Table Of Contents

7. Notes on the Detrimental Influence of Human Nature on Scientific Progress

Science is a human endeavor created by humans and this endeavor is based on a critically important methodological foundation called The Scientific Method. The object of this page is to expose the case for the startling argument that Human Nature is fundamentally at odds with the Scientific Method—a procedural concept created by humans! The detrimental influence of human nature on scientific progress is perhaps the greatest dilemma we face in this 21st century. Mankind’s technological progress has created threats to our own continued existence, and a major key to confronting these threats is accelerated scientific progress. Yet, it is argued by some that we’re moving into the 2nd century of a dry spell in scientific breakthroughs.

So, what is it about Human Nature that gets in the way of a higher fidelity implementation of the Scientific Method?

  • 7.1 A Selection of Quotations from Scholars of Science

    The following selection of quotations was compiled by the WCM for the Inaugural Symposium of the Institute for Venture Science, 25 September 2015.

    “All the sciences have a relation, greater or less, to human nature; and …
    however wide any of them may seem to run from it, they still return back by one passage or another”

    David Hume, 1711 – 1776

    “All great truths begin as blasphemies.”
    “Science progresses funeral by funeral.”

    George Bernard Shaw, 1856 – 1950

    “… First, it is ridiculed. Second, it is violently opposed.
    Third, it is accepted as being self-evident”

    Arthur Schopenhauer, 1788 – 1860

    “What is right is not always popular and what is popular is not always right”

    Albert Einstein, 1879 – 1955

    “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die,
    and a new generation grows up that is familiar with it”

    Max Planck, 1858 – 1947

    “Almost always the men who achieve these fundamental inventions of a new paradigm
    have been either very young or very new to the field whose paradigm they change”

    Thomas Samuel Kuhn, 1922 – 1996

    “The mind likes a strange idea as little as the body likes a strange protein and resists it with similar energy.
    It would not perhaps be too fanciful to say that a new idea is the most quickly acting antigen
     known to science.
    If we watch ourselves honestly, we shall often find that

    we have begun to argue against a new idea even before it has been completely stated.”

    Wilfred Batten Lewis Trotter, 1872 – 1939

    “The study of history is a powerful antidote to contemporary arrogance. It is humbling to discover how many of our glib assumptions, which seem to us novel and plausible, have been tested before, not once but many times and in innumerable guises;
    and discovered to be, at great human cost, wholly false”

    Paul Bede Johnson, 1928 –

    “All of physics is either impossible or trivial.
    It is impossible until you understand it, and then it is trivial.”

    Ernest Rutherford, 1871 – 1937

    “A central lesson of science is that to understand complex issues (or even simple ones), we must try to free our minds of dogma and to guarantee the freedom to publish, to contradict, and to
    Arguments from authority are unacceptable”

    Carl Sagan, 1934 – 1996

    “Physicists, being in no way different from the rest of the population,
    have short memories for what is inconvenient”

    Anthony Standen, 1906 – 1993

    “As for your doctrines I am prepared to go to the Stake if requisite … I trust you will not allow yourself to be in any way disgusted or annoyed by the considerable abuse & misrepresentation which unless I greatly mistake is in store for you… And as to the curs which will bark and yelp – you must recollect that some of your friends at any rate are endowed with an amount of combativeness which (though
    you have often & justly rebuked it) may stand you in good stead –
    I am sharpening up my claws and beak in readiness.”

    Thomas Henry Huxley, 1825 – 1895
    Letter (23 Nov 1859) to Charles Darwin a few days after the publication of Origin of Species

    “The inability of researchers to rid themselves of earlier ideas led to centuries of stagnation. An incredible series of deliberate oversights, indefensible verbal evasions, myopia, and plain pig-headedness characterize the pedestrian progress along this elusive road for science. We must be constantly on our guard, critically examining all the hidden assumptions in our work”

    Simon Mitton, 1946 –
    In Review of The Milky Way by Stanley L. Jaki, New Scientist, 5 July 1973

  • 7.2 Scientists’ Revolutionary Predictions Typically Become the Objects of Public Satire

    Frank J. Sulloway, historian and sociologist of science, wrote the book Born to Rebel in which he covers most major scientific changes and looks at which scientists backed the change and which did not. He tries to figure out what factors are most predictive of resisting or embracing change. He includes ideas that turned out to be validated and those that were debunked. Almost every major revolutionary breakthrough had some thinkers who rejected it as “crackpot” at first.  His list includes:

    Frank Sulloway
    Frank J. Sulloway

    Copernican revolution
    Hutton’s theory of the earth (modern geology, deep time, gradual)
    Evolution before and after Darwin
    Bacon and Descartes—scientific method
    Harvey and blood circulation
    Newtonian celestial mechanics
    Lavoisier’s chemical revolution
    Glaciation theory
    Lyell and geological uniformitarianism
    Planck’s Quantum hypothesis
    Einstein and general relativity
    Special relativity
    Continental drift
    Indeterminacy in physics
    Refutation of spontaneous generation
    Germ theory
    Lister and antisepsis
    Semmelweis and puerperal fever
    Epigenesis theory
    Devonian controversy

  • 7.3 On Heretical Thinkers

    The following was written by Founders Fund. [View Link]

    From Galileo to Jesus Christ, heretical thinkers have been met with hostility, even death, and vindicated by posterity. That ideological outcasts have shaped the world is an observation so often made it would be bereft of interest were the actions of our society not so entirely at odds with the wisdom of the point: troublemakers are essential to mankind’s progress, and so we must protect them. But while our culture is fascinated by the righteousness of our historical heretics, it is obsessed with the destruction of the heretics among us today. It is certainly true the great majority of heretical thinkers are wrong. But how does one tell the difference between “dangerous” dissent, and the dissent that brought us flight, the theory of evolution, Non-Euclidean geometry? It could be argued there are no ‘real’ heretics left. Perhaps we’ve arrived at the end of knowledge, and dissent today is nothing more than mischief or malice in need of punishment. But be the nature of our witches unclear, it cannot be denied we’re burning them. The question is only are our heretics the first in history who deserve to be burned?

    We don’t think so.

    We believe dissent is essential to the progressive march of human civilization. We believe there’s more in science, technology, and business to discover, that it must be discovered, and that in order to make such discovery we must learn to engage with new — if even sometimes frightening — ideas.

    Every great thinker, every great scientist, every great founder of every great company in history has been, in some dimension, a heretic. Heretics have discovered new knowledge. Heretics have seen possibility before us, and portentous signs of danger. But our heretics are also themselves in persecution, a sign of danger. The potential of the human race is predicated on our ability to learn new things, and to grow. As such, growth is impossible without dissent. A world without heretics is a world in decline, and in a declining civilization everything we value, from science and technology to prosperity and freedom, is in jeopardy. [View Document]

  • 7.4 Taking the Science Enterprise Up to Warp Speed1, 2, 3

    People of science were repressed and persecuted by medieval prejudices for over 1500 years—more than 75 generations of mankind, with the exception of a brief reprieve during the Renaissance. In the two centuries since this suppression was largely overcome, science has had an immense positive impact on humanity.


    Yet throughout this period, great scientists have consistently decried the penalty science is paying for not being practiced according to the Scientific Method, the essential operating principles of science. The low level of fidelity with which the Scientific Method is said to be followed today by both scientists and systems for administering science is most likely culpable for the quantifiable decline in the number and magnitude of scientific breakthroughs and revolutions in scientific thought over the last century—a decline unanimously confirmed by the National Science Board in 2006. Where are the solutions to today’s unprecedented threats to human existence: dwindling energy resources; diminishing supplies of potable water; increasing incidence of chronic disease—where are today’s counterparts to yesterday’s discovery of bacterial disease which led to antibiotics and of electricity which led to instantaneous worldwide communication and of other major breakthroughs?


    The source of this unsolved problem has been recognized by many of science’s greatest achievers throughout history to be human nature: the ingrained often-subconscious behavioral motivations that sociologists tell us are responsible for our species’ very existence. The Scientific Method consists of systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses—all with the utmost objectivity. To implement this method with fidelity, scientists must be honest, impersonal, neutral, unprejudiced, incorruptible, resistant to peer pressure and open to the risks associated with probing the unknown. But to be all this consistently is to be inhuman. Thus, the Scientific Method is an unattainable ideal to strive for, not a recipe to simply follow—that scientists are true to the Scientific Method is argued to be a myth in Henry H. Bauer’s 1992 book The Myth of the Scientific Method.

    Max Planck, the originator of the quantum theory of physics, said a hundred years ago, “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.” Thomas Kuhn, author of The Structure of Scientific Revolutions, written a half century ago, put forth the idea that to understand what holds paradigm shifts back, we must put more emphasis on the individual humans involved as scientists, rather than abstracting science into a purely logical or philosophical venture.


    Considering that this problem source is inherent in people, it should not be surprising that we have not yet solved this problem: its source cannot be removed. Regarding his Theory of the Human condition, the biologist Jeremy Griffith’s said in the 1980s “The human condition is the most important frontier of the natural sciences.” But, in reaction, it has been predicted that no idea will be more fiercely resisted than the explanation of the human condition because the arrival of understanding of the human condition is an extremely exposing and confronting development.


    Nevertheless, civilizations have indeed made progress toward correcting for undesirable effects of human nature on society, especially through social standards for upbringing, social mores, legal systems, and judicial processes. So, why have our systems for administering science, where integrity is so important, not been more successful?

    Professor Gerald H. Pollock, Founder of The Institute for Venture Science

    Armed with insights provided by the science of Science, direct experience from careers of conducting and administering science, and humanitarian compassion, the founders of The Institute for Venture Science (IVS) formulated a thesis (, This thesis goes to the heart of the problem—the specific reasons our present inherited systems for administering science are failing to support venture science—and it proposes specific solutions that reflect solutions that are working today in other human endeavors, such as incubators for venture capitalism. It faces head-on those aspects of human nature and also those systems of science administration that are evidently at odds with venture science—the key to major advances in our understanding of Nature. [View Document]


    The IVS Operative Principles, paraphrased from the IVS website, are:

    1. Nurture challenges to consensus science
    2. Avoid top-down management of scientific direction
    3. Ensure fair review of research proposals by using a judicial system modeled after the courts
    4. Create a supportive environment removing the distractions so detrimental to deep
    5. Create a protected environment in which deviation from the norm of scientific thinking
      is not punished

    A prime example of what traditional administration and practice of science has not yet been able to deliver is an understanding of the physical origin of inertia, mass, and gravitation: This remains an outstanding puzzle. And the same is true for electric and magnetic fields: We can measure them, predict their behavior, and utilize them; but we still do not understand their origins.



    1.  Note from Author, William A. Gardner: This essay is dedicated to my mother, the late Frances Anne Demma, born 100 years ago today, 20 September 2015.
    This essay was distributed at The IVS Symposium in Seattle, 25 September 2015.
    3.  Research strongly suggests that the speed with which certain causes produce effects at a distance is not necessarily limited by the speed of light, but could actually be orders of magnitude faster—known colloquially as “warp speed” and fantasized by the writers of the TV series Star Trek, in which the Starship Enterprise featured a fictitious “warp drive”.

  • 7.5 Why the foundations of physics have not progressed for 40 years

    WCM’s note: Actually, the point of Page 7 is that this last century’s bogus achievement in physics prior to the last 40 years—the Standard Model—reflects the same disrespect for the Scientific Method that this author recognizes when looking at only the last 40 years. It’s much worse than she recognizes in this article.

    IAI News – Changing how the world thinks. An online magazine of big ideas produced by The Institute of Arts and Ideas. Issue 84, 8 January 2020

    Why the foundations of physics have not progressed for 40 years, by Sabine Hossenfelder,
    Research fellow at the Frankfurt Institute for Advanced Studies and author of blog Backreaction

    Physicists face stagnation if they continue to treat the philosophy of science as a joke

    In the foundations of physics, we have not seen progress since the mid-1970s when the standard model of particle physics was completed. Ever since then, the theories we use to describe observations have remained unchanged. . . .

    The consequence has been that experiments in the foundations of physics past the 1970s have only confirmed the already existing theories. None found evidence of anything beyond what we already know.

    But theoretical physicists did not learn the lesson and still ignore the philosophy and sociology of science. I encounter this dismissive behavior personally pretty much every time I try to explain to a cosmologist or particle physicists that we need smarter ways to share information and make decisions in large, like-minded communities. If they react at all, they are insulted if I point out that social reinforcement – aka group-think – befalls us all, unless we actively take measures to prevent it.

    Instead of examining the way that they propose hypotheses and revising their methods, theoretical physicists have developed a habit of putting forward entirely baseless speculations. Over and over again I have heard them justifying their mindless production of mathematical fiction as “healthy speculation” – entirely ignoring that this type of speculation has demonstrably not worked for decades and continues to not work. There is nothing healthy about this. It’s sick science. And, embarrassingly enough, that’s plain to see for everyone who does not work in the field.

    And so, what we have here in the foundation of physics is a plain failure of the scientific method. All these wrong predictions should have taught physicists that just because they can write down equations for something does not mean this math is a scientifically promising hypothesis. String theory, supersymmetry, multiverses. There’s math for it, alright. Pretty math, even. But that doesn’t mean this math describes reality.

    Why don’t physicists have a hard look at their history and learn from their failure? Because the existing scientific system does not encourage learning. Physicists today can happily make career by writing papers about things no one has ever observed, and never will observe. This continues to go on because there is nothing and no one that can stop it.

    A contrarian argues that modern physicists’ obsession with beauty has given us wonderful math but bad science

    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these “too good to not be true” theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

  • 7.6 Right-Brain and Left-Brain Activity
    Iain McGilchrist

    Iain McGilchrist’s book, The Master and His Emissary: The Divided Brain and the Western World, appeared in 2010. It offers deep insight into failures in education and science in terms of a model of the functioning of the human brain based on distinctions between the characteristics of the left brain and those of the right brain, and the nature of the interaction between the two. After some preliminary remarks below from the WCM regarding some of his personal experiences throughout his time in academia and contract research activities for the government that he thinks are explainable in terms of McGilchrist’s theory, references to treatment and discussion of this theory and excerpts from a review of McGilchrist’s book are provided. Directly below is an illustrative list of characteristics of the left and right sides of the human brain:

    Left BrainRight Brain
    fixed or controlledfree flowing, uncontrolled
    expectation guidedfollows music, time
    sees only piecessees the whole
    certain, explicit meaninguncertain, implicit meaning
    pin-point visionfish-eye
    slave or emissarymaster
    high-resolution local visionbroad global vision
    quick and dirty or black and whitedevil’s advocate
    isolated, like autismempathetic
    living within a model—the model is realitydistinguishing between model and reality

    I (WCM) was participating in the world of academia while on the faculty at the University of California (UC)  between 1972 and 2000, following eight years of study at Stanford University, Massachusetts Institute of Technology, and the University of Massachusetts, and a couple of years at Bell Telephone Laboratories between my MS and PhD studies; and it was my experience during these nearly four decades that there were a non-negligible number—but still a minority in fields of science—of academics in western society whose research showed signs of healthy right-brain activity, using (today) McGilchrist’s model for my criteria.

    Being based in schools of engineering, in contrast to science—for the most part—but enjoying what I consider to be a healthy form of interaction between my own right-brain and left-brain thinking (as per McGilchrist’s model), I found myself in a minority that appeared to be shrinking as the decades passed—though it may have been my perspective that was changing. I experienced the sad misguided transformation of universities described in the book review below, as parts of it were underway and this provided a significant component of my motivation to become more independent than I was even within academia after nearly 30 years at UC.

    My research into the conceptualization and development of fundamentals of statistical interpretation and analysis of data conveyed by electromagnetic waves was, for the next ten years (through 2011), mostly unfunded, although a bit was funded in part by the federal government indirectly via internal/independent R&D at my contract research firm, SSPI; but it was largely on my own terms because I was not subject to meddling from publication reviewers, contracting officer’s technical representatives (COTRs), other technical advisors, and others exercising authority without adequate technical qualifications or, as McGilchrist puts it, people with malfunctioning brains (left and right brains out of balance).

    With the thought that real stories capture readers’ interest, some examples from my experiences were—for a few months in the spring of 2020—presented here; there was no shortage to draw from, so I had selected a few of the most egregious cases. However, I did not wish to devote so much space to this subjective material as to actually develop a story for each case, so the effect on the level of readers’ interest may have been minimal. But I had hoped I had at least made the point that the basis for my acceptance of McGilchrist’s model is experiential, not formal research. Nevertheless, I eventually decided that delving—even briefly—into some of the sordid details was inappropriate for the primary educational objectives of this website. So, I have removed most of that material (which used Michael Price, Todd Davies, Gregg Swietek, and a few others who, to my disappointment, had once been under my tutelage, as prime examples for McGilchrist’s model) from the following. But I have retained the treatment regarding Neil Gerr and Melvin Hinnich, who are exposed in considerable detail on Page 3, because in their cases there is an important technical issue arising out of weak right brain thinking that had to be resolved and was resolved using a professional forum.

    In 2013, taking a break from doing battle with weak right brains, I attended an Electric Universe conference and met one of the broadest thinkers I have come to know. This was the late Dr. James T. Ryder (Jim), retired head of Lockheed Martin’s Advanced Technology Center in Palo Alto, California, who quickly became my primary correspondent and confidant. Jim was the quintessential example of a healthy mind with what appeared to me to be excellent interaction between active left and right brains. Coincidentally, I found out during a lunch-time chat at the conference with Jim that it was he who in 2010, prior to his retirement, initiated Lockheed Martin’s purchase of my company’s intellectual property in 2011. For the next six years following the Electric Universe conference, I worked on better understanding electromagnetic phenomena, particularly in connection with mathematically modeling modes (static field structures) of cosmic current, and I enjoyed regular correspondence and frequent retreats with Jim and his wife Janet at my wife Nancy’s and my home—ten acres of wilderness surrounded by hundreds of acres of the same with mini-lodge and guest cabin in the Mayacamas Mountain Range west of the Napa Valley—affectionately called the Vista Norte Sanctuary for Cogitation. During that period, Jim founded the International Science Foundation specifically to fund an experimental plasma research project—the first of its kind—which aimed at replicating the atmosphere of the Sun in a laboratory on Earth. This project produced astounding results that are expected to change the course of science and technology in the fields affected, including clean production of energy, clean heating, production of rare earth elements by transmutation, and remediation of nuclear waste (see

    In the spring of 2018, Jim passed away suddenly and unexpectedly and the International Science Foundation was closed down.

    James T Ryder, Ph.D. 1945 – 2018

    Among many more significant consequences for those for whom Jim had been a part of their lives, this sad event not only took from me a best friend, but also left me without what had been an interesting and undeniably qualified source of ideas and an interested sounding board for my ideas in the areas of space technology, astrophysics, and cosmology, among a variety of other topics. I had shared with Jim early drafts of what became the publication [JP65], wherein I reported my admittedly late discovery (made in 2015) of how to expand the cyclostationarity paradigm in engineering, which I created in my earlier life, to accommodate empirical time-series data with irregular cyclicity gathered throughout the sciences where natural systems predominate in contrast to the predominance of manmade systems in engineering which often give rise to regular cyclicity.  Following Jim’s passing and this exciting discovery, I changed the balance in my work to favor reporting what I had already learned over decades past about time-series analysis instead of pushing ahead (?) with the much earlier-stage research into electric universe concepts in astrophysics which I had more recently been engaged in. But, to minimize my frustration with what had become the too-often dysfunctional publishing industry and the counterproductive process it sometimes defines in the 21st Century—which had just been driven home for me harder than ever before by a 2-year mind-numbing chase-your-tail process of unbelievably incompetent production of my breakthrough paper [JP65]—I chose to restrict all release of my writings from then on to my newly created educational website that I am posting in at this very minute. Among the topics more recently worked on is theory and method for Bayesian star ranging using IBI (Interplanetary Baseline (RF) Interferometry), which is to be addressed on Page 11 in 2021 if not later this year.

    To illustrate that the loftiness of positions held is no guarantee of an ability to exercise good right-brain judgement in all matters relevant to one’s work, I mention in passing the accomplished Robert W. Lucky of Bell Telephone Laboratories, as it was called when I worked there before the famous (or infamous, depending on your perspective) divestiture of AT&T. Lucky was someone deserving of much respect for the broad scope of his thinking and writing, among many other achievements and professional contributions; yet he was among a number of reviewers between 1972 and 1987 who recommended against funding research on cyclostationarity. In a reviewer’s report on one of my cyclostationarity research proposals submitted to the NSF, he wrote “it’s not even wrong”. His point was that he could find no technical errors but could not see why the development of the proposed theory might be of any import. Of course, it is possible that my proposal was poorly written, but essentially all my research proposals on cyclostationarity for my first 15 years on the faculty at UC Davis went unfunded until the publication of my book [Bk2]. Thereafter, I fairly quickly became what I was told by a UCDavis administrator at the time was the best funded theoretician at UCDavis (see Page 10). It seems unlikely that the writing of a book (my second) suddenly made me so much of a better proposal writer that my proposal success rate went from nearly 0% for 15 years to nearly 100% for the next 15 years at UCDavis. Rather, I think it is that the book finally got the community interested in cyclostationarity by making such a strong and highly visible case for its utility that to deny this utility risked one’s reputation.  Instead of my research proposals being viewed as outside of the mainstream, they were thereafter seen as defining a new branch of the mainstream. This is precisely the classic problem of Left-Brain thinking not being guided by Right-Brain thinking. It took a 566-page book to make the point that the development of cyclostationarity theory is a good idea. Of course, this sledge-hammer-to-the-head approach to getting the attention of those with inactive right brains could never be taken in a research proposal. Therein lies the problem addressed on this Page 7: Breakthrough research is commonly rejected by left-brain thinkers who, all too often, wield authority they are not properly qualified to exercise.

    Having struggled with being surrounded by those exhibiting what I imagine McGilchrist might call lopsided brains—heavy on the left side, and also having had the rewarding experience of actually collaborating with an exemplary individual exhibiting all the signs of a very healthy right brain that productively interacts with a capable left brain, I consider myself to have license to react to the book review below and to Iain McGilchrist’s brain theory, which I believe to be a reasonable basis for gaining valuable insight into what many consider to be a serious lack of progress in science—the pursuit of understanding of the natural world. Therefore, as WCM, I am including in this website the following links and I am encouraging those interested in fostering a scientific revolution to read the book review Cosmos and History: The Journal of Natural and Social Philosophy, vol. 8, no. 1, 2012 (copied in part below), view the videos and and possibly others, and read some of the writings of Iain McGilchrist and the many serious reactions to it (see ). I believe his model can be very useful to those wanting to see badly needed fundamental change in the practice and results of science.



    By Arran Gare

    Philosophy and cultural Inquiry
    Swinburne University

    Iain McGilchrist, The Master and His Emissary: The Divided Brain and the Western World, New Haven and London: Yale University Press, 2010, ix + 534 pp. ISBN: 978-0-300- 16892-1 pb, £11.99, $25.00. 


    It is now more than a century since Friedrich Nietzsche observed that ‘nihilism, this weirdest of all guests, stands before the door.’ Nietzsche was articulating what others were dimly aware of but were refusing to face up to, that, as he put it, ‘the highest values devaluate themselves. The aim is lacking; “why” finds no answer.’ Essentially, life was felt to have no objective meaning. It is but ‘a tale, told by an idiot, full of sound and fury, Signifying nothing’. Nietzsche also saw the threat this view of life posed to the future of civilization. Much of the greatest work in philosophy since Nietzsche has been in response to the crisis of culture that Nietzsche diagnosed. Although the word ‘nihilism’ was seldom used, the struggle to understand and overcome nihilism was central to most of the major schools of twentieth century philosophy: neo-Kantianism and neo-Hegelianism, pragmatism, process philosophy, hermeneutics, phenomenology, existentialism, systems theory in its original form, the Frankfort School of critical philosophy and post-positivist philosophy of science, among others. William James, John Dewey, Henri Bergson and Alfred North Whitehead, Edmund Husserl, Max Scheler, Martin Heidegger, Maurice Merleau-Ponty and Ludwig Wittgenstein are just some of the philosophers who grappled with this most fundamental of all problems. Nietzsche, along with these philosophers, influenced mathematicians, physicists, chemists, biologists, sociologists and psychologists and inspired artists, architects, poets, novelists, musicians and film-makers, generating a much broader movement to overcome nihilism. Iain McGilchrist’s book builds on this anti-nihilist tradition, a tradition which is facing an increasingly hostile environment within universities and is increasingly marginalized. Although he does not characterize it in this way, The Master and his Emissary can thus be read as a major effort to comprehend and overcome the nihilism of the Western world. 

    –Pages 413 to 445 omitted–

    EDUCATION AGAINST NIHILISM: REVIVING THE RIGHT HEMISPHERE This is a schematic account of a recurring pattern that can be found in organizations of all types and at all scales, from civilizations, nations, churches, business organizations and political parties (see for instance Robert Michels on the Iron Law of Oligarchy), and accounts for the recurring failure of political and social reformers. Those who have recognized this problem have tended to take more indirect routes to overcoming the ills of society. Very often, they have focused on education, hoping in this way to foster the development of better people, protect institutions and foster a healthier society. In this, they have often been successful, although their achievements in this regard are not properly acknowledged in a culture in which left-hemisphere values dominate. If we are to understand and overcome the advanced nihilism of postmodern culture, then, we need to look at the implications of McGilchrist’s work for understanding education generally and the present state of education, and what can be done about it. 

    Institutions of education, the institutions through which culture has been developed and passed on from generation to generation, have been central to the rise and fall of societies and civilizations. Generally, although not always, they have fostered the development of the modes of experience associated with the right hemisphere, countering the tendency for brains to malfunction. Paideia, a public system of education, was central to Greek civilization, exemplified this, and as Werner Jaeger showed in Paideia: the Ideals of Greek Culture and Early Christianity and Greek Paideia, had an enormous influence on later civilizations. Inspired by the Greeks (although not reaching their heights), the Romans developed the system of the artes liberalis (Liberal Arts), a term coined by Cicero to characterize the education suitable for free people, as opposed to the specialized education suitable for slaves. While this education degenerated in Rome, the artes liberalis became the foundation for education in the medieval universities. In the Renaissance, in reaction to the increasing preoccupation with abstractions of medieval scholastics, a new form of education was developed by Petrarch to uphold what Cicero called humanitas – humanity, reviving again a right-hemisphere world. This was the origin of the humanities. The University of Berlin established in 1810 under the influence of Romantic philosophy, placed the Arts Faculty, which included the humanities, the sciences and mathematics, with philosophy being required to integrate all these, at its centre. It was assumed that with the development of Naturphilosphie, science and mathematics would be reconciled with the humanities. Wilhelm von Humboldt, manifesting the values and sensitivities of a healthily functioning brain, characterized the function of higher institutions as ‘places where learning in the deepest and widest sense of the word may be cultivated’. Rejecting the idea that universities should be utilitarian organizations run as instruments of governments, he wrote that if they are to deliver what governments want, 

    … the inward organization of these institutions must produce and maintain an uninterrupted cooperative spirit, one which again and again inspires its members, but inspires without forcing them and without specific intent to inspire. … It is a further characteristic of higher institutions of learning that they treat all knowledge as a not yet wholly solved problem and are therefore never done with investigation and research. This … totally changes the relationship between teacher and student from what it was when the student still attended school. In the higher institutions, the teacher no longer exists for the sake of the student; both exist for the sake of learning. Therefore, the teacher’s occupation depends on the presence of his students. … The government, when it establishes such an institution must: 1) Maintain the activities of learning in their most lively and vigorous form and 2) Not permit them to deteriorate, but maintain the separation of the higher institutions from the schools … particularly from the various practical ones. 

    The Humboldtian form of the university, because of its success, became the reference point for judging what universities should be until the third quarter of the Twentieth Century and the values they upheld permeated not only education, but the whole of society. Despite the sciences embracing scientific materialism and hiving off from Arts faculties, this model of the university continued the tradition of supporting the values of the right hemisphere, including giving a place to curiosity driven research. It was protected from careerists by the relatively low pay of its staff and the hard work required to gain appointments and to participate in teaching and research. 

    The civilizing role of universities has now been reversed. People are simultaneously losing the ability to empathize, a right hemisphere ability, and to think abstractly, a left hemisphere ability. Society is being de-civilized, with people losing the ability to stand back from their immediate situations. What happened? The Humboldtian model of the university has been abandoned, arts faculties have been downsized or even abolished, science has been reduced to techno-science, and the ideal of education fostering people with higher values has been eliminated with education reconceived as mere investments to increase earning power. The whole nature of academia has changed. As Carl Boggs noted, ‘the traditional intellectual … has been replaced by the technocratic intellectual whose work is organically connected to the knowledge industry, to the economy, state, and military. Consequently, curiosity among students has almost disappeared (‘wonder’ disappeared a long time ago), with the amount of time students spend studying having fallen from forty hours per week in the 1960s to twenty-five hours per week today, with an almost complete elimination of self-directed study. Without the inspiration that comes from the right hemisphere, the left hemisphere fails to develop. 

    Through McGilchrist’s work, we can now better understand this transformation. 

    Universities were effectively taken over by people with malfunctioning brains. As universities became increasingly important for the functioning of the economy, an increasing number of academics were appointed with purely utilitarian interests. This provided an environment in which people with left hemisphere dominated brains could flourish and then dominate universities. Techno-scientists largely eliminated fundamental research inspired by the quest to understand the world, along with scientists inspired by this quest, thereby almost crippling efforts to develop a post-mechanistic science. It was not only engineering and the sciences that were affected, however. As universities expanded, arts faculties also were colonized by people with malfunctioning brains who then fragmented inquiry and inverted the values of their disciplines. Rejecting the anti-nihilist tradition that McGilchrist has embraced, most philosophy departments in Anglophone countries, and following them in continental Europe, were taken over by people who transformed philosophy into academic parlour games. Literature departments were taken over by people who debunked the very idea of literature. The humanities generally came to be dominated by postmodernists who rejected the quest to inspire people with higher values (as described by Scheler) as elitist. They called for permanent revolution – of high-tech commodities, thereby serving the transnational high-tech corporations who produce these commodities. Then, at a time when the globalization of the economy began to undermine democracy and the global ecological crisis began to threaten the conditions for humanity’s continued existence, careerist managers, with the support of politicians and backed by business corporations, took control of universities, transforming them from public institutions into transnational corporations, imposing their left hemisphere values in the process.

    The consequences of this inversion of values were entirely predictable. Academic staff have been redefined as human resources, all aspects of academic life are now monitored, measured and quantified by managers in order to improve efficiency and profitability, and funding for research is now based on the assumption that outputs must be predictable and serve predictable interests. Success in resource management means that in the United States, tenured and tenure track teachers now make up only 35 per cent of the workforce, and the number is steadily falling, while senior management is getting bigger and more highly paid. Typically, between 1993 and 2007 management staffs at the University of California increased by 259 percent, total employees by 24 percent, and fulltime faculty by 1 percent. Nothing more clearly demonstrated that people’s brains were malfunctioning than academics failing to see what was coming and then failing to achieve any solidarity to defend themselves and their universities against managerialism, with academics in the humanities in this environment debunking their own disciplines on which their livelihoods depended. Basically, such academics could not even begin to defend the humanities, the quest to understand nature or uphold what universities were supposed to stand for because, deep down, they were already nihilists. Their failure paved the way for the rise of business faculties and the mass production of more managers. 

    Clearly, there is no easy solution to this. However, there is ample evidence that not only has this transformation of universities failed to deliver a more educated and productive workforce, the mass production of people with malfunctioning brains has begun to have an impact on virtually every facet of society, including the economy. This failure brings home the point that, for the left hemisphere to function, that which only the right hemisphere can deliver is required. People with healthy brains need to appreciate the threat of not only people with malfunctioning brains, but also their own potential. As McGilchrist suggests, the most important ability of humans is their capacity for imitation. Through imitation ‘we can choose who we become, in a process that can move surprisingly quickly.’ … We can ‘escape the “cheerless gloom of necessity”’ (p.253). A series of renaissances of civilization in Europe were built on this capacity. People picked themselves up from the ruins of the Dark Ages by looking back to the achievements of people in the Ancient World of Greece and Rome at their best, and imitating them, developed new education systems, new cultural and institutional forms and created a new civilization. In the ruins of the education system and the broader culture and society being created by people with malfunctioning brains it is time for a new renaissance, wiser than all previous renaissances because of what we can learn from their achievements and subsequent decay, and from what we can now learn from other civilizations, their inspiring figures and renaissances. As Slavov Žižek wrote in an entirely different context, it is necessary to ‘follow the unsurpassed model of Pascal and ask the difficult question: how are we to remain faithful to the old in the new conditions? Only in this way can we generate something effectively new. Hopefully, with this wisdom from the past we will be able to avoid a new Dark Age. McGilchrist’s book, providing new insights into the minds and modes of operation of those who undermine civilizations and a clearer idea of what constitutes healthy culture and the flourishing of civilization, is a major contribution to this wisdom.

    References Cited in the above excerpts from this review:

    Friedrich Nietzsche, The Will to Power, trans. Walter Kaufmann and R.J. Hollingdale, New York: Random House, 1968, p.9. Friedrich Jacoby had some intimation of this some hundred years earlier. 

    William Shakespeare, Macbeth, Act 5, Scene 5, 26-28. 

    Something else that people with left-brain dominance appear to be unable to take in. See Hans Joachim Schellnhuber, ‘Global Warming: Stop worrying, start panicking?’ PNAS, 105(37), Sept.16, 2008: 14239-14240. (  

    For a history of this, see Christopher Newfield, Unmaking the Public University: The Forty-Year Assault on the Middle Class, Cambridge, Mass.: Harvard University Press, 2008. 

    Chris Hedges, Empire of Illusion: The End of Literacy and the Triumph of Spectacle. New York: Nation Books, p.110 & 94.

    See Aubrey Gwynn, Roman Education: From Cicero to Quintilian, Oxford: Clarendon Press, 1926, p.84ff. Falling short of the Greeks, the Romans gave no place to music or poetry, although Cicero famously defended the arts in his defence of the poet Aulus Lucinius Archia, who had been accused of not being a Roman citizen, in Pro Archia.  

    Wilhelm von Humboldt, Humanist Without Portfolio, Detroit, Wayne State University Press, 1963, p.132f.

    Assault on the Middle Class, Cambridge, Mass.: Harvard University Press, 2008. 27 Chris 23 Carl Boggs, Intellectuals and the Crisis of Modernity, New York: SUNY Press, 1993. 

    Richard Arum and Josipa Roksa, Academically Adrift: Limited Learning on College Campuses, London: University of Chicago Press, 2011, ch.2. 

  • 7.7 A Model for Reversing the Decline of Science

    Content in preparation, 1 September 2020