for CT), and 3) the set of all joint characteristic func
tions (uncountable for all DT and CT processes). The size of the cycle 
spectrum can vary widely from one to another of these optional models. 
There are also significant differences possible for local cycloergodicity. 
e.g., for a single function of a process, whose expected value is to be 
estimated, the relevant probabilistic model is only the mean of the 
function, which can contain anywhere from 0 to a countable infinity of 
cycle frequencies. The cycle spectrum of the characteristic function of 
any order for a Gaussian process can contain no more cycle frequencies 
than those in its mean and autocorrelation functions, while higher-order 
moments depend on sums of products of the mean and autocorrelations 
which create mixing of harmonics of the cycles in the mean and auto
correlation functions. Needless to say, testing for global cycloergodicity 
of ACS processes can be a huge challenge.

To be explicitly clear, cycloergodicity in general for one period does 
not imply and is not implied by cycloergodicity for any other (incom
mensurate) period. And, for a given period, cycloergodicity for one time 
point within a period does not imply and is not implied by cyclo
ergodicity for some other time point in that period. This can be 
expressed alternatively as cycloergodicity for one vector-element in the 
vector representation does not imply and is not implied by 

cycloergodicity for any other element. Similarly, in general, cyclo
ergodicity for one cycle frequency does not imply and is not implied by 
cycloergodicity for some other cycle frequency whether or not they are 
harmonically related.

For empirical work in time series analysis based on cyclic time 
average statistics, for which only one or a few functions are targeted for 
determining cycloergodicity, this limited number of targets addressed 
by what I shall call local ergodicity (in the function space or the sample 
space, not on the time line) may reduce the challenge of performing the 
necessary and sufficient cycloergodicity test(s). It is not clear in general 
whether each such local test for cycloergodicity is less of a mathematical 
challenge than is the global test for all functions, and the added 
complication of working with multiple periods and vector-valued pro
cesses instead of scalar-valued processes can only make matters worse. 
This pragmatic consideration is returned to in the following section 
providing a critical perspective on pragmatism.

In general, some prior information or testing of the stochastic process 
model of interest is needed in order to test for cyclostationarity at 
candidate periods. Once a candidate period of interest has been identi
fied (see Appendix I), and events or functions of interest have been 
identified, the local cycloergodicity tests specified by the appropriate 
theorem below can be performed.

Despite the apparent advantage of local cycloergodicity for appli
cations of interest in this article, for generality, both new global and 
local cycloergodicity theorems are presented below.

The next subsection begins with a new theory of local ergodicity, 
before advancing to the new theorems for local and global 
cycloergodicity.

Local Ergodicity

Theorem 4. Probability-1 Local Ergodicity Theorem for DT and CT AMS 
Processes – Let {x(t, ω); for all t in R or all t in Z, for all ω in Ω}, with 
probability measure P defined on a field of subsets of the sample space Ω, be a 
Kolmogorov stochastic process [54] for which the class of measurement 
functions of interest, denoted generically by g(t, ω), is comprised of those 
functions of any set of time samples of the process, translated by all t, that 
satisfy the assumption that the limits of time averages over all t, denoted by 
<g(t, ω)>, exist w.p.1. This assumption for well behaved functions is 
satisfied by any of three axioms: 1) P is stationary, which is sufficient, or 2) P 
is AMS, which is necessary and sufficient, or 3) the sample paths of the 
functions of interest are Relatively Lebesgue Measurable (which means the 
univariate FOT-CDF of g(t, ω) exists w.p.1), which is sufficient but not 
necessary. For any such function g(t,ω), assume <g(t, ω)>= c for all ω in S 
which is a not-necessarily-proper subset of Ω, where c is independent of 
almost every t in R or Z (and independent of ω inside S), and assume that P 
(S) = 1. Then and only then we have, w.p.1, 〈g(t,ω)〉 = E{〈g(t,ω)〉} =

〈E{ g(t,ω)}〉, which is the meaning of local ergodicity.

Proof. To show that the assumption P(S) = 1 in this theorem is 
necessary is easily achieved by assuming P(S) not = 1 and observing that 
a contradiction of 〈g(t,ω)〉 = E{〈g(t,ω)〉} is obtained. To show that P(S) 
= 1 is sufficient, simply use the fundamental theorem of expectation to 
evaluate the expected value of the time average to discover that, when P 
(S) = 1, the expression reduces to the time average for all ω in S which 
means w.p.1.

This admittedly obvious local ergodicity Theorem 4, in terms of a 
condition on the constancy over the sample space of the average of the 
function, merits comparison with the global ergodicity Theorems 2, 3, in 
terms of the constancy of the function itself over the sample space. These 
two theorems are definitely not equivalent. The assumptions required by 
Theorem 3 for global ergodicity are not necessary for the assumptions of 
Theorem 4 for local ergodicity. However, they are sufficient. This suf
ficiency of Theorem 3 conditions for global ergodicity for the validity of 
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conditions of Theorem 4 for local ergodicity is also logically equivalent 
to the sufficiency of violation of the conditions of Theorem 4 to ensure 
the violation of the conditions for Theorem 3. These statements are easy 
to prove by example.

If the function of interest (not yet subjected to time translations) in 
Theorem 4, is an event-indicator function and is finite-dimensional 
(involves the process at only a finite number of times) and its proba
bility can be expressed in terms of CDFs, then the abstract probability 
measure used in the (0,1)-probability test can be replaced with the an 
expression in terms of these CDFs. Similarly, if other types of functions of 
interest are finite dimensional, their expected values can be expressed in 
terms of CDFs instead of probability measures. Theorem 4 and this 
observation appear to bring the task of testing for ergodicity more down 
to earth, but “the devil remains in the details”. Unfortunately, the 
following generalizations to cycloergodicity take us in the wrong di
rection with regard to pragmatism, by further complicating the tests the 
user needs to perform.

3.3. The AMACS global cycloergodicity theorem

Theorem 5. Probability-1 Global Cycloergodicity Theorem for DT and CT 
AMACS Processes – By virtue of Theorems 2 or 3, and Lemmas 2 or 1, 
respectively, we have the fact that the T-periodic time averages, as per (2′)- 
(2′′) of a measurement function on an AMACS CT or DT process, converge as 
averaging time increases without bound to their own expected value, with DT 
probability (or stationary-component probability) measure equal to 1, and a 
necessary and sufficient condition for this cycloergodicity property is that 
there exist no translation-invariant subsets of the sample space for the vector- 
valued representation not having stationary-component probability equal to 
zero.

The uninteresting case of having a stationary-component probability 
of a translation invariant event equal to 1 is simply ignored because this 
is obviously not a useful stochastic process model.

Regarding the special case for which a period of (AM) cyclo
stationarity for a DT process is incommensurate with the process sam
pling increment, Theorem 5 applies as well as it does when this situation 
is not present. However, the testing of the necessary and sufficient 
condition is more onerous. When the situation is not present, one must 
seek translation-invariant event sets of the vector representation OR T- 
translation-invariant event sets of the original process, which are peri
odically time-varying translated events sets, and the probability = 0 test 
is applied to any such event set.

When the family of discrete-time translated probability measures is 
almost periodic and has non-zero periodic components with periods that 
are incommensurate with the discrete sampling-time increment, Lemma 
2, establishing the probability-measure resampling technique, is 
immediately applicable and replaces the given discrete-time family of 
translated probability measures with a resampled version. Nevertheless, 
it is only the stationary component of the probability measure that must 
be tested for probability = 1, and the stationary component can be seen 
from Lemma 2 to be independent of any resampling. That is, the sta
tionary component of the interpolated process equals the stationary 
component of the original process (stationarity is preserved by this 
method of resampling). So, it is concluded that resampling of a proba
bility measure is unnecessary in the cycloergodicity theorem even for a 
period that is incommensurate with the time-sampling increment of the 
process. Resampling is simply a conceptual tool for proving the theorem 
by application of Theorem 2. However, the translation amounts to be used 
in the test are not commensurate with the original time sampling increment. 
This wrinkle appears to require that the process itself be interpolated. Because 
an ACS or AMACS process is generally not almost periodic, the 

interpolation method of Lemma 2 for measures cannot be used here. 
Instead, it is proposed that the Nyquist sampling theorem be used to 
interpolate the process with sinc pulses and then the process be re- 
sampled in synchronism with the period of interest. It is unclear at 
this time how much more challenging this special case can be in 
practice.

A potentially useful tool, at least conceptually, for checking a sto
chastic process model for ergodicity or cycloergodicity properties is a set 
of mixing conditions. However, in the practice of probabilistic analysis of 
time-average statistics by empiricists, these sufficient conditions may 
still, like the tests specified by the above cycloergodic theorem, not be 
practical. Nevertheless, for at least conceptual benefit, readers are 
referred to the sufficient conditions in Theorem 3.2 and equation (3.20) 
in [3] for discrete-time ACS processes not including periods of cyclo
stationarity that are incommensurate with the sampling increment. It 
can be seen that the examples in the present article of stochastic pro
cesses that are non-cycloergodic due to meeting the sufficient conditions 
(for non-cycloergodicity) of time-invariant random amplitude factors 
and time-invariant random time shifts in components of processes, 
which are equivalent to random phase shifts in the argument of a 
sinusoid, violate these mixing conditions, even though they are not 
necessary conditions for (for non-cycloergodicity). It may be true that 
specific behavior causing any non-cycloergodicity other than these 
random amplitude factors and random time shifts (and a few related 
special cases identified in Appendix II) can be relatively complicated(?). 
(These mixing conditions involve a different mixing concept than that of 
mixture processes, which are always non-(cyclo)ergodic, though they 
may be mixtures of ergodic processes (Appendix II)).

3.4. The AMACS local cycloergodicity theorem

To complement Theorem 5, as discussed earlier in this section, we 
have Theorem 6.

Theorem 6. Probability-1 Local Cycloergodicity Theorem for DT and CT 
AMACS Processes – Let{x(t, ω); for all t in R or all t in Z, for all ω in Ω}, with 
probability measure P defined on a field of subsets of the sample space Ω, be a 
Kolmogorov stochastic process [54] for which the class of measurement 
functions of interest, denoted generically by g(t, ω), is comprised of those 
functions of any set of time samples of the process, translated by all t, that 
satisfy the following assumption: For any period T of the family of translated 
measures, P(t), let gT(t, ω) with discrete t be the vector-valued representation 
of g(t, ω) with continuous t and assume the limits of the discrete-time aver
ages over all discrete t, denoted by <gT(t, ω)>, exist w.p.1. This assumption 
is satisfied if and only if P(t) is AMCS with period T, which is necessary and 
sufficient since it is equivalent to the periodic component PT(t) from Lemmas 
1 or 2 being AMS.

For any such function gT(t, ω), assume <gT(t, ω)> = c for all ω in S 
which is not-necessarily a proper subset of Ω, where the vector c is in
dependent of almost every t in Z and independent of ω inside S, and 
assume that P(S) = 1.

Then and only then we have, w.p.1, <gT(t, ω)> = E{<gT(t, ω)>} =
<E{gT(t, ω)}>, which is the meaning of local cycloergodicity.

Proof. To show that the assumption P(S) = 1 in this theorem is 
necessary is easily achieved by assuming P(S) not = 1 and observing that 
a contradiction of <gT(t, ω)> = E{<gT(t, ω)>} is obtained. To show 
that P(S) = 1 is sufficient, simply use the fundamental theorem of 
expectation to evaluate the expected value of the time average to 
discover that, when P(S) = 1, the expression reduces to the time average 
for all ω in S which means w.p.1.
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4. A perspective on cycloergodicity

The research results and associated material from the previous sec
tions of this paper lead us to conclude that the objective of probabilistic 
analysis of time-average statistics that is generally pursued by experi
mentalists and empiricists working in time series analysis is not met by 
the stochastic process model, in part because of the practical failures of 
the ergodic hypothesis concept. This key link between abstract proba
bility and empirical reality is seriously flawed from a practical stand
point. The purpose of the following discussion is to reflect on this in a 
constructive manner, by clearly exposing the serious issues that exist 
with application of ergodicity theory and then drawing attention to what 
can be seen to be a natural solution to this problem: A solution for which 
an extensive technical book of the past [5] was devoted to teaching. Four 
decades hence, we see from the literature that this natural solution has 
been further developed and is now quite mature but, except for a few 
disciples and contributors, has apparently been ignored by the entire 
field of mathematical statistics and apparently all university curricula 
involving mathematical statistics. This is so despite the prevalence of 
time-series analysis throughout science and engineering!

The Kolmogorov specification of a stochastic process and the 
Birkhoff Ergodicity Theorem are generally so abstract that, to my 
knowledge, no meaningful methodology for implementing the ergo
dicity test that could be useful for an empiricist except in the most trivial 
examples has been developed. Gray [2] provides a uniquely accessible 
treatment of ergodic theorems for the non-ergodic-theory specialist but, 
for the typical empiricist, I fear it is not accessible enough. Fortunately, 
past work by mathematicians, extended from ergodicity to cyclo
ergodicity by the Author, has resulted in the identification of certain 
specific classes of stochastic process models that are cycloergodic and 
this is of definite help here—see Appendix II. But this list is not 
comprehensive, so the challenge remains for all process models not in 
this list or any expanded version of it that surfaces.

When complemented by Theorems 3–6 above, the book [2] repre
sents, better than any other source I know of, the state of knowledge 
about ergodicity and cycloergodicity in applied fields, including espe
cially engineering but also the sciences. It provides the perfect backdrop 
for the following alternative perspective on the role of stochastic pro
cesses and ergodicity theorems in empirical time series analysis. For this 
reason, I have included below just enough excerpts from the book’s 
preface to enable the reader to benefit from this key source in under
standing the present article.

The author’s intent in writing the book [2] is stated to be to provide: 
“a reasonably self-contained advanced (at least for engineers) treatment 
of measure theory, probability theory, and random processes, with an 
emphasis on general alphabets and on ergodic and stationary properties 
of random processes that might be neither ergodic nor stationary.”

The author further explains that, since in the first in 1987of multiple 
versions of this book [2], “The intended audience was mathematically 
inclined engineering graduate students and visiting scholars who had 
not had formal courses in measure theoretic probability or ergodic 
theory. Much of the material is familiar stuff for mathematicians, but 
many of the topics and results had not then previously appeared in 
books.”

He reveals that his “Personal experience indicates that the intended 
audience rarely has the time to take a complete course in measure and 
probability theory in a mathematics or statistics department, at least not 
before they need some of the material in their research.”

And he adds the following remark, especially relevant here: “Many of 
the existing mathematical texts on the subject are hard for the intended 
audience to follow, and the emphasis is not well matched to engineering 
applications. A notable exception is Ash’s excellent text [55], which was 
likely influenced by his original training as an electrical engineer. Still, 
even that text devotes little effort to ergodic theorems, perhaps the 
most fundamentally important family of results for applying 
probability theory to real problems.” (Author’s emphasis with 

boldface added.)
I congratulate the author of [2] for giving us this unique book, which 

I suspect has enabled many, like me, to gain an understanding of ergo
dicity theory that we would be hard pressed to find anywhere else in a 
treatment that respected our lack of education or at least training in 
measure theory. I believe it is fair to paraphrase his final remark quoted 
immediately above as follows: Real problems, such as those involving the 
application of population probability to analysis of time-average statistics 
derived from empirical time series data require a quantitative link between 
time averages and expected values and for this reason ergodicity theorems are 
of fundamental importance to such real problems. My response to this au
thor’s perspective in [2] is twofold: 1) If, indeed, ergodicity theorems 
are of fundamental importance in real time-series analysis, I am 
perplexed by the observation that the content of this book falls short of 
meeting its objective by virtue of having excluded the Cycloergodicity 
Theorems presented in the present paper, given the spectacular growth 
of research & development and commercial use of signal processing 
algorithms based on time-average statistics for (almost) cyclostationary 
signals throughout the many fields of engineering and science since the 
appearance of the original and seminal book [5] on this topic nearly 40 
years ago, and especially in the field of communication systems.

The second and more important response, given that we now have 
the missing cycloergodicity theorems, is 2) If the non-population proba
bility theory based on time averages is used to perform the needed probabi
listic analysis as demonstrated in [5] 40 years ago and in many follow-on 
publications cited below and described very recently in [48,50], instead of the 
expected values from the orthodox population probability theory associated 
with the stochastic process model, then for any such application there would 
be no need for ergodicity or cycloergodicity theorems and therefore no need to 
face the challenge of performing mathematical tests of the (cyclo)ergodic 
hypothesis.

The simplest case referred to here is that for which the cyclosta
tionary process model is for discrete time data and has period of 
cyclostationarity equal to an integer multiple of the time-sampling 
increment in the model, which is exactly equivalent to a finite- 
dimensional vector-valued stationary process, for which the standard 
ergodicity theorems apply, as explained in [2]. But this idealized model 
excludes all the more generally applicable models for which a) the 
period of cyclostationarity is incommensurate with the time-sampling 
increment, and/or b) there are two or more mutually incommensurate 
periods, and/or c) the stochastic process is of continuous-time type and 
either of one period or two or more incommensurate periods are present. 
Key applications in communication systems design and analysis 
requiring these more realistic cyclostationary signal models are briefly 
discussed and cited in the section Background on Cycloergodicity. The 
cycloergodicity theory needed for these more practical models is given 
in the preceding section.

Before continuing, a few more words about what may be an exag
gerated statement about the importance of ergodicity theory is merited 
here. If the meaning in [2] of “real problems” is restricted to applications 
that specifically call for a stochastic process model of time series data 
while, at the same time, these applications involve time-average statis
tics obtained from an actual (real) time series that specifically calls for 
modeling as one member of some population of time series of interest, 
consisting of realizations of the stochastic process, then the perspective 
from [2] on the fundamental importance of ergodicity theory for 
applying probability to real problems is logical.

However, if the real problem of interest consists of empirical time 
series analysis based on time-average statistics motivated by real science 
or real engineering and there is no real population of time series, 
positing a stochastic process model consisting of a population of hypo
thetical time series for the sole purpose of performing probabilistic 
analysis of the empirical time-average statistics is fundamentally non- 
scientific because it egregiously violates the principle of parsimony. This 
abstract model of a real problem would be scientifically acceptable if 
and only if there were no more realistic alternative probability theory 
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available for the purpose. This assumption, which may have been valid 
around the middle of the last century, was rendered invalid in the mid- 
1980s by the introduction in [5] of a comprehensive non-population 
probability theory of time series based on time averages, assuming the 
time series arise from phenomena or systems in equilibrium, for which 
the key characteristics do not change with time or, more generally, cycle 
with time with single or multiple possibly-incommensurate periods. 
These lead to probabilistic models of single time series that are sta
tionary, cyclostationary, or almost cyclostationary, and time-dilated 
versions thereof.

Abstract Population Probability does exhibit some convenient 
mathematical properties by virtue of being axiomatically willed, but the 
absence of these properties in non-population probability is a reflection 
of closer ties with empirical reality, which again renders the former non- 
scientific as argued in [47]. Its virtues are valuable for the non-empirical 
field of ergodic dynamical systems but are of questionable appropri
ateness for empirical time-series analysis.

The treatment of Non-Population Probability Theory of time series that 
began being promoted in earnest with a book [5] published in the same 
year, 1987, as the first version of [2], explicitly expresses the considered 
opinion that the stochastic process is simply the wrong tool for probabilistic 
modeling of time averages when real populations of time series are not 
available or cannot even exist or when they are simply not of interest. By 
setting aside the stochastic process tool and adopting in its place a 
comparable and highly analogous probability theory of time averages, 
as done in [4–8,18–50], the difficult and mathematically challenging 
concept of (cyclo)ergodicity of stochastic processes becomes irrelevant. 
Even at this late date, almost 40 years since publication of the proposed 
probability paradigm shift in the book [5], this statement will likely be 
shocking to all those who have 1) been brought up believing that the 
stochastic process is the only tool available for doing probabilistic 
analysis of time series data and 2) have not read [5] or any of the 
considerably more the 40 above-cited subsequent publications that were 
spurred by [5] and that used and usually promoted adoption of the 
non-population probability model.

As unorthodox as this alternative theory is at present, there is over
whelming evidence that the non-population probability theory of time 
averages is a better fit, from a scientific perspective, for probabilistic 
characterization of time-average behavior of time series data. In fact, 
several of our most accomplished and highly recognized scientists and 
engineers of the recent past, in directly relevant fields including even 
Information theory, “saw the writing on the wall” in 1987, when the 
seminal book [5] appeared. Four striking examples of their perspective 
in favor of the non-population probability alternative are presented in 
[50] and are worth repeating here:

The late information theorist Professor James L. Massey (recipient of 
the Shannon Award in 1988, the IEEE Alexander Graham Bell Medal in 
1992, the Marconi Prize in 1999, and the Information Theory Society 
Distinguished Service Award in 2004, and elected to the U.S. National 
Academy of Engineering, the Swiss Academy of Engineering Sciences, 
the European Academy of Sciences and Arts, and the Royal Swedish 
Academy of Sciences) wrote in a prepublication review of the book [5] 

• “I admire the scholarship of this book and its radical departure from the 
stochastic process bandwagon of the past 40 years.”

Complementing this bold statement, the late Professor Enders A. 
Robinson, who revolutionized exploration geophysics as the originator 
of the Geophysics Analysis Group at MIT, author of over 20 advanced 
technical books focused on time-series analysis and probability theory, 
and a member of the National Academy of Engineering and the Euro
pean Academy of Sciences, states in a 1987 letter of reference: 

• “Professor Gardner has the ability to impart a fresh approach to many 
difficult problems. William is one of those few people who can effectively 
do both the analytic and the practical work required for the introduction 

and acceptance of a new engineering method. His general approach is to 
go back to the basic foundations and lay a new framework. This gives him 
a way to circumvent many of the stumbling blocks confronted by other 
workers . . .

• I am particularly impressed by the fundamental work in spectral analysis 
done by Professor Gardner. Whereas most theoretical developments make 
use of ensemble averages, he has gone back and reformulated the whole 
problem in terms of time-averages. In so doing he has discovered many 
avenues of approach which were either not known or neglected in the past. 
In this way his work more resembles some of the outstanding mathema
ticians and engineers of the past. This approach took some courage, 
because generally people tend to assume that the basic work has been 
done, and that no new results can come from re-examining avenues that 
had been tried in the past and then dropped. William’s success in the 
approach shows the strength of his engineering insight. He has been able to 
solve problems that others have left as being too difficult.”

In a 1990 published review of the book [5], Professor Robinson 
wrote: 

• “This book can be highly recommended to the engineering profession. 
Instead of struggling with many unnecessary concepts from abstract 
probability theory, most engineers would prefer to use methods that are 
based upon the available data. This highly readable book gives a consis
tent approach for carrying out this task. In this work Professor Gardner 
has made a significant contribution to statistical spectral analysis, one 
that would please the early pioneers of spectral theory and especially 
Norbert Wiener’’

With similar sentiment, the late Professor Ronald N. Bracewell, 
recipient of the IEEE Heinrich Hertz medal for pioneering work in an
tenna aperture synthesis and image reconstruction as applied to radio 
astronomy and to computer-assisted tomography (CAT-scans), in his 
Foreword to the book [5], makes essentially the same point that Pro
fessor Robinson makes: 

• ‘‘If we are to go beyond pure mathematical deduction and make advances 
in the realm of phenomena, theory should start from the data. To do 
otherwise risks failure to discover that which is not built into the model . . . 
Professor Gardner’s book demonstrates a consistent approach from data, 
those things which in fact are given, and shows that analysis need not 
proceed from assumed probability distributions or random processes. This 
is a healthy approach and one that can be recommended to any reader’’.

The late Akiva M. Yaglom, physicist, mathematician, and professor 
on the Faculty of Probability Theory at Moscow State University, Russia, 
member of the USSR Academy of Sciences, recipient of the Lewis Fry 
Richardson Medal for "eminent and pioneering contributions to the 
development of statistical theories of turbulence, atmospheric dynamics 
and diffusion, including spectral techniques, stochastic and cascade 
models", who specialized in theories of stochastic processes, stated in a 
published review of the book [5]: 

• “It is important . . . that until Gardner’s . . . book was published there was 
no attempt to present the modern spectral analysis of random processes 
consistently in language that uses only time-averaging rather than aver
aging over the statistical ensemble of realizations [of a stochastic process] 
. . . Professor Gardner’s book is a valuable addition to the literature”

The late Phillip. E. Doak, Founding Editor of the Journal of Sound and 
Vibration, with a tenure as Editor in Chief of 40 years, on 8 March 1990, 
sent the Author his perspective on non-population probability: 

• ‘‘In my latter years, I have become more and more convinced of the 
validity of his [Percy W. Bridgman, Nobel Prize Laureate] outlook. 
Not only can ergodic mathematical concepts put students off, indeed 
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I now believe that for physical scientists and engineers, they are 
‘‘operationally erroneous’’, and dangerous to mental health. Inter
preting observations through ergodic spectacles is to misinterpret 
what the observations really mean. Not only does it confuse the issue, 
but also it inhibits the development of one’s intellectual capacity to 
ask the right questions about what the data means. Thus, in design, 
development, and research it is a model of reality which is coun
terproductive in respect to generating concepts which can lead to 
real progress in the real world’’

The substantial evidence cited above and otherwise presented 
throughout 40 years of the Author’s previous work cited herein and 
references therein to the effect that ergodicity theory is, to quote the 
editor Doak in [50] who is reflecting on words from Nobel Prize Lau
reate Percy W. Bridgman, “operationally erroneous to physical scientists 
and engineers” and “irrelevant to empirical work in time-series anal
ysis” directly opposes Gray’s statement “. . . ergodic theorems [are] 
perhaps the most fundamentally important family of results for applying 
probability theory to real problems” or, at the very least, calls into 
question what Gray means by “real problems”. The meaning certainly 
does not appear to be particularly inclusive.

Returning now to the absence of cycloergodicity theory in Gray’s 
otherwise powerful book, it is conceivable that this oversight might have 
been facilitated by Gray’s apparent lack of interest in unorthodox Non- 
Population Probability theory. For example, there appears to be no sign 
of research or publication by Gray on this topic (excluding the trivial 
case of N-ergodicity). This explanation is proffered because it was along 
the path of Non-Population Probability Theory development that the long- 
missing Cycloergodicity Theorems and the unorthodox approach to 
deriving them that are surfaced in this article were conceived of. 

• I claim that the reason for this direct opposition between two perspectives 
is Gray’s choice, in concert with the great majority of contributors to 
probabilistic analysis of time series data, of Kolmogorov’s now orthodox 
Population Probability model for ALL applications involving probabilistic 
analysis of time series data.

This opposition to the current paradigm is focused on applications 
for which 1) the real problems of interest arise from empirical time- 
series analysis based on time-average statistics and 2) populations 
of time series are not of interest in and of themselves and do not 
even exist as part of the real problem.

• I also claim that the reason these population probability models are almost 
invariably introduced in time series analysis problem formulations is the 
failure of our education system to teach our students that the ubiquitous 
population probability model is NOT THE ONLY OPTION FOR PROB
ABILISTIC ANALYSIS:

This is a major oversight in education and merits the serious 
attention of university faculties involved with time series analysis 
toward corrective action.

• It is conceivable that a major historical influence that arose in the mid- 
1970s may have precipitated the wholesale rejection of the then- 
nascent time-average approach to probability modeling, and this source 
of influence is the popular book on time series analysis [56] (reprinted in 
the SIAM book series Classics in Applied Mathematics) by David Bril
linger. As explained in [17], Brillinger considers the ergodicity condition 
to “not be overly restrictive for our purposes [time series analysis]”, 
dismisses the FOT-Probability model (which he calls the “functional” 
model) for being mathematically equivalent to the stochastic process 
model via ergodicity, and then proceeds to present an excellent treatise on 
stochastic-process modeling for time series analysis applications. The 
quality of this book in every other respect, might well be responsible for the 
apparent broad acceptance of his dictum. The companion article [17] 

provides a mathematical proof, based on existing published work, that the 
two models are not mathematically equivalent, and the difference has 
substantive practical significance. A more comprehensive and up-to-date 
perspective on this needed paradigm shift is addressed in the forth
coming article [17], as a follow-up to the recently published first phase of 
a renewed (since [5] in1987) call for a paradigm shift [48,50].

• And, finally, I claim that, if the partial (meaning specifically for only 
empirical time-series analysis involving time average statistics) paradigm 
shift initially proposed in [5], renewed in [50], and further supported in 
[48] and this present article and its companion [17] eventually takes 
place, we must conclude that ergodicity is irrelevant in this field of study.

• Under the proposed partial paradigm shift, the new cycloergodicity the
orems presented herein, as well as their long-standing classical counter
parts, will become of little interest in the field of empirical statistical time 
series analysis based on time-average statistics, because the Non- 
Population Probability theory of time-average based statistics renders 
stochastic processes and ergodicity/cycloergodicity theorems irrelevant.

When populations of time series data do exist, sample averages from 
an ensemble of time series should be and typically are used; in this case 
time averages as well as ergodicity again become at least possibly 
irrelevant.

Still, in fairness to the field of ergodicity theory more generally, non- 
empirical theoretical work on stochastic process models exhibiting the 
various forms of cyclostationarity, for example, information theory 
involving interfering signals, have benefited and may continue to benefit 
from cycloergodicity theory. Yet there exists an open question as to what 
parts of an expanded information theory might be amenable to non- 
population probability? The channel coding theorem, for example, 
may not be a candidate for non-population probability because the use 
of random channel codes in its proof produces non-ergodic signals at the 
channel output. Nevertheless, the use of random codes might not be 
required for proving this theorem [57]. Jacob Ziv’s celebrated work on 
his “Individual-sequence approach to information theory” and “univer
sal data compression” is said to have had a profound impact on shaping 
the landscape of information theory and its applications” [58]. The 
cycloergodic theorem for ACS processes as well as the FOT-probability 
theory of ACS time series could be useful in needed future work in 
this field.

As a summary remark regarding the discussion in this section and the 
associated comments throughout this article about the irrelevance of 
ergodicity theorems to empirical work in time-series analysis based on 
time-average statistics, one, but by no means all, of the key points made 
herein concerns the challenges posed by the need to implement the tests 
specified for the types or ergodicity addressed and discussed in detail in 
the previous section of this article: If the (cyclo)ergodicity tests cannot 
be implemented for models motivated by empirical work, they are for 
most practical purposes irrelevant to such work. It is conceivable that 
many empiricists might find they do not possess the mathematical 
knowledge/skills to undertake this mathematical work and or they 
might find that their posited stochastic process models are mathemati
cally too vague to allow for this work to be carried out. Moreover, even if 
(cyclo)ergodicity testing is facilitated by this article and can be mech
anized to some extent (see Appendix II), the approach can be argued to 
be unscientific because of its unnecessary abstraction and associated 
requirement for conceptual contortions to accommodate the reliance on 
population probability when there is no population.

With regard to circumventing tests for cycloergodicity of stochastic 
processes by seeking refuge in the ergodic hypothesis, that is, by simply 
wishfully presuming all requirements of the theorems are met, this 
should be judged scientifically poor practice because, although ergodic 
theorems render this hypothesis falsifiable in principle, falsification may 
not be within practical reach as explained above. Fortunately, empiri
cists can use a cheat sheet that can considerably facilitate avoidance of 
the ergodic hypothesis. Such a tool consists of a list of (ideally) broad 
classes of stochastic process models that are known to be (cyclo)ergodic 
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or non(cyclo)ergodic. This can to some extent mechanize the needed 
testing. I have not seen any extensive examples of such a tool but, 
considering potential utility, I think there might be some in the litera
ture. To encourage the community to establish/standardize such a tool, I 
started a list and put it in Appendix II.

Conclusion: The perspective that ergodicity theory for probabilistic 
analysis in empirical work on time series analysis based on time-average 
statistics is, in most cases, irrelevant appears to be unavoidable, while 
utility of ergodicity in the theory of stochastic processes unrelated to 
empirical time-series analysis is a different issue or is a non-issue, but 
one that is of no relevance to the field of study focused on here. With 
historical reflection, it seems to me a fair assessment that Kolmogorov 
gave us a model that has proven itself invaluable as the seed of a 
magnificent mathematical theory of stochastic processes with unbe
lievably diverse applications, with one especially notable exception: The 
objective of performing probabilistic analysis of the statistics of engi
neering and science time series data based on times averages of various 
measurement functions has not been at all well served, regardless of the 
help offered by Birkhoff’s ergodicity theorem. Its strengths for mathe
maticians come at the cost of its weaknesses for empirical time series 
analysts. This theme is pursued further in the companion article [17], 
where more analysis and logic leads the Author to propose a paradigm 
shift in the relevant subfield of mathematical statistics.

A final topic meriting brief discussion in this perspective, regarding 
ergodicity and cycloergodicity, is the role played by all-pervasive nu
merical evaluations of statistical inference algorithms for time series 
data processing using computer-based simulations relying on pseudo 
noise as the source of randomness in the time series of interest. Typi
cally, today, probabilistic analysis leading to proposed signal processing 
algorithms for statistical inference is based on population probability: 
stochastic process models of signals and noise. Numerical evaluation of 
performance metrics for such algorithms is conducted by replacing the 
mathematically defined stochastic processes from the analytical model 
with possibly processed pseudo noise sequences. Users may assume the 
repeated (Monte Carlo) trials of their simulation experiment use a 
genuine ensemble representing random samples drawn from a proba
bility space, but this is not how a pseudo noise generating algorithm 
works because we know very little about practical generation of en
sembles of actual random samples. Not only are these conceptualized 
random samples often not part of the real world, but they’re apparently 
not even amenable to creation for testing other than by recording 
physical noise of an appropriate type (e.g., thermal noise) and digitizing 
it.

Pseudo noise algorithms typically produce phony ensembles of 
random sample paths by selecting subsegments of a single long periodic 
time series produced by a pseudo noise generator using a deterministic 
algorithm. That is, the so-called ensemble averages performed from 
Monte Carlo trials of an experiment are actually time averages! But this 
is good, because it is usually time averages that will be performed when 
a statistical inference algorithm is implemented in practice in the field of 
statistical signal processing. But then, what is the point of using sto
chastic process models? They generally do not relate to either the real- 
world implementation of a signal processing algorithm or the Monte 
Carlo testing.

If the models used can be proven to be ergodic or cycloergodic, their 
expected values might analytically approximate the time averages used 
in practical implementations—depending on the fidelity of the posited 
stochastic process model—or they might approximate the Monte Carlo 
simulations. But do we want the expected values to match the real- 
world’s time averages or the Monte Carlo averages? Perhaps it depends 
on whether we want to do engineering and science or publish papers. 
One thing is sure: If the work to validate the (cyclo)ergodic hypothesis is 

not done, the analytical work based on stochastic processes is scientifi
cally irrelevant in the class of problems addressed in this article.

4.1. Alternatives to narrowly defined concepts

In the Real World, narrowly defined concepts, properties, and asso
ciated theories have their limitations. Here are a few ways to broaden 
the concepts discussed in this article. 

1) Ergodicity is inherently an event-by-event property or a function-by- 
function property. Any event in sample space can be translation 
invariant and have probability equal (or unequal) to 0 or 1 inde
pendently of all non-intersecting events. Similarly, any function can 
be translation invariant and have a time average that equals (or 
doesn’t equal) its expected value independently of many other 
functions. This is Local Ergodicity, which is defined in the previous 
section (local in the sample space or in the space of measurement 
functions on the process, not local in time).

2) A translation invariant event can have probability that is small 
enough (we cannot use the term “close to zero”) to say the process is 
nearly ergodic for that event, and if all translation-invariant events for 
a specific model have probabilities that are small enough, the process 
can be said to have globally nearly ergodic probabilities. Similarly, a 
translation invariant function can have a time average that suffi
ciently closely approximates its expected value to say the expected 
value of that function is nearly ergodic and if all translation invariant 
functions have time averages that sufficiently closely approximate 
their expected values, the process can be said to have globally nearly 
ergodic expected values of functions. While the latter concept for 
functions appears to be viable for both local and global ergodicity, 
the former concept seems less generally viable for local ergodicity 
because it corresponds to the situation where all event sets of interest 
are highly improbable.

3) Time averages of sample path functions for which the averaging 
times are long enough to closely approximate their expected values 
can be said to reveal functions having Temporally Local Ergodicity. 
Because limits are not involved here, this can be considered an 
ergodicity-like property. Similarly, yet distinctly, time averages of 
functions of data for which the averaging time is much shorter than 
the length of a data record but long enough to closely approximate 
the time average over the entire data record can be said to reveal 
Empirically Stationary Functions. For a function whose expected value 
is approximately constant over subintervals of time, the term Locally 
Mean Stationary can be used only if the lengths of those subintervals 
are substantially longer than the coherence times of the function (the 
effective width of the function’s autocovariance or the statistical- 
dependence time).

4) The various above local and global properties of ergodicity and 
stationarity, which are outside classical ergodicity theory, generalize 
to local and global properties of cycloergodicity and 
cyclostationarity.

5) These observations 1) – 4) reveal that, unlike the standard definitions 
of stationarity and cyclostationarity, and the implication of the 
Birkhoff ergodicity theorem and the corresponding cycloergodicity 
theorem, stationarity and cyclostationarity as well as ergodicity and 
cycloergodicity need not be “either/or” propositions. This may or 
may not moderate the level of the challenge of testing models for 
(cyclo)ergodicity. For example, relatively straightforward numerical 
methods may become feasible when there are no limits of time av
erages involved and/or when tests over complete sample spaces or 
function spaces are not needed. Despite this possible reduction of the 
magnitude of the challenge of testing for (cyclo)ergodicity, the use of 
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alternative FOT-probability models retains its attractiveness to me 
because they are direct, to the point, and more parsimonious.
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Appendix I. Period Detection/Estimation

In the somewhat strange situation for which an analyst has a stochastic process model and does not know whether or not it exhibits some form of 
cyclostationarity or at least does not know the period(s), then before the theorems in this article can be used to test for cycloergodicity of the stochastic 
process model, a test for Period Detection is needed. This is a relatively far-fetched situation (enquired about by a reviewer of this paper) that does not 
bode well for eventual testing of the model for cycloergodicity. Nevertheless, the issue deserves consideration.

It is assumed that some nonlinear transformation on the process, such as a lag product, can be performed to transform higher-order CS into 1st- 
order CS (additive finite-strength sine-wave components), so the task here is to detect such components, if present, and estimate their period(s). To 
address this, we consider the companion problem of having a time series (e.g., a sample path of a stochastic process or real empirical data) and wanting 
to know if it contains additive periodic component(s). Thus, we need a period-test statistic. This appendix presents a simple straightforward example of 
such a statistic, a period-quality metric, denoted by PQ, without the formality of researching this interesting problem, which has a long history dating 
back to before the invention of the periodogram specifically for this period detection problem at the turn of the 19th century [5]. Thus, the statistic 
presented here may be novel (unlikely) or simply one of various viable alternatives that have been devised over time, such as the periodogram. This 
appendix may find more application by empiricists in their effort to choose time-average statistics to calculate from their data, than by analysts trying 
to test for cycloergodicity. The ad hoc metric introduced here complements the orthodox statistics from the now-classic theory of cyclostationarity, 
such as the periodogram, cyclic periodogram, spectral coherence function, and others [5].

The concept here (for the reviewer’s question) is that the analyst would use the stochastic process model to produce a sample path for testing. The 
test described below can be repeated for as many sample paths as desired.

A function of time with minimum period T also has period NT for all integers N that do not render NT larger than half the total record length of the 
function. When averaging adjacent segments of a function, each of length equal to the hypothesized period NT, the data (function) is used more 
efficiently the smaller N is. If a period T̂ (with unknown N and true period T) is detected in the data, the candidate periods T̂/n = NT/n for n = 2, 3, 4, . . 
. can be tested, and the PQ metric monitored for a maximum. As soon as n = N is exceeded, PQ should decrease indicating that the function does not 
repeat as rapidly as every T̂/n unit of time. At that point, a reasonable estimate would be that with the largest PQ value. When initially searching for a 
period by calculating the average of adjacent data segments of length, say, T̂ , care should be taken to not start with an excessively large value for T̂ in 
order to not excessively limit the number of candidate periods in the data record. For n = 2, if adjacent T̂/n-length segments do not exhibit as much 
similarity as for n = 1, increase n by 1 to n = 3 and try again, and continue until the highest similarity is obtained, and select that value of n (which 
could be n = 1). The following PQ metric for a candidate period T̂ = t can be used for measuring similarity: 

PQ(t) = 1 −
1
R
∑R

k=1
∫ t

0 |x(ν + (k + 1)t) − x(ν + kt)|2 dν
2
R
∑R

k=1
∫ t

0

{
|x(ν + (k + 1)t)|2 + |x(ν + kt)|2

}
dν

(10) 

PQ has been designed so that maximum similarity is PQ = 1, and minimum similarity is PQ = 0 and occurs when one data-segment equals the 
negative of its adjacent segment, in which case the true period is twice that candidate. The ratio, rounded down to the nearest integer, of the total 
record length to the candidate period t is R. There is a false maximum that occurs as t approaches 0 because, for very small trial periods, there is little 
variation in x(v) from one candidate period to the next. Typically, as t increases from 0, PQ will start at 1 and tend to decrease and then begin to 
increase as the true period is approached and then, as the true period is exceeded, PQ will tend to decrease until t approaches 2 times the true period, 
and so on for each integer multiple of the true period. The strongest peak in PQ should occur at the true period. It is likely that multiple local peaks in 
PQ may occur but can be accommodated by doing a sufficiently exhaustive search.

A variation on PQ that should perform better replaces the numerator, which contains only the average of adjacent-segment mean-squared dif
ferences, which is R-1 in number, with the average of mean-squared differences for all pairs of segments obtained by partitioning the data record into 
adjacent t-length segments, which is approximately R(R-1)/2 in number. This would require some modification to the overall formula for PQ to 
preserve the metric range of [0,1], though this is not necessary.

The PQ method proposed here finds periods that maximize the correlation between time segments from the partitioned data whose segment lengths 
equal a candidate period, which is equivalent to minimizing the mean-squared differences between these segments. The high-performance variation of 
PQ described above uses a total averaging time in its correlation measurements of approximately R2t/2 for the candidate period t. By comparison, the 
periodogram correlates the data with sine waves of all periods of interest using an averaging time of approximately Rt for each sine-wave frequency. If 
the periodogram values are summed over all harmonics of 1/t, which is 2Bt in number (where B is the positive-frequency bandwidth of the periodic 
component) to produce the harmogram [5, p. 499], the total averaging time is 2RBt2. It follows that high-performance PQ has a total averaging time 
approximately equal to the record length Rt times half the number of periods, and the harmogram’s total is approximately equal to the record length 
times the number of harmonics in the periodic component. So, the relative performance appears to depend on the number of periods and the number of 
harmonics. Many periods and few harmonics favor PQ. In addition, lack of knowledge of B will degrade the harmogram’s performance.
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Formula (10) shows PQ for first-order periodicity. For second-order, x(t) must be replaced by x(t)x(*)(t − τ), where (*) denotes optional conju
gation and so on for higher order. Also, x(t) can be replaced with an event-set indicator.

Appendix II. Catalog of (Cyclo)Ergodicity by Class

Classes of (cyclo)ergodic models

CT: stable linear time-invariant or periodically time-varying or almost periodically time-varying non-random transformation of white Gaussian 
noise or white Poisson impulse noise, with sufficiently transformation-memory decay rate.
DT: stable linear time-invariant or periodically time-varying or almost periodically time-varying non-random transformation of any i.i.d. sequence, 
with sufficient transformation-memory decay rate.
CT and DT: finitely repeated composition of any of the members of one or the other of the above two classes of transformations alternating with 
zero-memory-nonlinearities
CT and DT: WGN- or i.i.d.-driven time-invariant Volterra Systems with sufficient memory decay rate of the kernels
CT and DT: periodically time-variant, and almost periodically time-variant generalizations of the above Volterra class
CT or DT: uniform periodic pulse train with nth absolutely integrable pulse modulated in the same manner from pulse to pulse by the nth term in a 
vector-valued ergodic sequence; or discrete time sampled versions of such pulse trains.

Model properties that destroy (cyclo)ergodicity

• Additive and multiplicative and exponentiation random constants (or periodic functions in time) appearing in otherwise cycloergodic stochastic 
processes

• Random constants in time added to (only for cycloergodicity) or exponentiating time in an otherwise cycloergodic stochastic process
• Mixtures of processes: process 1 with probability P1 and process 2 with probability P2 (e.g., set 1 of CDFs with P1 and set 2 of CDFs with P2)

Data availability

No data was used for the research described in the article.
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